E. Lattice Semiconductor Corporation - <u>LCMXO640C-5FT256C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	80
Number of Logic Elements/Cells	640
Total RAM Bits	-
Number of I/O	159
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo640c-5ft256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM

of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The PCI clamp is enabled after V_{CC} , V_{CCAUX} , and V_{CCIO} are at valid operating levels and the device has been configured.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

2. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input buffer. In these Banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} Banks are active with valid input logic levels to properly control the output logic states of all the I/O Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers should be powered up along with the FPGA core fabric. Therefore, V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies

Supported Standards

The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all Banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top Banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the MachXO family.

Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

Figure 2-20. MachXO640 Banks

Figure 2-21. MachXO256 Banks

Hot Socketing

The MachXO devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of

Density Shifting

The MachXO family has been designed to enable density migration in the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)				
Standard	Min.	Тур.	Max.		
LVCMOS 3.3	3.135	3.3	3.465		
LVCMOS 2.5	2.375	2.5	2.625		
LVCMOS 1.8	1.71	1.8	1.89		
LVCMOS 1.5	1.425	1.5	1.575		
LVCMOS 1.2	1.14	1.2	1.26		
LVTTL	3.135	3.3	3.465		
PCl ³	3.135	3.3	3.465		
LVDS ^{1, 2}	2.375	2.5	2.625		
LVPECL ¹	3.135	3.3	3.465		
BLVDS ¹	2.375	2.5	2.625		
RSDS ¹	2.375	2.5	2.625		

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers

3. Input on the top bank of the MachXO1200 and MachXO2280 only.

sysIO Single-Ended DC Electrical Characteristics

Input/Output	V _{IL}		V _{IH}	V _{IH}		Vou Min.			
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mĀ)	(mÅ)	
	-0.3	0.8	20	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4	
20000000	0.0	0.0	2.0	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
					0.4	2.4	16	-16	
LVTTL	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	12, 8, 4	-12, -8, -4	
					0.2	V _{CCIO} - 0.2	0.1	-0.1	
	-0.3	07	1.7	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4	
2001000 2.0		0.7			0.2	V _{CCIO} - 0.2	0.1	-0.1	
	-0.3	-03	-0.3 0.35\/	0.651/	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
		0.00 V.CCIO	0.0340000	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
IVCMOS 1.5	-0.3	-03 0	0.351/2010	0.651/	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4
	0.0	0.00 4 6610	0.004.0010	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.2	-0.3	0.42	0.78	36	0.4	V _{CCIO} - 0.4	6, 2	-6, -2	
("C" Version)	-0.5	0.3 0.42	0.78	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.2	-0.3	0.35\/	0.651/	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2	
("E" Version)	-0.5	0.3 0.35 V _{CC}	0.02 ACC	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5	

1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between Bank GND connections or between the last GND in a Bank and the end of a Bank.

Table 3-1. LVDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ω
R _S	Driver series resistor	294	Ω
R _P	Driver parallel resistor	121	Ω
R _T	Receiver termination	100	Ω
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100	Ω
I _{DC}	DC output current	3.66	mA

Over Recommended Operating Conditions

BLVDS

The MachXO family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. The input standard is supported by the LVDS differential input buffer on certain devices. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
IDC	DC output current	3.66	mA

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-5 Timing	Units	
Basic Functions			
16-bit decoder	6.7	ns	
4:1 MUX	4.5	ns	
16:1 MUX	5.1	ns	

Register-to-Register Performance

Function	-5 Timing	Units				
Basic Functions						
16:1 MUX	487	MHz				
16-bit adder	292	MHz				
16-bit counter	388	MHz				
64-bit counter	200	MHz				
Embedded Memory Functions (1200	Embedded Memory Functions (1200 and 2280 Devices Only)					
256x36 Single Port RAM	284	MHz				
512x18 True-Dual Port RAM	284	MHz				
Distributed Memory Functions						
16x2 Single Port RAM	434	MHz				
64x2 Single Port RAM	320	MHz				
128x4 Single Port RAM	261	MHz				
32x2 Pseudo-Dual Port RAM	314	MHz				
64x4 Pseudo-Dual Port RAM	271	MHz				

 The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.
 Rev. A 0.19

Derating Logic Timing

Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage.

