

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Product Status	Active
Number of LABs/CLBs	80
Number of Logic Elements/Cells	640
Fotal RAM Bits	-
Number of I/O	74
Number of Gates	-
Voltage - Supply	1.71V ~ 3.465V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-LFBGA, CSPBGA
Supplier Device Package	100-CSBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo640c-5mn100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Introduction

June 2013

Features

Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- Single chip, no external configuration memory required
- Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through JTAG port
- Supports background programming of non-volatile memory

Sleep Mode

• Allows up to 100x static current reduction

■ TransFR[™] Reconfiguration (TFR)

In-field logic update while system operates

■ High I/O to Logic Density

- 256 to 2280 LUT4s
- 73 to 271 I/Os with extensive package options
- Density migration supported
- Lead free/RoHS compliant packaging

Embedded and Distributed Memory

- Up to 27.6 Kbits sysMEM[™] Embedded Block RAM
- Up to 7.7 Kbits distributed RAM
- Dedicated FIFO control logic

Table 1-1. MachXO Family Selection Guide

■ Flexible I/O Buffer

- Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8/1.5/1.2
 - LVTTL
 - PCI
 - LVDS, Bus-LVDS, LVPECL, RSDS

■ sysCLOCK[™] PLLs

- Up to two analog PLLs per device
- · Clock multiply, divide, and phase shifting

System Level Support

- IEEE Standard 1149.1 Boundary Scan
- Onboard oscillator
- Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply
- IEEE 1532 compliant in-system programming

Introduction

The MachXO is optimized to meet the requirements of applications traditionally addressed by CPLDs and low capacity FPGAs: glue logic, bus bridging, bus interfacing, power-up control, and control logic. These devices bring together the best features of CPLD and FPGA devices on a single chip.

Device	LCMXO256	LCMXO640	LCMXO1200	LCMXO2280
LUTs	256	640	1200	2280
Dist. RAM (Kbits)	2.0	6.1	6.4	7.7
EBR SRAM (Kbits)	0	0	9.2	27.6
Number of EBR SRAM Blocks (9 Kbits)	0	0	1	3
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V
Number of PLLs	0	0	1	2
Max. I/O	78	159	211	271
Packages				
100-pin TQFP (14x14 mm)	78	74	73	73
144-pin TQFP (20x20 mm)		113	113	113
100-ball csBGA (8x8 mm)	78	74		
132-ball csBGA (8x8 mm)		101	101	101
256-ball caBGA (14x14 mm)		159	211	211
256-ball ftBGA (17x17 mm)		159	211	211
324-ball ftBGA (19x19 mm)				271

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Data Sheet DS1002

Table 2-5. PLL Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from CLKINTFB port
RST	I	"1" to reset the input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
CLKINTFB	0	Internal feedback source, CLKOP divider output before CLOCKTREE
DDAMODE	I	Dynamic Delay Enable. "1": Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	I	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	I	Dynamic Delay Input

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

sysMEM Memory

The MachXO1200 and MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Table 2-6. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
True Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18
Pseudo Dual Port	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36
FIFO	8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through a copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old contents of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

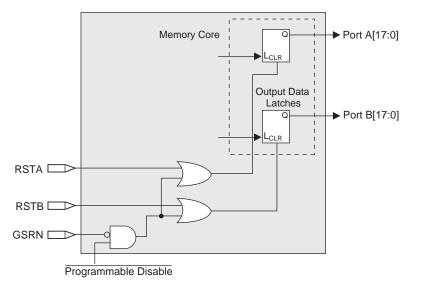
FIFO Configuration

The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. The range of programming values for these flags are in Table 2-7.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to (up to 2 ^N -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0
	·

N = Address bit width


The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-13.

Figure 2-13. Memory Core Reset

For further information on the sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the EBR is always asynchronous.

Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram

Reset	
Clock	
Clock ————— Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled

of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The PCI clamp is enabled after V_{CC} , V_{CCAUX} , and V_{CCIO} are at valid operating levels and the device has been configured.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

2. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input buffer. In these Banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} Banks are active with valid input logic levels to properly control the output logic states of all the I/O Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have reached satisfactory levels at which time the I/Os will take on the user-configured settings.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers should be powered up along with the FPGA core fabric. Therefore, V_{CCIO} supplies should be powered up before or together with the V_{CC} and V_{CCAUX} supplies

Supported Standards

The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all Banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top Banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the MachXO family.

Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

the system. These capabilities make the MachXO ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The MachXO "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.

During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11 compares the characteristics of Normal, Off and Sleep modes.

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	—	Low
Static Icc	Typical <10mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	0	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

Table 2-11. Characteristics of Normal, Off and Sleep Modes

SLEEPN Pin Characteristics

The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet shows a detailed timing diagram.

Oscillator

Every MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 18MHz to 26MHz.

Configuration and Testing

The following section describes the configuration and testing features of the MachXO family of devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the VCCIO Banks (MachXO256: V_{CCIO1} ; MachXO640: V_{CCIO2} ; MachXO1200 and MachXO2280: V_{CCIO5}) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)			
Standard	Min.	Тур.	Max.	
LVCMOS 3.3	3.135	3.3	3.465	
LVCMOS 2.5	2.375	2.5	2.625	
LVCMOS 1.8	1.71	1.8	1.89	
LVCMOS 1.5	1.425	1.5	1.575	
LVCMOS 1.2	1.14	1.2	1.26	
LVTTL	3.135	3.3	3.465	
PCl ³	3.135	3.3	3.465	
LVDS ^{1, 2}	2.375	2.5	2.625	
LVPECL ¹	3.135	3.3	3.465	
BLVDS ¹	2.375	2.5	2.625	
RSDS ¹	2.375	2.5	2.625	

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers

3. Input on the top bank of the MachXO1200 and MachXO2280 only.

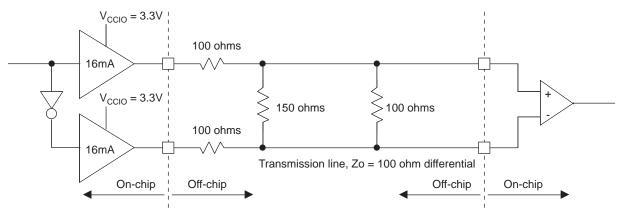
sysIO Single-Ended DC Electrical Characteristics

Input/Output		V _{IL}	V _{IH}		V _{OL} Max.	V _{OH} Min.		I _{OH} ¹	
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mĀ)	(mÅ)	
LVCMOS 3.3	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4	
	-0.5	0.0	2.0	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
					0.4	2.4	16	-16	
LVTTL	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	12, 8, 4	-12, -8, -4	
			0	0.2	V _{CCIO} - 0.2	0.1	-0.1		
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4	
20010002.0	-0.5	0.7	1.7 3.0	0.2	V _{CCIO} - 0.2	0.1	-0.1		
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4	
	-0.5	0.00 • 0010	0.00 4 CCIO	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.5	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4	
2001000 1.5	-0.5	0.00 4 CCIO	0.00 4 CCIO	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.2	-0.3	0.42	0.78	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2	
("C" Version)	-0.5	0.42	0.70	3.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.2	-0.3	0.35V _{CC}	0.651/05	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2	
("E" Version)	-0.5	0.33 ACC	0.65V _{CC} 3.6	.35 v CC 0.05 v CC	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5	

 The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between Bank GND connections or between the last GND in a Bank and the end of a Bank.

Table 3-2. BLVDS DC Conditions¹

		Nominal		
Symbol	Description	Zo = 45	Zo = 90	Units
Z _{OUT}	Output impedance	100	100	Ohms
R _{TLEFT}	Left end termination	45	90	Ohms
R _{TRIGHT}	Right end termination	45	90	Ohms
V _{OH}	Output high voltage	1.375	1.48	V
V _{OL}	Output low voltage	1.125	1.02	V
V _{OD}	Output differential voltage	0.25	0.46	V
V _{CM}	Output common mode voltage	1.25	1.25	V
IDC	DC output current	11.2	10.2	mA


Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

LVPECL

The MachXO family supports the differential LVPECL standard through emulation. This output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL

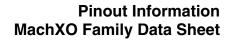


Table 3-3. LVPECL DC Conditions¹

Over	Recommended	Operating	Conditions
0101	11000011111011404	oporating	00110110110

Symbol	Description	Nominal	Units
Z _{OUT}	Output impedance	100	Ohms
R _P	Driver parallel resistor	150	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	2.03	V
V _{OL}	Output low voltage	1.27	V
V _{OD}	Output differential voltage	0.76	V
V _{CM}	Output common mode voltage	1.65	V
Z _{BACK}	Back impedance	85.7	Ohms
I _{DC}	DC output current	12.7	mA

1. For input buffer, see LVDS table.

Power Supply and NC (Cont.)

