E.J. Lattice Semiconductor Corporation - <u>LCMXO640C-4FT256I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detailo	
Product Status	Obsolete
Number of LABs/CLBs	80
Number of Logic Elements/Cells	640
Total RAM Bits	
Number of I/O	159
Number of Gates	
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo640c-4ft256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-6. Distributed Memory Primitives

ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration.

PFU Modes of Operation

Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level.

Table	2-4.	PFU	Modes	of	Operation
-------	------	-----	-------	----	-----------

Logic	Ripple	RAM	ROM
LUT 4x8 or MUX 2x1 x 8	2-bit Add x 4	SPR16x2 x 4 DPR16x2 x 2	ROM16x1 x 8
LUT 5x4 or MUX 4x1 x 4	2-bit Sub x 4	SPR16x4 x 2 DPR16x4 x 1	ROM16x2 x 4
LUT 6x 2 or MUX 8x1 x 2	2-bit Counter x 4	SPR16x8 x 1	ROM16x4 x 2
LUT 7x1 or MUX 16x1 x 1	2-bit Comp x 4		ROM16x8 x 1

Routing

There are many resources provided in the MachXO devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions.

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through a copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old contents of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

FIFO Configuration

The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. The range of programming values for these flags are in Table 2-7.

Table 2-7. Programmable FIFO Flag Ranges

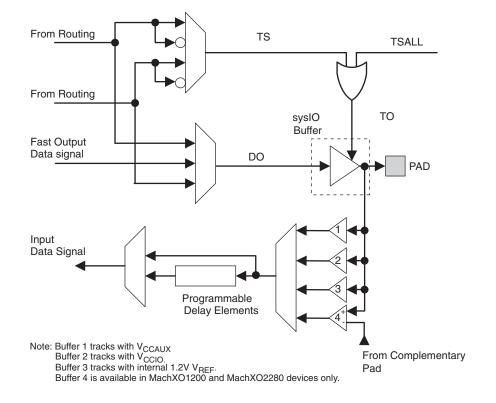
Flag Name	Programming Range
Full (FF)	1 to (up to 2 ^N -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0
	·

N = Address bit width

The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-13.



output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic.

The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.

Figure 2-17. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the Bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers.

MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks.

MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom

Table 2-10. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Typ.)
Single-ended Interfaces		
LVTTL	4mA, 8mA, 12mA, 16mA	3.3
LVCMOS33	4mA, 8mA, 12mA, 14mA	3.3
LVCMOS25	4mA, 8mA, 12mA, 14mA	2.5
LVCMOS18	4mA, 8mA, 12mA, 14mA	1.8
LVCMOS15	4mA, 8mA	1.5
LVCMOS12	2mA, 6mA	1.2
LVCMOS33, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS25, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS18, Open Drain	4mA, 8mA, 12mA, 14mA	—
LVCMOS15, Open Drain	4mA, 8mA	—
LVCMOS12, Open Drain	2mA, 6mA	—
PCI33 ³	N/A	3.3
Differential Interfaces		
LVDS ^{1, 2}	N/A	2.5
BLVDS, RSDS ²	N/A	2.5
LVPECL ²	N/A	3.3

1. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers.

2. These interfaces can be emulated with external resistors in all devices.

3. Top Banks of MachXO1200 and MachXO2280 devices only.

sysIO Buffer Banks

The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the MachXO1200 and MachXO2280 (two Banks per side). The MachXO640 has four Banks (one Bank per side). The smallest member of this family, the MachXO256, has only two Banks.

Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage (V_{CCIO}) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20 and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices.

the system. These capabilities make the MachXO ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The MachXO "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.

During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11 compares the characteristics of Normal, Off and Sleep modes.

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	—	Low
Static Icc	Typical <10mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	0	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

Table 2-11. Characteristics of Normal, Off and Sleep Modes

SLEEPN Pin Characteristics

The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet shows a detailed timing diagram.

Oscillator

Every MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 18MHz to 26MHz.

Configuration and Testing

The following section describes the configuration and testing features of the MachXO family of devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the VCCIO Banks (MachXO256: V_{CCIO1} ; MachXO640: V_{CCIO2} ; MachXO1200 and MachXO2280: V_{CCIO5}) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

Device Configuration

All MachXO devices contain a test access port that can be used for device configuration and programming.

The non-volatile memory in the MachXO can be configured in two different modes:

- In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off-line and I/Os are controlled by BSCAN registers.
- In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode while reprogramming takes place.

The SRAM configuration memory can be configured in three different ways:

- At power-up via the on-chip non-volatile memory.
- After a refresh command is issued via the IEEE 1149.1 port.
- In IEEE 1532 mode via the IEEE 1149.1 port.

Figure 2-22 provides a pictorial representation of the different programming modes available in the MachXO devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 protocols.