sysCLOCK PLL Timing

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
			25	420	MHz
f _{IN}	neter Descriptions Input Clock Frequency (CLKI, CLKFB) Output Clock Frequency (CLKOP, CLKOS) K-Divider Output Frequency (CLKOK) PLL VCO Frequency Phase Detector Input Frequency Naracteristics Output Clock Duty Cycle Output Clock Duty Cycle Output Clock Period Jitter Input Clock to Output Clock Skew Output Clock Pulse Width PLL Lock-in Time Programmable Delay Unit Input Clock Period Jitter Input Clock Period Jitter Input Clock High Time	Input Divider (M) = 1; Feedback Divider (N) $\leq 4^{5, 6}$	18	25	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		25	420	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	210	MHz
f _{VCO}	PLL VCO Frequency		420	840	MHz
			25	—	MHz
f _{PFD}	Phase Detector Input Frequency	Input Divider (M) = 1; Feedback Divider (N) $\leq 4^{5, 6}$	18	25	MHz
AC Characte	eristics		•	•	
t _{DT}	Output Clock Duty Cycle	Default duty cycle selected ³	45	55	%
t _{PH} ⁴	Output Phase Accuracy		—	0.05	UI
. 1	Output Clock Pariod litter	f _{OUT} >= 100 MHz	—	+/-120	ps
OPJIT	Output Clock Period Jitter	f _{OUT} < 100 MHz	—	0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	—	+/-200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1	—	ns
t _{LOCK} ²	PLL Lock-in Time		_	150	μs
t _{PA}	Programmable Delay Unit		100	450	ps
+	Input Clock Deriod litter	$f_{OUT} \ge 100 \text{ MHz}$	—	+/-200	ps
IPJIT		f _{OUT} < 100 MHz	—	0.02	UI
t _{FBKDLY}	External Feedback Delay		—	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5	—	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	ns
t _{RST}	RST Pulse Width		10	—	ns

1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. CLKOS as compared to CLKOP output.

5. When using an input frequency less than 25 MHz the output frequency must be less than or equal to 4 times the input frequency.

6. The on-chip oscillator can be used to provide reference clock input to the PLL provided the output frequency restriction for clock inputs below 25 MHz are followed.

Rev. A 0.19

Figure 3-5. JTAG Port Timing Waveforms

Switching Test Conditions

Figure 3-6 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Figure 3-5.

Figure 3-6. Output Test Load, LVTTL and LVCMOS Standards

 Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Ref.	V _T
			LVTTL, LVCMOS 3.3 = 1.5V	_
Test ConditionVTTL and LVCMOS settings (L -> H, H -> L)VTTL and LVCMOS 3.3 (Z -> H)VTTL and LVCMOS 3.3 (Z -> L)ther LVCMOS (Z -> H)ther LVCMOS (Z -> H)VTTL + LVCMOS (H -> Z)VTTL + LVCMOS (L -> Z)			LVCMOS 2.5 = $V_{CCIO}/2$	
LVTTL and LVCMOS settings (L -> H, H -> L)	∞	0pF	LVCMOS 1.8 = $V_{CCIO}/2$	
VTTL and LVCMOS settings (L -> H, H -> L) VTTL and LVCMOS 3.3 (Z -> H) VTTL and LVCMOS 3.3 (Z -> L) Other LVCMOS (Z -> H)			LVCMOS 1.5 = $V_{CCIO}/2$	
			LVCMOS 1.2 = $V_{CCIO}/2$	_
LVTTL and LVCMOS 3.3 (Z -> H)			15	V _{OL}
Test ConditionVTTL and LVCMOS settings (L -> H, H -> L)VTTL and LVCMOS 3.3 (Z -> H)VTTL and LVCMOS 3.3 (Z -> L)Other LVCMOS (Z -> H)Other LVCMOS (Z -> L)VTTL + LVCMOS (H -> Z)VTTL + LVCMOS (L -> Z)	1		1.0	V _{OH}
	188	0nF	V _{CCIO} /2	V _{OL}
Other LVCMOS (Z -> L)	100	opi	V _{CCIO} /2	V _{OH}
LVTTL + LVCMOS (H -> Z)			V _{OH} - 0.15	V _{OL}
LVTTL + LVCMOS (L -> Z)]		V _{OL} - 0.15	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