Signal	132 csBGA ¹	256 caBGA / 256 ftBGA ¹	324 ftBGA ¹
VCC	H3, P6, G12, C7	G7, G10, K7, K10	F14, G11, G9, H7, L7, M9
VCCIO0	LCMXO640: B11, C5 LCMXO1200/2280: C5	LCMXO640: F8, F7, F9, F10 LCMXO1200/2280: F8, F7	G8, G7
VCCIO1	LCMXO640: L12, E12 LCMXO1200/2280: B11	LCMXO640: H11, G11, K11, J11 LCMXO1200/2280: F9, F10	G12, G10
VCCIO2	LCMXO640: N2, M10 LCMXO1200/2280: E12	LCMXO640: L9, L10, L8, L7 LCMXO1200/2280: H11, G11	J12, H12
VCCIO3	LCMXO640: D2, K3 LCMXO1200/2280: L12	LCMXO640: K6, J6, H6, G6 LCMXO1200/2280: K11, J11	L12, K12
VCCIO4	LCMXO640: None LCMXO1200/2280: M10	LCMXO640: None LCMXO1200/2280: L9, L10	M12, M11
VCCIO5	LCMXO640: None LCMXO1200/2280: N2	LCMXO640: None LCMXO1200/2280: L8, L7	M8, R9
VCCIO6	LCMXO640: None LCMXO1200/2280: K3	LCMXO640: None LCMXO1200/2280: K6, J6	M7, K7
VCCIO7	LCMXO640: None LCMXO1200/2280: D2	LCMXO640: None LCMXO1200/2280: H6, G6	H6, J7
VCCAUX	P7, A7	T9, A8	M10, F9
GND ²	F1, P9, J14, C9, A10, B4, L13, D13, P2, N11, E1, L2	A1, A16, F11, G8, G9, H7, H8, H9, H10, J7, J8, J9, J10, K8, K9, L6, T1, T16	E14, F16, H10, H11, H8, H9, J10, J11, J4, J8, J9, K10, K11, K17, K8, K9, L10, L11, L8, L9, N2, P14, P5, R7
NC ³		LCMXO640: E4, E5, F5, F6, C3, C2, G4, G5, H4, H5, K5, K4, M5, M4, P2, P3, N5, N6, M7, M8, N10, N11, R15, R16, P15, P16, M11, L11, N12, N13, M13, M12, K12, J12, F12, F13, E12, E13, D13, D14, B15, A15, C14, B14, E11, E10, E7, E6, D4, D3, B3, B2 LCMXO1200: None LCMXO2280: None	

Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of GND logic connections from the die to the common package GND plane.
NC pins should not be connected to any active signals, VCC or GND.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 132 csBGA (Cont.)