Leave Alone I/O

When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration, or issuing a refresh command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reconfiguration or reprogramming occurs on-the-fly.

TransFR (Transparent Field Reconfiguration)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See TN1087, <u>Minimizing System Interruption During Configura-</u> tion Using TransFR Technology for details.

Security

The MachXO devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear the security bits is to erase the memory space.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

MachXO External Switching Characteristics¹

			-	5	-	4	-	3		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units	
General I/O	General I/O Pin Parameters (Using Global Clock without PLL) ¹									
		LCMXO256	_	3.5	—	4.2	—	4.9	ns	
•	Best Case t _{PD} Through 1 LUT	LCMXO640	_	3.5	—	4.2	—	4.9	ns	
t _{PD}		LCMXO1200	_	3.6	—	4.4	—	5.1	ns	
		LCMXO2280		3.6	—	4.4	—	5.1	ns	
		LCMXO256		4.0	—	4.8	—	5.6	ns	
+	Best Case Clock to Output - From PFU	LCMXO640	_	4.0	—	4.8	—	5.7	ns	
t _{CO}	Best Case Clock to Output - FIOIII FFO	LCMXO1200	_	4.3	—	5.2	—	6.1	ns	
		LCMXO2280		4.3	—	5.2	—	6.1	ns	
		LCMXO256	1.3	—	1.6	—	1.8	—	ns	
+	Clock to Data Setup - To PFU	LCMXO640	1.1	—	1.3	—	1.5	—	ns	
t _{SU}	Clock to Data Setup - To PPO	LCMXO1200	1.1	—	1.3	—	1.6	—	ns	
		LCMXO2280	1.1	—	1.3	—	1.5	—	ns	
		LCMXO256	-0.3	—	-0.3	—	-0.3	—	ns	
+	Clock to Data Hold - To PFU	LCMXO640	-0.1	—	-0.1		-0.1	_	ns	
t _H		LCMXO1200	0.0	—	0.0	—	0.0	—	ns	
		LCMXO2280	-0.4	—	-0.4		-0.4	—	ns	
		LCMXO256		600	—	550	—	500	MHz	
f	Clock Frequency of I/O and PFU Register	LCMXO640		600	—	550	—	500	MHz	
f _{MAX_IO}	Clock Frequency of I/O and FFO Register	LCMXO1200	_	600	—	550		500	MHz	
		LCMXO2280	_	600	—	550	—	500	MHz	
		LCMXO256	_	200	—	220	—	240	ps	
+.	Global Clock Skew Across Device	LCMXO640		200	—	220	—	240	ps	
t _{SKEW_PRI}	GIODAI GIOCK SKEW ACIOSS DEVICE	LCMXO1200		220	—	240	—	260	ps	
		LCMXO2280	_	220	—	240	—	260	ps	

Over Recommended Operating Conditions

1. General timing numbers based on LVCMOS2.5V, 12 mA. Rev. A 0.19

MachXO Family Timing Adders^{1, 2, 3}

Buffer Type	Description	-5	-4	-3	Units
Input Adjusters			I	1	
LVDS25 ^₄	LVDS	0.44	0.53	0.61	ns
BLVDS254	BLVDS	0.44	0.53	0.61	ns
LVPECL334	LVPECL	0.42	0.50	0.59	ns
LVTTL33	LVTTL	0.01	0.01	0.01	ns
LVCMOS33	LVCMOS 3.3	0.01	0.01	0.01	ns
LVCMOS25	LVCMOS 2.5	0.00	0.00	0.00	ns
LVCMOS18	LVCMOS 1.8	0.07	0.08	0.10	ns
LVCMOS15	LVCMOS 1.5	0.14	0.17	0.19	ns
LVCMOS12	LVCMOS 1.2	0.40	0.48	0.56	ns
PCI33 ⁴	PCI	0.01	0.01	0.01	ns
Output Adjusters				•	
LVDS25E	LVDS 2.5 E	-0.13	-0.15	-0.18	ns
LVDS25⁴	LVDS 2.5	-0.21	-0.26	-0.30	ns
BLVDS25	BLVDS 2.5	-0.03	-0.03	-0.04	ns
LVPECL33	LVPECL 3.3	0.04	0.04	0.05	ns
LVTTL33_4mA	LVTTL 4mA drive	0.04	0.04	0.05	ns
LVTTL33_8mA	LVTTL 8mA drive	0.06	0.07	0.08	ns
LVTTL33_12mA	LVTTL 12mA drive	-0.01	-0.01	-0.01	ns
LVTTL33_16mA	LVTTL 16mA drive	0.50	0.60	0.70	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive	0.04	0.04	0.05	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive	0.06	0.07	0.08	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive	-0.01	-0.01	-0.01	ns
LVCMOS33_14mA	LVCMOS 3.3 14mA drive	0.50	0.60	0.70	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive	0.05	0.06	0.07	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive	0.10	0.12	0.13	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive	0.00	0.00	0.00	ns
LVCMOS25_14mA	LVCMOS 2.5 14mA drive	0.34	0.40	0.47	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive	0.11	0.13	0.15	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive	0.05	0.06	0.06	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive	-0.06	-0.07	-0.08	ns
LVCMOS18_14mA	LVCMOS 1.8 14mA drive	0.06	0.07	0.09	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive	0.15	0.19	0.22	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive	0.05	0.06	0.07	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive	0.26	0.31	0.36	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive	0.05	0.06	0.07	ns
PCI33⁴	PCI33	1.85	2.22	2.59	ns