LCMXO256 and LCMXO640 Logic Signal Connections: 100 TQFP

	LCMXO256				LCMXO640			
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
1	PL2A	1		Т	PL2A	3		Т
2	PL2B	1		С	PL2C	3		Т
3	PL3A	1		Т	PL2B	3		С
4	PL3B	1		С	PL2D	3		С
5	PL3C	1		Т	PL3A	3		Т
6	PL3D	1		С	PL3B	3		С
7	PL4A	1		Т	PL3C	3		Т
8	PL4B	1		С	PL3D	3		С
9	PL5A	1		Т	PL4A	3		
10	VCCIO1	1			VCCIO3	3		
11	PL5B	1		С	PL4C	3		Т
12	GNDIO1	1			GNDIO3	3		
13	PL5C	1		Т	PL4D	3		С
14	PL5D	1	GSRN	С	PL5B	3	GSRN	
15	PL6A	1		Т	PL7B	3		
16	PL6B	1	TSALL	С	PL8C	3	TSALL	Т
17	PL7A	1		Т	PL8D	3		С
18	PL7B	1		С	PL9A	3		
19	PL7C	1		Т	PL9C	3		
20	PL7D	1		С	PL10A	3		
21	PL8A	1		Т	PL10C	3		
22	PL8B	1		С	PL11A	3		
23	PL9A	1		Т	PL11C	3		
24	VCCIO1	1			VCCIO3	3		
25	GNDIO1	1			GNDIO3	3		
26	TMS	1	TMS		TMS	2	TMS	
27	PL9B	1		С	PB2C	2		
28	TCK	1	ТСК		TCK	2	TCK	
29	PB2A	1		Т	VCCIO2	2		
30	PB2B	1		С	GNDIO2	2		
31	TDO	1	TDO		TDO	2	TDO	
32	PB2C	1		Т	PB4C	2		
33	TDI	1	TDI		TDI	2	TDI	
34	PB2D	1		С	PB4E	2		
35	VCC	-			VCC	-		
36	PB3A	1	PCLK1_1**	Т	PB5B	2	PCLK2_1**	
37	PB3B	1		С	PB5D	2		
38	PB3C	1	PCLK1_0**	Т	PB6B	2	PCLK2_0**	
39	PB3D	1		С	PB6C	2		
40	GND	-			GND	-		
41	VCCIO1	1			VCCIO2	2		
42	GNDIO1	1			GNDIO2	2		

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

		LCMXO256			LCMXO640				
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial
A4	GNDIO0	0			A4	GNDIO0	0		
B4	PT3A	0		Т	B4	PT3B	0		С
A3	PT2F	0		С	A3	PT3A	0		Т
B3	PT2E	0		Т	B3	PT2F	0		С
A2	PT2D	0		С	A2	PT2E	0		Т
C3	PT2C	0		Т	C3	PT2B	0		С
A1	PT2B	0		С	A1	PT2C	0		
B2	PT2A	0		Т	B2	PT2A	0		Т
N9	GND	-			N9	GND	-		
B9	GND	-			B9	GND	-		
B5	VCCIO0	0			B5	VCCIO0	0		
A14	VCCIO0	0			A14	VCCIO1	1		
H14	VCCIO0	0			H14	VCCIO1	1		
P10	VCCIO1	1			P10	VCCIO2	2		
G1	VCCIO1	1			G1	VCCIO3	3		
P1	VCCIO1	1			P1	VCCIO3	3		

*NC for "E" devices.