		LCM	(O640				LC	MXO1200				LC	MXO2280	
Ball #	Ball Function	Bank	Dual Function	Differential	Ball #	Ball Function	Bank	Dual Function	Differential	Ball #	Ball Function	Bank	Dual Function	Differential
B9	PT7B	0		С	B9	PT9B	1		С	B9	PT12D	1		С
A9	PT7A	0		Т	A9	PT9A	1		Т	A9	PT12C	1		Т
A8	PT6B	0	PCLK0_1***	С	A8	PT7D	1	PCLK1_1***		A8	PT10B	1	PCLK1_1***	
B8	PT6A	0		Т	B8	PT7B	1			B8	PT9D	1		
C8	PT5B	0	PCLK0_0***	С	C8	PT6F	0	PCLK1_0***		C8	PT9B	1	PCLK1_0***	
B7	PT5A	0		Т	B7	PT6D	0			B7	PT8D	0		
A7	VCCAUX	-			A7	VCCAUX	-			A7	VCCAUX	-		
C7	VCC	-			C7	VCC	-			C7	VCC	-		
A6	PT4D	0		С	A6	PT5D	0		С	A6	PT7B	0		С
B6	PT4C	0		Т	B6	PT5C	0		Т	B6	PT7A	0		Т
C6	PT3F	0		С	C6	PT5B	0		С	C6	PT6D	0		
B5	PT3E	0		Т	B5	PT5A	0		Т	B5	PT6E	0		Т
A5	PT3D	0			A5	PT4B	0			A5	PT6F	0		С
B4	GNDIO0	0			B4	GNDIO0	0			B4	GNDIO0	0		
A4	PT3B	0			A4	PT3D	0		С	A4	PT4B	0		С
C4	PT2F	0			C4	PT3C	0		Т	C4	PT4A	0		Т
A3	PT2D	0		С	A3	PT3B	0		С	A3	PT3B	0		С
A2	PT2C	0		Т	A2	PT2B	0		С	A2	PT2B	0		С
B3	PT2B	0		С	B3	PT3A	0		Т	B3	PT3A	0		Т
A1	PT2A	0		Т	A1	PT2A	0		Т	A1	PT2A	0		Т
F1	GND	-			F1	GND	-			F1	GND	-		
P9	GND	-			P9	GND	-			P9	GND	-		
J14	GND	-			J14	GND	-			J14	GND	-		
C9	GND	-			C9	GND	-			C9	GND	-		
C5	VCCIO0	0			C5	VCCIO0	0			C5	VCCIO0	0		
B11	VCCIO0	0			B11	VCCIO1	1			B11	VCCIO1	1		
E12	VCCIO1	1			E12	VCCIO2	2			E12	VCCIO2	2		
L12	VCCIO1	1			L12	VCCIO3	3			L12	VCCIO3	3		
M10	VCCIO2	2			M10	VCCIO4	4			M10	VCCIO4	4		
N2	VCCIO2	2			N2	VCCIO5	5			N2	VCCIO5	5		
D2	VCCIO3	3			D2	VCCIO7	7			D2	VCCIO7	7		
K3	VCCIO3	3			K3	VCCIO6	6			K3	VCCIO6	6		

*Supports true LVDS outputs. **NC for "E" devices. ***Primary clock inputs arer single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