Over Recommended Operating Conditions

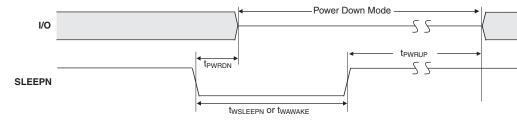
1. Timing adders are characterized but not tested on every device.

2. LVCMOS timing is measured with the load specified in Switching Test Conditions table.

3. All other standards tested according to the appropriate specifications.

4. I/O standard only available in LCMXO1200 and LCMXO2280 devices.

Rev. A 0.19



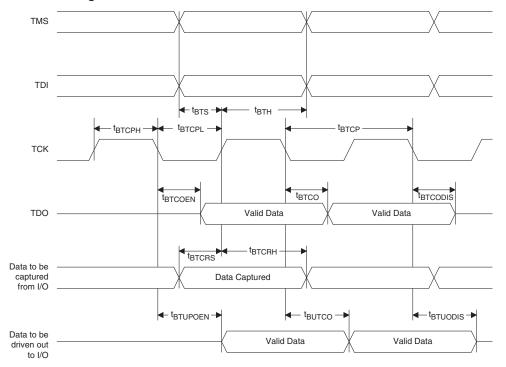
MachXO "C" Sleep Mode Timing

Symbol	Parameter	Device	Min.	Тур.	Max	Units
t _{PWRDN}	SLEEPN Low to Power Down	All		—	400	ns
		LCMXO256	_	—	400	μs
•	OLEEDN Lligh to Device Up	LCMXO640	_	—	600	μs
^I PWRUP	SLEEPN High to Power Up	LCMXO1200	_	—	800	μs
		LCMXO2280	_	—	1000	μs
t _{WSLEEPN}	SLEEPN Pulse Width	All	400	—	—	ns
t _{WAWAKE}	SLEEPN Pulse Rejection	All		—	100	ns

Rev. A 0.19

Flash Download Time

Symbol	Parameter		Min.	Тур.	Max.	Units
	LCMXO256	—		0.4	ms	
1	(later of the two supplies)	LCMXO640	—		0.6	ms
^I REFRESH		LCMXO1200	—		0.8	ms
		LCMXO2280	—		1.0	ms


JTAG Port Timing Specifications

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	TCK [BSCAN] clock frequency	—	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40	—	ns
^t втсрн	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	_	ns
t _{BTS}	TCK [BSCAN] setup time	8		ns
t _{втн}	TCK [BSCAN] hold time	10	—	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	—	mV/ns
t _{втсо}	TAP controller falling edge of clock to output valid		10	ns
t _{BTCODIS}	CODIS TAP controller falling edge of clock to output disabled		10	ns
t _{BTCOEN}	TAP controller falling edge of clock to output enabled	—	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	—	ns
t _{BTCRH}	BSCAN test capture register hold time	25	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to output valid	—	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to output disabled	—	25	ns
^t BTUPOEN	BSCAN test update register, falling edge of clock to output enabled	—	25	ns