**Primary clock inputs are single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA

		LCM>	(O640				LCN	IXO1200		LCMXO2280				
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
GND	GNDIO3	3			GND	GNDIO7	7			GND	GNDIO7	7		
VCCIO3	VCCIO3	3			VCCI07	VCCI07	7			VCCI07	VCCI07	7		
E4	NC				E4	PL2A	7		Т	E4	PL2A	7	LUM0_PLLT_FB_A	Т
E5	NC				E5	PL2B	7		С	E5	PL2B	7	LUM0 PLLC FB A	С
F5	NC				F5	PL3A	7		T*	F5	PL3A	7		T*
F6	NC				F6	PL3B	7		C*	F6	PL3B	7		C*
F3	PL3A	3		т	F3	PL3C	7		Т	F3	PL3C	7	LUM0 PLLT IN A	Т
F4	PL3B	3		С	F4	PL3D	7		С	F4	PL3D	7	LUM0_PLLC_IN_A	С
E3	PL2C	3		т	E3	PL4A	7		T*	E3	PL4A	7		T*
E2	PL2D	3		С	E2	PL4B	7		C*	E2	PL4B	7		C*
C3	NC				C3	PL4C	7		Т	C3	PL4C	7		Т
C2	NC				C2	PL4D	7		С	C2	PL4D	7		С
B1	PL2A	3		т	B1	PL5A	7		T*	B1	PL5A	7		T*
C1	PL2B	3		С	C1	PL5B	7		C*	C1	PL5B	7		C*
VCCIO3	VCCIO3	3			VCCI07	VCCI07	7			VCCI07	VCCI07	7		
GND	GNDIO3	3			GND	GNDIO7	7			GND	GNDIO7	7		
D2	PL3C	3		т	D2	PL5C	7		Т	D2	PL6C	7		Т
D1	PL3D	3		С	D1	PL5D	7		С	D1	PL6D	7		С
F2	PL5A	3		Т	F2	PL6A	7		T*	F2	PL7A	7		T*
G2	PL5B	3	GSRN	С	G2	PL6B	7	GSRN	C*	G2	PL7B	7	GSRN	C*
E1	PL4A	3		Т	E1	PL6C	7		Т	E1	PL7C	7		Т
F1	PL4B	3		С	F1	PL6D	7		С	F1	PL7D	7		С
G4	NC				G4	PL7A	7		T*	G4	PL8A	7		T*
G5	NC				G5	PL7B	7		C*	G5	PL8B	7		C*
GND	GND	-			GND	GND	-			GND	GND	-		
G3	PL4C	3		Т	G3	PL7C	7		Т	G3	PL8C	7		Т
H3	PL4D	3		С	H3	PL7D	7		С	H3	PL8D	7		С
H4	NC				H4	PL8A	7		T*	H4	PL9A	7		T*
H5	NC				H5	PL8B	7		C*	H5	PL9B	7		C*
-	-				VCCI07	VCCI07	7		_	VCCI07	VCCI07	7		-
-	-				GND	GNDIO7	7			GND	GNDIO7	7		
G1	PL5C	3		Т	G1	PL8C	7		Т	G1	PL10C	7		Т
H1	PL5D	3		С	H1	PL8D	7		С	H1	PL10D	7		С
H2	PL6A	3		т	H2	PL9A	6		T*	H2	PL11A	6		T*
J2	PL6B	3		С	J2	PL9B	6		C*	J2	PL11B	6		C*
J3	PL7C	3		Т	J3	PL9C	6		Т	J3	PL11C	6		Т
КЗ	PL7D	3		С	K3	PL9D	6		С	K3	PL11D	6		С
J1	PL6C	3		т	J1	PL10A	6		T*	J1	PL12A	6		T*
-	-				VCCIO6	VCCIO6	6			VCCIO6	VCCIO6	6		
-	-				GND	GNDIO6	6			GND	GNDIO6	6		
K1	PL6D	3	L	С	K1	PL10B	6		C*	K1	PL12B	6		C*
K2	PL9A	3		Т	K2	PL10C	6		Т	K2	PL12C	6		Т
L2	PL9B	3		С	L2	PL10D	6		С	L2	PL12D	6		С
L1	PL7A	3		Т	L1	PL11A	6		T*	L1	PL13A	6		T*
M1	PL7B	3		С	M1	PL11B	6		C*	M1	PL13B	6		C*
P1	PL8D	3		С	P1	PL11D	6		С	P1	PL14D	6		С
N1	PL8C	3	TSALL	т	N1	PL11C	6	TSALL	т	N1	PL14C	6	TSALL	Т
L3	PL10A	3		т	L3	PL12A	6		T*	L3	PL15A	6		T*
M3	PL10B	3		С	MЗ	PL12B	6	-	C*	MЗ	PL15B	6		C*
M2	PL9C	3		T	M2	PL12C	6		Т	M2	PL15C	6		Т
N2	PL9D	3		С	N2	PL12D	6		С	N2	PL15D	6		С
VCCIO3	VCCIO3	3			VCCIO6	VCCIO6	6			VCCIO6	VCCIO6	6		
GND	GNDIO3	3			GND	GNDIO6	6		+	GND	GNDIO6	6		
		<u> </u>	1	L			L -		1			L -	1	1