		L	CMXO640				LCMXO1200				LCMXO2280	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
101	PR3D	1		С	PR4B	2		C*	PR5B	2		C*
102	PR3C	1		Т	PR4A	2		T*	PR5A	2		T*
103	PR3B	1		С	PR3D	2		С	PR4D	2		С
104	PR2D	1		С	PR3C	2		Т	PR4C	2		Т
105	PR3A	1		Т	PR3B	2		C*	PR4B	2		C*
106	PR2B	1		С	PR3A	2		T*	PR4A	2		T*
107	PR2C	1		Т	PR2B	2		С	PR3B	2		C*
108	PR2A	1		Т	PR2A	2		Т	PR3A	2		T*
109	PT9F	0		С	PT11D	1		С	PT16D	1		С
110	PT9D	0		С	PT11C	1		Т	PT16C	1		Т
111	PT9E	0		Т	PT11B	1		С	PT16B	1		С
112	PT9B	0		С	PT11A	1		Т	PT16A	1		Т
113	PT9C	0		Т	PT10F	1		С	PT15D	1		С
114	PT9A	0		Т	PT10E	1		Т	PT15C	1		Т
115	PT8C	0			PT10D	1		С	PT14B	1		С
116	PT8B	0		С	PT10C	1		Т	PT14A	1		Т
117	VCCIO0	0			VCCIO1	1			VCCIO1	1		
118	GNDIO0	0			GNDIO1	1			GNDIO1	1		
119	PT8A	0		Т	PT9F	1		С	PT12F	1		С
120	PT7E	0			PT9E	1		Т	PT12E	1		Т
121	PT7C	0			PT9B	1		С	PT12D	1		С
122	PT7A	0			PT9A	1		Т	PT12C	1		Т
123	GND	-			GND	-			GND	-		
124	PT6B	0	PCLK0_1***	С	PT7D	1	PCLK1_1***		PT10B	1	PCLK1_1***	
125	PT6A	0		Т	PT7B	1		С	PT9D	1		С
126	PT5C	0			PT7A	1		Т	PT9C	1		Т
127	PT5B	0	PCLK0_0***		PT6F	0	PCLK1_0***		PT9B	1	PCLK1_0***	
128	VCCAUX	-			VCCAUX	-			VCCAUX	-		
129	VCC	-			VCC	-			VCC	-		
130	PT4D	0			PT5D	0		С	PT7B	0		С
131	PT4B	0		С	PT5C	0		Т	PT7A	0		Т
132	PT4A	0		Т	PT5B	0		С	PT6D	0		
133	PT3F	0			PT5A	0		Т	PT6E	0		Т
134	PT3D	0			PT4B	0			PT6F	0		С
135	VCCIO0	0			VCCIO0	0			VCCIO0	0	-	
136	GNDIO0	0			GNDIO0	0			GNDIO0	0	-	
137	PT3B	0		С	PT3D	0		С	PT4B	0		Т
138	PT2F	0		С	PT3C	0		Т	PT4A	0		С
139	PT3A	0		Т	PT3B	0		С	PT3B	0		С
140	PT2D	0		С	PT3A	0		Т	PT3A	0		Т
141	PT2E	0		Т	PT2D	0		С	PT2D	0		С
142	PT2B	0		С	PT2C	0		Т	PT2C	0		Т
143	PT2C	0		Т	PT2B	0		С	PT2B	0		С
144	PT2A	0		Т	PT2A	0		Т	PT2A	0		Т