Rev. A 0.19

Figure 3-5. JTAG Port Timing Waveforms

Power Supply and NC

Signal	100 TQFP ¹	144 TQFP ¹	100 csBGA ²
VCC	LCMXO256/640: 35, 90 LCMXO1200/2280: 17, 35, 66, 91	21, 52, 93, 129	P7, B6
VCCIO0	LCMXO256: 60, 74, 92 LCMXO640: 80, 92 LCMXO1200/2280: 94	LCMXO640: 117, 135 LCMXO1200/2280: 135	LCMXO256: H14, A14, B5 LCMXO640: B12, B5
VCCIO1	LCMXO256: 10, 24, 41 LCMXO640: 60, 74 LCMXO1200/2280: 80	LCMXO640: 82, 98 LCMXO1200/2280: 117	LCMXO256: G1, P1, P10 LCMXO640: H14, A14
VCCIO2	LCMXO256: None LCMXO640: 29, 41 LCMXO1200/2280: 70	LCMXO640: 38, 63 LCMXO1200/2280: 98	LCMXO256: None LCMXO640: P4, P10
VCCIO3	LCMXO256: None LCMXO640: 10, 24 LCMXO1200/2280: 56	LCMXO640: 10, 26 LCMXO1200/2280: 82	LCMXO256: None LCMXO640: G1, P1
VCCIO4	LCMXO256/640: None LCMXO1200/2280: 44	LCMXO640: None LCMXO1200/2280: 63	-
VCCIO5	LCMXO256/640: None LCMXO1200/2280: 27	LCMXO640: None LCMXO1200/2280: 38	—
VCCIO6	LCMXO256/640: None LCMXO1200/2280: 20	LCMXO640: None LCMXO1200/2280: 26	—
VCCIO7	LCMXO256/640: None LCMXO1200/2280: 6	LCMXO640: None LCMXO1200/2280: 10	—
VCCAUX	LCMXO256/640: 88 LCMXO1200/2280: 36, 90	53, 128	B7
GND ³	LCMXO256: 40, 84, 62, 75, 93, 12, 25, 42 LCMXO640: 40, 84, 81, 93, 62, 75, 30, 42, 12, 25 LCMXO1200/2280: 9, 41, 59, 83, 100, 76, 50, 26	16, 59, 88, 123, 118, 136, 83, 99, 37, 64, 11, 27	LCMXO256: N9, B9, G14, B13, A4, H1, N2, N10 LCMXO640: N9, B9, A10, A4, G14, B13, N3, N10, H1, N2
NC ⁴			—

1. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

Pin orientation follows the contention of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane.
NC pins should not be connected to any active signals, VCC or GND.

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP (Cont.)

		LCM	(O256			LCM	XO640	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
85	PT4B	0	PCLK0_1**	С	PT6B	0	PCLK0_1**	
86	PT4A	0	PCLK0_0**	Т	PT5B	0	PCLK0_0**	С
87	PT3D	0		С	PT5A	0		Т
88	VCCAUX	-			VCCAUX	-		
89	PT3C	0		Т	PT4F	0		
90	VCC	-			VCC	-		
91	PT3B	0		С	PT3F	0		
92	VCCIO0	0			VCCIO0	0		
93	GNDIO0	0			GNDIO0	0		
94	PT3A	0		Т	PT3B	0		С
95	PT2F	0		С	PT3A	0		Т
96	PT2E	0		Т	PT2F	0		С
97	PT2D	0		С	PT2E	0		Т
98	PT2C	0		Т	PT2B	0		С
99	PT2B	0		С	PT2C	0		
100	PT2A	0		Т	PT2A	0		Т

* NC for "E" devices.

** Primary clock inputs are single-ended.

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		L	CMXO1200			L	CMXO2280	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
42	PB9A	4		Т	PB12A	4		Т
43	PB9B	4		С	PB12B	4		С
44	VCCIO4	4			VCCIO4	4		
45	PB10A	4		Т	PB13A	4		Т
46	PB10B	4		С	PB13B	4		С
47***	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
48	PB11A	4		Т	PB16A	4		Т
49	PB11B	4		С	PB16B	4		С
50**	GNDIO3 GNDIO4	-			GNDIO3 GNDIO4	-		
51	PR16B	3			PR19B	3		
52	PR15B	3		C*	PR18B	3		C*
53	PR15A	3		T*	PR18A	3		T*
54	PR14B	3		C*	PR17B	3		C*
55	PR14A	3		T*	PR17A	3		T*
56	VCCIO3	3			VCCIO3	3		
57	PR12B	3		C*	PR15B	3		C*
58	PR12A	3		T*	PR15A	3		T*
59	GND	-			GND	-		
60	PR10B	3		C*	PR13B	3		C*
61	PR10A	3		T*	PR13A	3		T*
62	PR9B	3		C*	PR11B	3		C*
63	PR9A	3		T*	PR11A	3		T*
64	PR8B	2		C*	PR10B	2		C*
65	PR8A	2		T*	PR10A	2		T*
66	VCC	-			VCC	-		
67	PR6C	2			PR8C	2		
68	PR6B	2		C*	PR8B	2		C*
69	PR6A	2		T*	PR8A	2		T*
70	VCCIO2	2			VCCIO2	2		
71	PR4D	2			PR5D	2		
72	PR4B	2		C*	PR5B	2		C*
73	PR4A	2		Τ*	PR5A	2		Τ*
74	PR2B	2		С	PR3B	2		C*
75	PR2A	2		Т	PR3A	2		T*
76**	GNDIO1 GNDIO2	-			GNDIO1 GNDIO2	-		
77	PT11C	1			PT15C	1		
78	PT11B	1		С	PT14B	1		С
79	PT11A	1		Т	PT14A	1		Т
80	VCCIO1	1			VCCIO1	1		
81	PT9E	1			PT12D	1		С