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280									
Ball Number	Ball Function	Bank	Dual Function	Differential					
G2	PL11A	6		T*					
H2	PL11B	6		C*					
L3	PL11C	6		Т					
L5	PL11D	6		С					
H1	PL12A	6		Τ*					
VCCIO6	VCCIO6	6							
GND	GNDIO6	6							
J2	PL12B	6		C*					
L4	PL12C	6		Т					
L6	PL12D	6		С					
K2	PL13A	6		T*					
K1	PL13B	6		C*					
J1	PL13C	6		Т					
VCC	VCC	-							
L2	PL13D	6		С					
M5	PL14D	6		С					
M3	PL14C	6	TSALL	Т					
L1	PL14B	6		C*					
M2	PL14A	6		T*					
M1	PL15A	6		T*					
N1	PL15B	6		C*					
M6	PL15C	6		Т					
M4	PL15D	6		С					
VCCIO6	VCCIO6	6							
GND	GNDIO6	6							
P1	PL16A	6		T*					
P2	PL16B	6		C*					
N3	PL16C	6		Т					
N4	PL16D	6		С					
GND	GND	-							
T1	PL17A	6	LLM0_PLLT_FB_A	T*					
R1	PL17B	6	LLM0_PLLC_FB_A	C*					
P3	PL17C	6		Т					
N5	PL17D	6		С					
R3	PL18A	6	LLM0_PLLT_IN_A	T*					
R2	PL18B	6	LLM0_PLLC_IN_A	C*					
P4	PL19A	6		Т					
N6	PL19B	6		С					
U1	PL20A	6		Т					
VCCIO6	VCCIO6	6							
GND	GNDIO6	6							
GND	GNDIO5	5							
VCCIO5	VCCIO5	5							

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280									
Ball Number	Ball Function	Bank	Dual Function	Differential					
J13	PR10C	2		Т					
M18	PR10B	2		C*					
L18	PR10A	2		Τ*					
GND	GNDIO2	2							
VCCIO2	VCCIO2	2							
H16	PR9D	2		С					
H14	PR9C	2		Т					
K18	PR9B	2		C*					
J18	PR9A	2		Τ*					
J17	PR8D	2		С					
VCC	VCC	-							
H18	PR8C	2		Т					
H17	PR8B	2		C*					
G17	PR8A	2		Τ*					
H13	PR7D	2		С					
H15	PR7C	2		Т					
G18	PR7B	2		C*					
F18	PR7A	2		T*					
G14	PR6D	2		С					
G16	PR6C	2		Т					
VCCIO2	VCCIO2	2							
GND	GNDIO2	2							
E18	PR6B	2		C*					
F17	PR6A	2		Τ*					
G13	PR5D	2		С					
G15	PR5C	2		Т					
E17	PR5B	2		C*					
E16	PR5A	2		Τ*					
GND	GND	-							
F15	PR4D	2		С					
E15	PR4C	2		Т					
D17	PR4B	2		C*					
D18	PR4A	2		Τ*					
B18	PR3D	2		С					
C18	PR3C	2		Т					
C16	PR3B	2		C*					
D16	PR3A	2		Τ*					
C17	PR2B	2		С					
D15	PR2A	2		Т					
VCCIO2	VCCIO2	2							
GND	GNDIO2	2							
GND	GNDIO1	1							
VCCIO1	VCCIO1	1							

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280									
Ball Number	Ball Function	Bank	Dual Function	Differential					
A10	PT8E	0		Т					
VCCIO0	VCCIO0	0							
GND	GNDIO0	0							
A9	PT8D	0		С					
C9	PT8C	0		Т					
B9	PT8B	0		С					
F9	VCCAUX	-							
A8	PT8A	0		Т					
B8	PT7D	0		С					
C8	PT7C	0		Т					
VCC	VCC	-							
A7	PT7B	0		С					
B7	PT7A	0		Т					
A6	PT6A	0		Т					
B6	PT6B	0		С					
D8	PT6C	0		Т					
F8	PT6D	0		С					
C7	PT6E	0		Т					
E8	PT6F	0		С					
D7	PT5D	0		С					
VCCIO0	VCCIO0	0							
GND	GNDIO0	0							
E7	PT5C	0		Т					
A5	PT5B	0		С					
C6	PT5A	0		Т					
B5	PT4A	0		Т					
A4	PT4B	0		С					
D6	PT4C	0		Т					
F7	PT4D	0		С					
B4	PT4E	0		Т					
GND	GND	-							
C5	PT4F	0		С					
F6	PT3D	0		С					
E5	PT3C	0		Т					
E6	PT3B	0		С					
D5	PT3A	0		Т					
A3	PT2D	0		С					
C4	PT2C	0		Т					
A2	PT2B	0		С					
B2	PT2A	0		Т					
VCCIO0	VCCIO0	0							
GND	GNDIO0	0							
E14	GND	-							