*Supports true LVDS outputs.

**NC for "E" devices.

***Primary clock inputs arer single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCMX	(0640				LCN	IXO1200				LCM	/XO2280	
Ball	Ball		Dual		Ball	Ball		Dual	D	Ball	Ball		Dual	
	Function	Bank	Function	Differential		Function	Bank	Function	Differential		Function	Bank	Function	Differential
-	-				VCCIO4	VCCIO4 GNDIO4	4			VCCIO4	VCCIO4	4		
-	- PB6A	0		т	GND	PB7E	4		т	GND	GNDIO4 PB10A	4		
M10 R9	PB6A PB6C	2		T	M10 R9	PB7E PB8A	4		Т	M10 R9	PB10A PB11C	4		T T
R10	PB6D	2		C	R10	PB8B	4		C	R10	PB11D	4		C
T10	PB7C	2		т	T10	PB8C	4		Т	T10	PB112A	4		т
T11	PB7D	2		C	T11	PB8D	4		C	T10	PB12A PB12B	4		C
N10	NC	2		0	N10	PB8E	4		Т	N10	PB12C	4		Т
N11	NC				N10	PB8F	4		c	N11	PB12D	4		C
VCCIO2	VCCIO2	2			VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
GND	GNDIO2	2			GND	GNDIO4	4			GND	GNDIO4	4		
R11	PB7E	2		Т	R11	PB9A	4		т	R11	PB13A	4		Т
R12	PB7F	2		C	R12	PB9B	4		C	R12	PB13B	4		C
P11	PB8A	2		Т	P11	PB9C	4		Т	P11	PB13C	4		Т
P12	PB8B	2		С	P12	PB9D	4		С	P12	PB13D	4		С
T13	PB8C	2		Т	T13	PB9E	4		т	T13	PB14A	4		т
T12	PB8D	2		С	T12	PB9F	4		С	T12	PB14B	4		С
R13	PB9A	2		т	R13	PB10A	4		т	R13	PB14C	4		т
R14	PB9B	2		С	R14	PB10B	4		С	R14	PB14D	4		С
GND	GND	-			GND	GND	-			GND	GND	-		
T14	PB9C	2		Т	T14	PB10C	4		Т	T14	PB15A	4		т
T15	PB9D	2		С	T15	PB10D	4		С	T15	PB15B	4		С
P13**	SLEEPN	-	SLEEPN		P13**	SLEEPN	-	SLEEPN		P13**	SLEEPN	-	SLEEPN	
P14	PB9F	2			P14	PB10F	4			P14	PB15D	4		
R15	NC				R15	PB11A	4		Т	R15	PB16A	4		Т
R16	NC				R16	PB11B	4		С	R16	PB16B	4		С
P15	NC				P15	PB11C	4		т	P15	PB16C	4		Т
P16	NC				P16	PB11D	4		С	P16	PB16D	4		С
VCCIO2	VCCIO2	2			VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
GND	GNDIO2	2			GND	GNDIO4	4			GND	GNDIO4	4		
GND	GNDIO1	1			GND	GNDIO3	3			GND	GNDIO3	3		
VCCIO1	VCCIO1	1			VCCIO3	VCCIO3	3			VCCIO3	VCCIO3	3		
M11	NC				M11	PR16B	3		С	M11	PR20B	3		С
L11	NC				L11	PR16A	3		Т	L11	PR20A	3		Т
N12	NC				N12	PR15B	3		C*	N12	PR18B	3		C*
N13	NC				N13	PR15A	3		T*	N13	PR18A	3		T*
M13	NC				M13	PR14D	3		С	M13	PR17D	3		С
M12	NC				M12	PR14C	3		Т	M12	PR17C	3		Т
N14	PR11D	1		С	N14	PR14B	3		C*	N14	PR17B	3		C*
N15	PR11C	1		Т	N15	PR14A	3		T*	N15	PR17A	3		T*
L13	PR11B	1		С	L13	PR13D	3		С	L13	PR16D	3		С
L12	PR11A	1		Т	L12	PR13C	3		Т	L12	PR16C	3		Т
M14	PR10B	1		С	M14	PR13B	3		C*	M14	PR16B	3		C*
VCCIO1	VCCIO1	1			VCCIO3	VCCIO3	3			VCCIO3	VCCIO3	3		
GND	GNDIO1	1			GND	GNDIO3	3			GND	GNDIO3	3		
L14	PR10A	1		Т	L14	PR13A	3		T*	L14	PR16A	3		T*
N16	PR10D	1		С	N16	PR12D	3		С	N16	PR15D	3		С
M16	PR10C	1		Т	M16	PR12C	3		T	M16	PR15C	3		Т
M15	PR9D	1		С	M15	PR12B	3		C*	M15	PR15B	3		C*
L15	PR9C	1		Т	L15	PR12A	3		T*	L15	PR15A	3		T*
L16	PR9B	1		С	L16	PR11D	3		С	L16	PR14D	3		С
K16	PR9A	1		Т	K16	PR11C	3		T	K16	PR14C	3		Т
K13	PR8D	1		С	K13	PR11B	3		C*	K13	PR14B	3		C*

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

Dell Number		LCMXO2280	Dual Free stires	D:#*****
Ball Number	Ball Function	Bank	Dual Function	Differentia
V10	PB9B	4		С
N10	PB9C	4		Т
R10	PB9D	4		С
P10	PB10F	4	PCLK4_1***	С
T10	PB10E	4		Т
U10	PB10D	4		С
V11	PB10C	4		Т
U11	PB10B	4	PCLK4_0***	С
VCCIO4	VCCIO4	4		
GND	GNDIO4	4		
T11	PB10A	4		Т
U12	PB11A	4		Т
R11	PB11B	4		С
GND	GND	-		
T12	PB11C	4		Т
P11	PB11D	4		С
V12	PB12A	4		Т
V13	PB12B	4		С
R12	PB12C	4		Т
N11	PB12D	4		С
U13	PB12E	4		Т
VCCIO4	VCCIO4	4		
GND	GNDIO4	4		
V14	PB12F	4		С
T13	PB13A	4		Т
P12	PB13B	4		С
R13	PB13C	4		Т
N12	PB13D	4		С
V15	PB14A	4		Т
U14	PB14B	4		С
V16	PB14C	4		Т
GND	GND	-		
T14	PB14D	4		С
U15	PB15A	4		Т
V17	PB15B	4		С
P13**	SLEEPN	-	SLEEPN	
T15	PB15D	4		
U16	PB16A	4		Т
V18	PB16B	4		C
N13	PB16C	4		T
R14	PB16D	4		C
VCCIO4	VCCIO4	4		-
GND	GNDIO4	4		