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

		LCMXO256					LCMXO640)	
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial
A4	GNDIO0	0			A4	GNDIO0	0		
B4	PT3A	0		Т	B4	PT3B	0		С
A3	PT2F	0		С	A3	PT3A	0		Т
B3	PT2E	0		Т	B3	PT2F	0		С
A2	PT2D	0		С	A2	PT2E	0		Т
C3	PT2C	0		Т	C3	PT2B	0		С
A1	PT2B	0		С	A1	PT2C	0		
B2	PT2A	0		Т	B2	PT2A	0		Т
N9	GND	-			N9	GND	-		
B9	GND	-			B9	GND	-		
B5	VCCIO0	0			B5	VCCIO0	0		
A14	VCCIO0	0			A14	VCCIO1	1		
H14	VCCIO0	0			H14	VCCIO1	1		
P10	VCCIO1	1			P10	VCCIO2	2		
G1	VCCIO1	1			G1	VCCIO3	3		
P1	VCCIO1	1			P1	VCCIO3	3		

*NC for "E" devices.

**Primary clock inputs are single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 132 csBGA

		LCM	XO640				LC	MXO1200				LC	CMXO2280	
Ball #	Ball Function	Bonk	Dual Function	Differential	Ball #	Ball Function	Bonk	Dual Function	Differential	Ball #	Ball Function	Bonk	Dual Function	Differential
B1	PL2A	З	Function	T	Ball #	PL2A	Бапк 7	Function	T	Ball #	PL2A	Darik	LUM0_PLLT_FB_A	T
C1	PL2B	3		C	C1	PL3C	7		T	C1	PL3C	7	LUM0_PLLT_IN_A	T
B2	PL2C	3		Т	B2	PL2B	7		C	B2	PL2B	7	LUM0_PLLC_FB_A	C
C2	PL2D	3		C	C2	PL4A	7		T*	C2	PL4A	7		T*
C2	PL3A	3		Т	C2	PL3D	7		C	C2	PL3D	7	LUM0_PLLC_IN_A	C
D1	PL3B	3		C	D1	PL4B	7		C*	D1	PL4B	7		C*
D3	PL3D	3		0	D3	PL4C	7		Ŭ	D3	PL4C	7		0
E1	GNDIO3	3			E1	GNDIO7	7			E1	GNDIO7	7		
E2	PL5A	3		т	E2	PL6A	7		T*	E2	PL7A	7		T*
E3	PL5B	3	GSRN	C	E3	PL6B	7	GSRN	C*	E3	PL7B	7	GSRN	C*
F2	PL5D	3	CONN	0	F2	PL6D	7	CONN	Ŭ	F2	PL7D	7	CONN	0
F3	PL6B	3			F3	PL7C	7		т	F3	PL9C	7		т
G1	PL6C	3		т	G1	PL7D	7		C	G1	PL9D	7		C
G2	PL6D	3		C	G2	PL8C	7		Т	G2	PL10C	7		Т
G2 G3	PL6D PL7A	3		Т	G2 G3	PL8C	7		C	G2 G3	PL10C	7		C
H2	PL7A PL7B	3		C	H2	PL8D PL10A	6		C T*	H2	PL10D PL12A	6		C T*
H1	PL7B PL7C	3		C	п2 Н1	PL10A PL10B	6		C*	⊓2 H1	PL12A PL12B	6		C*
		-				VCC			C			-		C
H3	VCC				H3		-			H3	VCC			0
J1	PL8A	3	TOALL		J1	PL11B	6	TOALL	т	J1	PL14D	6	TOALL	C T
J2	PL8C	3	TSALL	-	J2	PL11C	6	TSALL		J2	PL14C	6	TSALL	1
J3	PL9A	3		Т	J3	PL11D	6		C	J3	PL14B	6		
K2	PL9B	3		С	K2	PL12A	6		T*	K2	PL15A	6		T*
K1	PL9C	3			K1	PL12B	6		C*	K1	PL15B	6		C*
L2	GNDIO3	3			L2	GNDIO6	6			L2	GNDIO6	6		
L1	PL10A	3		Т	L1	PL14A	6	LLM0_PLLT_FB_A	T*	L1	PL17A	6	LLM0_PLLT_FB_A	T*
L3	PL10B	3		С	L3	PL14B	6	LLM0_PLLC_FB_A	C*	L3	PL17B	6	LLM0_PLLC_FB_A	C*
M1	PL11A	3		Т	M1	PL15A	6	LLM0_PLLT_IN_A	T*	M1	PL18A	6	LLM0_PLLT_IN_A	T*
N1	PL11B	3		С	N1	PL16A	6		Т	N1	PL19A	6		Т
M2	PL11C	3		Т	M2	PL15B	6	LLM0_PLLC_IN_A	C*	M2	PL18B	6	LLM0_PLLC_IN_A	C*
P1	PL11D	3		С	P1	PL16B	6		С	P1	PL19B	6		С
P2	GNDIO2	2			P2	GNDIO5	5			P2	GNDIO5	5		
P3	TMS	2	TMS		P3	TMS	5	TMS		P3	TMS	5	TMS	
M3	PB2C	2		Т	M3	PB2C	5		Т	M3	PB2A	5		Т
N3	PB2D	2		С	N3	PB2D	5		С	N3	PB2B	5		С
P4	TCK	2	TCK		P4	TCK	5	ТСК		P4	TCK	5	ТСК	
M4	PB3B	2			M4	PB3B	5			M4	PB3B	5		
N4	PB3C	2		Т	N4	PB4A	5		Т	N4	PB4A	5		Т
P5	PB3D	2		С	P5	PB4B	5		С	P5	PB4B	5		С
N5	TDO	2	TDO		N5	TDO	5	TDO		N5	TDO	5	TDO	
M5	TDI	2	TDI		M5	TDI	5	TDI		M5	TDI	5	TDI	
N6	PB4E	2		Т	N6	PB5C	5			N6	PB6C	5		
P6	VCC	-			P6	VCC	-			P6	VCC	-		
M6	PB4F	2		С	M6	PB6A	5			M6	PB8A	5		
P7	VCCAUX	-			P7	VCCAUX	-			P7	VCCAUX	-		
N7	PB5A	2		Т	N7	PB6F	5			N7	PB8F	5		
M7	PB5B	2	PCLK2_1***	С	M7	PB7B	4	PCLK4_1***		M7	PB10F	4	PCLK4_1***	
N8	PB5D	2			N8	PB7C	4		Т	N8	PB10C	4		Т
P8	PB6A	2		Т	P8	PB7D	4		С	P8	PB10D	4		С
M8	PB6B	2	PCLK2_0***	С	M8	PB7F	4	PCLK4_0***		M8	PB10B	4	PCLK4_0***	
N9	PB7A	2		Т	N9	PB9A	4		Т	N9	PB12A	4		Т