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the <u>Thermal Management</u> document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1090 Power Estimation and Management for MachXO Devices
- Power Calculator tool included with the Lattice ispLEVER design tool, or as a standalone download from <u>www.latticesemi.com/software</u>

Lead-Free Packaging

LCMXO2280C-4FTN324I

2280

Industrial										
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.			
LCMXO256C-3TN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free TQFP	100	IND			
LCMXO256C-4TN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free TQFP	100	IND			
LCMXO256C-3MN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free csBGA	100	IND			
LCMXO256C-4MN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free csBGA	100	IND			
		L L		1			<u></u>			
Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.			
LCMXO640C-3TN100I	640	1.8V/2.5V/3.3V	74	-3	Lead-Free TQFP	100	IND			
LCMXO640C-4TN100I	640	1.8V/2.5V/3.3V	74	-4	Lead-Free TQFP	100	IND			
LCMXO640C-3MN100I	640	1.8V/2.5V/3.3V	74	-3	Lead-Free csBGA	100	IND			
LCMXO640C-4MN100I	640	1.8V/2.5V/3.3V	74	-4	Lead-Free csBGA	100	IND			
LCMXO640C-3TN144I	640	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND			
LCMXO640C-4TN144I	640	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND			
LCMXO640C-3MN132I	640	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND			
LCMXO640C-4MN132I	640	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND			
LCMXO640C-3BN256I	640	1.8V/2.5V/3.3V	159	-3	Lead-Free caBGA	256	IND			
LCMXO640C-4BN256I	640	1.8V/2.5V/3.3V	159	-4	Lead-Free caBGA	256	IND			
LCMXO640C-3FTN256I	640	1.8V/2.5V/3.3V	159	-3	Lead-Free ftBGA	256	IND			
LCMXO640C-4FTN256I	640	1.8V/2.5V/3.3V	159	-4	Lead-Free ftBGA	256	IND			
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.			
LCMXO1200C-3TN100I	1200	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND			
LCMXO1200C-4TN100I	1200	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND			
LCMXO1200C-3TN144I	1200	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND			
LCMXO1200C-4TN144I	1200	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND			
LCMXO1200C-3MN132I	1200	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND			
LCMXO1200C-4MN132I	1200	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND			
LCMXO1200C-3BN256I	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	IND			
LCMXO1200C-4BN256I	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	IND			
LCMXO1200C-3FTN256I	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	IND			
LCMXO1200C-4FTN256I	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	IND			
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.			
LCMXO2280C-3TN100I	2280	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND			
LCMXO2280C-4TN100I	2280	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND			
LCMXO2280C-3TN144I	2280	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND			
LCMXO2280C-4TN144I	2280	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND			
LCMXO2280C-3MN132I	2280	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND			
LCMXO2280C-4MN132I	2280	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND			
LCMXO2280C-3BN256I	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	IND			
LCMXO2280C-4BN256I	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	IND			
LCMXO2280C-3FTN256I	2280	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	IND			
LCMXO2280C-4FTN256I	2280	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	IND			
LCMXO2280C-3FTN324I	2280	1.8V/2.5V/3.3V	271	-3	Lead-Free ftBGA	324	IND			

271

-4

Lead-Free ftBGA

324

IND

1.8V/2.5V/3.3V

MachXO Family Data Sheet Supplemental Information

June 2013

Data Sheet DS1002

For Further Information

A variety of technical notes for the MachXO family are available on the Lattice web site.

- TN1091, MachXO sysIO Usage Guide
- TN1089, MachXO sysCLOCK Design and Usage Guide
- TN1092, Memory Usage Guide for MachXO Devices
- TN1090, Power Estimation and Management for MachXO Devices
- TN1086, MachXO JTAG Programming and Configuration User's Guide
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- TN1097, MachXO Density Migration
- AN8066, Boundary Scan Testability with Lattice sysIO Capability

For further information on interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS): www.jedec.org
- PCI: <u>www.pcisig.com</u>

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.