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

		LCMXO2280		
Ball Number	Ball Function	Bank	Dual Function	Differential
GND	GNDIO3	3		
VCCIO3	VCCIO3	3		
P15	PR20B	3		С
N14	PR20A	3		Т
N15	PR19B	3		С
M13	PR19A	3		Т
R15	PR18B	3		C*
T16	PR18A	3		Τ*
N16	PR17D	3		С
M14	PR17C	3		Т
U17	PR17B	3		C*
VCC	VCC	-		
U18	PR17A	3		Τ*
R17	PR16D	3		С
R16	PR16C	3		Т
P16	PR16B	3		C*
VCCIO3	VCCIO3	3		
GND	GNDIO3	3		
P17	PR16A	3		Τ*
L13	PR15D	3		С
M15	PR15C	3		Т
T17	PR15B	3		C*
T18	PR15A	3		T*
L14	PR14D	3		С
L15	PR14C	3		Т
R18	PR14B	3		C*
P18	PR14A	3		T*
GND	GND	-		
K15	PR13D	3		С
K13	PR13C	3		Т
N17	PR13B	3		C*
N18	PR13A	3		Τ*
K16	PR12D	3		С
K14	PR12C	3		Т
M16	PR12B	3		C*
L16	PR12A	3		Τ*
GND	GNDIO3	3		
VCCIO3	VCCIO3	3		
J16	PR11D	3		С
J14	PR11C	3		Т
M17	PR11B	3		C*
L17	PR11A	3		T*
J15	PR10D	2		С

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

		LCMXO2280		
Ball Number	Ball Function	Bank	Dual Function	Differential
A10	PT8E	0		Т
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
A9	PT8D	0		С
C9	PT8C	0		Т
B9	PT8B	0		С
F9	VCCAUX	-		
A8	PT8A	0		Т
B8	PT7D	0		С
C8	PT7C	0		Т
VCC	VCC	-		
A7	PT7B	0		С
B7	PT7A	0		Т
A6	PT6A	0		Т
B6	PT6B	0		С
D8	PT6C	0		Т
F8	PT6D	0		С
C7	PT6E	0		Т
E8	PT6F	0		С
D7	PT5D	0		С
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
E7	PT5C	0		Т
A5	PT5B	0		С
C6	PT5A	0		Т
B5	PT4A	0		Т
A4	PT4B	0		С
D6	PT4C	0		Т
F7	PT4D	0		С
B4	PT4E	0		Т
GND	GND	-		
C5	PT4F	0		С
F6	PT3D	0		С
E5	PT3C	0		Т
E6	PT3B	0		С
D5	PT3A	0		Т
A3	PT2D	0		С
C4	PT2C	0		Т
A2	PT2B	0		С
B2	PT2A	0		Т
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
E14	GND	-		

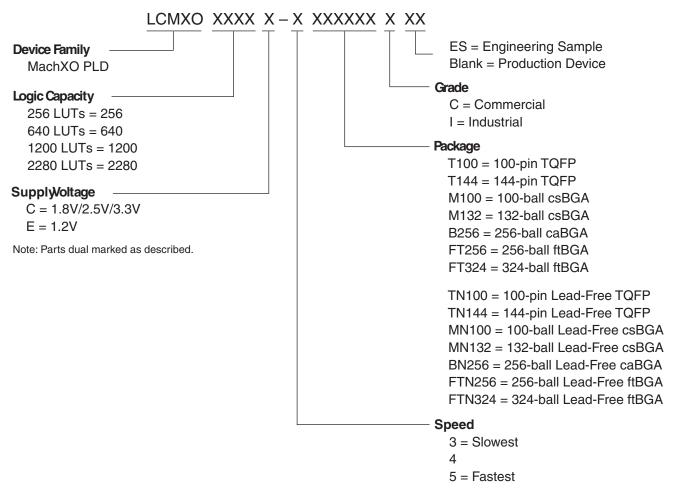
Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the <u>Thermal Management</u> document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1090 Power Estimation and Management for MachXO Devices
- Power Calculator tool included with the Lattice ispLEVER design tool, or as a standalone download from <u>www.latticesemi.com/software</u>