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 132 csBGA (Cont.)

		LCM	(O640				LC	MXO1200		LCMXO2280					
	Ball		Dual			Ball		Dual			Ball		Dual		
Ball #		Bank	Function	Differential	Ball #	Function		Function	Differential	Ball #	Function		Function	Differential	
M9	PB7B	2		С	M9	PB9B	4		C	M9	PB12B	4		С	
N10	PB7E	2		Т	N10	PB9C	4		Т	N10	PB12C	4		Т	
P10	PB7F	2		С	P10	PB9D	4		С	P10	PB12D	4		С	
N11	GNDIO2	2			N11	GNDIO4	4			N11	GNDIO4	4		_	
P11	PB8C	2		Т	P11	PB10A	4		Т	P11	PB13C	4		Т	
M11	PB8D	2		C	M11	PB10B	4		С	M11	PB13D	4		С	
P12	PB9C	2		Т	P12	PB10C	4			P12	PB15B	4			
P13	PB9D	2		С	P13	PB11C	4		Т	P13	PB16C	4		Т	
N12**	SLEEPN	-	SLEEPN		N12**	SLEEPN	-	SLEEPN		N12**	SLEEPN	-	SLEEPN		
P14	PB9F	2			P14	PB11D	4		C	P14	PB16D	4		С	
N14	PR11D	1		С	N14	PR16B	3		C	N14	PR19B	3		C	
M14	PR11C	1		Т	M14	PR15B	3		C*	M14	PR18B	3		C*	
N13	PR11B	1		С	N13	PR16A	3		T	N13	PR19A	3		Т	
M12	PR11A	1		Т	M12	PR15A	3		T*	M12	PR18A	3		T*	
M13	PR10B	1		C	M13	PR14B	3		C*	M13	PR17B	3		C*	
L14	PR10A	1		Т	L14	PR14A	3		T*	L14	PR17A	3		T*	
L13	GNDIO1	1			L13	GNDIO3	3			L13	GNDIO3	3			
K14	PR8D	1		C	K14	PR12B	3		C*	K14	PR15B	3		C*	
K13	PR8C	1		Т	K13	PR12A	3		T*	K13	PR15A	3		T*	
K12	PR8B	1		C T	K12	PR11B	3		C*	K12	PR14B	3		C*	
J13	PR8A	1		Т	J13	PR11A	3		T*	J13	PR14A	3		T*	
J12	PR7C	1			J12	PR10B	3		C*	J12	PR13B	3		C*	
H14	PR7B	1		C	H14	PR10A	3		T*	H14	PR13A	3		T*	
H13	PR7A	1		Т	H13	PR9B	3		C*	H13	PR11B	3		C*	
H12	PR6D	1		C	H12	PR9A	3		T*	H12	PR11A	3		T*	
G13	PR6C	1		Т	G13	PR8B	2		C*	G13	PR10B	2		C*	
G14	PR6B VCC	1			G14	PR8A VCC	2		Ι	G14	PR10A	2		1"	
G12		-		0	G12		-			G12	VCC				
F14	PR5D	1		C T	F14	PR6C	2		C*	F14	PR8C	2		C*	
F13 F12	PR5C PR4D	1		C	F13 F12	PR6B PR6A	2		T*	F13 F12	PR8B PR8A	2		T*	
E13	PR4D PR4C	1		Т	E13	PR5B	2		C*	E13	PR7B	2		C*	
E13	PR4C PR4B	1		1	E13	PR5A	2		T*	E13	PR7A	2		T*	
D13	GNDIO1	1			D13	GNDIO2	2		1	D13	GNDIO2	2		1	
D13	PR3D	1		С	D13	PR4B	2		C*	D13	PR5B	2		C*	
D14	PR3D	1		Т	D14	PR4D PR4A	2		T*	D14	PR5A	2		T*	
C14	PR2D	1		C	C14	PR4A PR3D	2		C	C14	PR4D	2		C	
B14	PR2C	1		Т	B14	PR2B	2		C C	B14	PR3B	2		C*	
C13	PR20	1		C	C13	PR3C	2		Т	C13	PR4C	2		т	
A14	PR26	1		T	A14	PR2A	2		T	A14	PR4C PR3A	2		T*	
A14	PT9F	0		C	A14	PT11D	1		C	A14	PT16D	2 1		C	
A13 A12	PT9F PT9E	0		Т	A13 A12	PT11B	1		C C	A13 A12	PT16D PT16B	1		C	
B13	PT9E PT9D	0		C	B13	PT11B PT11C	1		Т	B13	PT16D PT16C	1		Т	
B13 B12	PT9C	0		Т	B13 B12	PT10F	1			B13 B12	PT15D	1			
C12	PT9C PT9B	0		C	C12	PT10F	1		т	C12	PT16A	1		Т	
A11	PT9B PT9A	0		Т	A11	PT11A PT10D	1		C	A11	PT16A PT14B	1		C	
C11	PT9A PT8C	0			C11	PT10D PT10C	1		Т	C11	PT14B PT14A	1		Т	
A10	GNDIO0	0			A10	GNDIO1	1		1	A10	GNDIO1	1			
B10	PT7F	0		С	B10	PT9F	1		с	B10	PT12F	1		с	
C10	PT7E	0		Т	C10	PT9F	1		Т	C10	PT12F PT12E	1		Т	
010	FI/E	U			010	FIAE				010	FIIZE				

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

		L	CMXO640				LCMXO1200				LCMXO2280	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
51	TDI	2	TDI		TDI	5	TDI		TDI	5	TDI	
52	VCC	-			VCC	-			VCC	-		
53	VCCAUX	-			VCCAUX	-			VCCAUX	-		
54	PB5A	2		Т	PB6F	5			PB8F	5		
55	PB5B	2	PCLKT2_1***	С	PB7B	4	PCLK4_1***		PB10F	4	PCLK4_1***	
56	PB5D	2			PB7C	4		Т	PB10C	4		Т
57	PB6A	2		Т	PB7D	4		С	PB10D	4		С
58	PB6B	2	PCLKT2_0***	С	PB7F	4	PCLK4_0***		PB10B	4	PCLK4_0***	
59	GND	-			GND	-			GND	-		
60	PB7C	2			PB9A	4		Т	PB12A	4		Т
61	PB7E	2			PB9B	4		С	PB12B	4		С
62	PB8A	2			PB9E	4			PB12E	4		
63	VCCIO2	2			VCCIO4	4			VCCIO4	4		
64	GNDIO2	2			GNDIO4	4			GNDIO4	4		
65	PB8C	2		Т	PB10A	4		Т	PB13A	4		т
66	PB8D	2		C	PB10B	4		C	PB13B	4		C
67	PB9A	2		T	PB10C	4		Т	PB13C	4		Т
68	PB9C	2		T	PB10D	4		C	PB13D	4		C
69	PB9B	2		C	PB10F	4		Ū	PB14D	4		0
70**	SLEEPN	-	SLEEPN	Ŭ	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
70	PB9D	2	SLEEFN	С	PB11C	4	SLEEFIN	Т	PB16C	4	JLEEFIN	т
71	PB9D PB9F	2		U	PB11C PB11D	4		C	PB16C PB16D	4		C
									-			c
73	PR11D	1		С	PR16B	3		С	PR20B	3		
74	PR11B	1		C	PR16A	3		T	PR20A	3		Т
75	PR11C	1		Т	PR15B	3		C*	PR19B	3		С
76	PR10D	1		С	PR15A	3		T*	PR19A	3		Т
77	PR11A	1		Т	PR14D	3		С	PR17D	3		С
78	PR10B	1		С	PR14C	3		Т	PR17C	3		Т
79	PR10C	1		Т	PR14B	3		C*	PR17B	3		C*
80	PR10A	1		Т	PR14A	3		T*	PR17A	3		T*
81	PR9D	1			PR13D	3			PR16D	3		
82	VCCIO1	1			VCCIO3	3			VCCIO3	3		
83	GNDIO1	1			GNDIO3	3			GNDIO3	3		
84	PR9A	1			PR12B	3		C*	PR15B	3		C*
85	PR8C	1			PR12A	3		T*	PR15A	3		T*
86	PR8A	1			PR11B	3		C*	PR14B	3		C*
87	PR7D	1			PR11A	3		T*	PR14A	3		T*
88	GND	-			GND	-			GND	-		
89	PR7B	1		С	PR10B	3		C*	PR13B	3		C*
90	PR7A	1		Т	PR10A	3		T*	PR13A	3		T*
91	PR6D	1		С	PR8B	2		C*	PR10B	2		C*
92	PR6C	1		Т	PR8A	2		T*	PR10A	2		T*
93	VCC	-			VCC	-			VCC	-		
94	PR5D	1			PR6B	2		C*	PR8B	2		C*
95	PR5B	1			PR6A	2		T*	PR8A	2		T*
96	PR4D	1			PR5B	2		C*	PR7B	2		C*
97	PR4B	1		С	PR5A	2		T*	PR7A	2		T*
98	VCCIO1	1			VCCIO2	2			VCCIO2	2		
99	GNDIO1	1			GNDIO2	2			GNDIO2	2		
100	PR4A	1		Т	PR4C	2			PR5C	2		

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

Dell Number	Poll Function	LCMXO2280	Duel Constinue	Differential		
Ball Number	Ball Function	Bank	Dual Function			
T2	PL20B	6		С		
P6	TMS	5	TMS			
V1	PB2A	5		Т		
U2	PB2B	5		С		
Т3	PB2C	5		Т		
N7	ТСК	5	ТСК			
R4	PB2D	5		С		
R5	PB3A	5		Т		
T4	PB3B	5		С		
VCC	VCC	-				
R6	PB3C	5		Т		
P7	PB3D	5		С		
U3	PB4A	5		Т		
T5	PB4B	5		С		
V2	PB4C	5		Т		
N8	TDO	5	TDO			
V3	PB4D	5		С		
T6	PB5A	5		Т		
GND	GNDIO5	5				
VCCIO5	VCCIO5	5				
U4	PB5B	5		С		
P8	PB5C	5		Т		
T7	PB5D	5		С		
V4	TDI	5	TDI			
R8	PB6A	5		Т		
N9	PB6B	5		С		
U5	PB6C	5		Т		
V5	PB6D	5		С		
U6	PB7A	5		т		
VCC	VCC	-				
V6	PB7B	5		С		
P9	PB7C	5		T		
T8	PB7D	5		С		
U7	PB8A	5		T		
V7	PB8B	5		C		
M10	VCCAUX	-		-		
U8	PB8C	5		T		
V8	PB8D	5		C		
VCCIO5	VCCIO5	5		<u> </u>		
GND	GNDIO5	5				
T9	PB8E	5		т		
U9	PB8F	5		C		
 	PB9A	4		т		

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

Ball Number	Ball Function	Bank	Dual Function	Differential					
A10	PT8E	0		Т					
VCCIO0	VCCIO0	0							
GND	GNDIO0	0							
A9	PT8D	0		С					
C9	PT8C	0		Т					
B9	PT8B	0		С					
F9	VCCAUX	-							
A8	PT8A	0		Т					
B8	PT7D	0		С					
C8	PT7C	0		Т					
VCC	VCC	-							
A7	PT7B	0		С					
B7	PT7A	0		Т					
A6	PT6A	0		Т					
B6	PT6B	0		С					
D8	PT6C	0		Т					
F8	PT6D	0		С					
C7	PT6E	0		Т					
E8	PT6F	0		С					
D7	PT5D	0		С					
VCCIO0	VCCIO0	0							
GND	GNDIO0	0							
E7	PT5C	0		Т					
A5	PT5B	0		С					
C6	PT5A	0		Т					
B5	PT4A	0		Т					
A4	PT4B	0		С					
D6	PT4C	0		Т					
F7	PT4D	0		С					
B4	PT4E	0		Т					
GND	GND	-							
C5	PT4F	0		С					
F6	PT3D	0		С					
E5	PT3C	0		Т					
E6	PT3B	0		С					
D5	PT3A	0		Т					
A3	PT2D	0		С					
C4	PT2C	0		T					
A2	PT2B	0		C					
B2	PT2A	0		T					
VCCIO0	VCCIO0	0		-					
GND	GNDIO0	0							
E14	GND	-							

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the <u>Thermal Management</u> document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1090 Power Estimation and Management for MachXO Devices
- Power Calculator tool included with the Lattice ispLEVER design tool, or as a standalone download from <u>www.latticesemi.com/software</u>