MachXO Family Data Sheet Ordering Information

June 2013

Data Sheet DS1002

Part Number Description

Ordering Information

Note: MachXO devices are dual marked except the slowest commercial speed grade device.bFor example the commercial speed grade LCMXO640E-4F256C is also marked with industrial grade -3I grade.bThe slowest commercial speed grade does not have industrial markings.b The markings appears as follows:

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3T100C	2280	1.8V/2.5V/3.3V	73	-3	TQFP	100	COM
LCMXO2280C-4T100C	2280	1.8V/2.5V/3.3V	73	-4	TQFP	100	COM
LCMXO2280C-5T100C	2280	1.8V/2.5V/3.3V	73	-5	TQFP	100	COM
LCMXO2280C-3T144C	2280	1.8V/2.5V/3.3V	113	-3	TQFP	144	COM
LCMXO2280C-4T144C	2280	1.8V/2.5V/3.3V	113	-4	TQFP	144	COM
LCMXO2280C-5T144C	2280	1.8V/2.5V/3.3V	113	-5	TQFP	144	COM
LCMXO2280C-3M132C	2280	1.8V/2.5V/3.3V	101	-3	csBGA	132	COM
LCMXO2280C-4M132C	2280	1.8V/2.5V/3.3V	101	-4	csBGA	132	COM
LCMXO2280C-5M132C	2280	1.8V/2.5V/3.3V	101	-5	csBGA	132	COM
LCMXO2280C-3B256C	2280	1.8V/2.5V/3.3V	211	-3	caBGA	256	COM
LCMXO2280C-4B256C	2280	1.8V/2.5V/3.3V	211	-4	caBGA	256	COM
LCMXO2280C-5B256C	2280	1.8V/2.5V/3.3V	211	-5	caBGA	256	COM
LCMXO2280C-3FT256C	2280	1.8V/2.5V/3.3V	211	-3	ftBGA	256	COM
LCMXO2280C-4FT256C	2280	1.8V/2.5V/3.3V	211	-4	ftBGA	256	COM
LCMXO2280C-5FT256C	2280	1.8V/2.5V/3.3V	211	-5	ftBGA	256	COM
LCMXO2280C-3FT324C	2280	1.8V/2.5V/3.3V	271	-3	ftBGA	324	COM
LCMXO2280C-4FT324C	2280	1.8V/2.5V/3.3V	271	-4	ftBGA	324	COM
LCMXO2280C-5FT324C	2280	1.8V/2.5V/3.3V	271	-5	ftBGA	324	COM
Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3T100C	256	1.2V	78	-3	TQFP	100	COM
LCMX0256E-4T100C	256	1.2V	78	-4	TQFP	100	COM
LCMXO256E-5T100C	256	1.2V	78	-5	TQFP	100	COM
LCMXO256E-3M100C	256	1.2V	78	-3	csBGA	100	COM
LCMXO256E-4M100C	256	1.2V	78	-4	csBGA	100	COM
LCMXO256E-5M100C	256	1.2V	78	-5	csBGA	100	COM
Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO640E-3T100C	640	1.2V	74	-3	TQFP	100	COM
LCMXO640E-4T100C	640	1.2V	74	-4	TQFP	100	COM
LCMXO640E-5T100C	640	1.2V	74	-5	TQFP	100	COM
LCMXO640E-3M100C	640	1.2V	74	-3	csBGA	100	COM
LCMXO640E-4M100C	640	1.2V	74	-4	csBGA	100	COM
LCMXO640E-5M100C	640	1.2V	74	-5	csBGA	100	COM
LCMXO640E-3T144C	640	1.2V	113	-3	TQFP	144	COM
LCMXO640E-4T144C	640	1.2V	113	-4	TQFP	144	COM
LCMXO640E-5T144C	640	1.2V	113	-5	TQFP	144	COM
LCMXO640E-3M132C	640	1.2V	101	-3	csBGA	132	COM
LCMXO640E-4M132C	640	1.2V	101	-4	csBGA	132	COM
LCMXO640E-5M132C	640	1.2V	101	-5	csBGA	132	COM
LCMXO640E-3B256C	640	1.2V	159	-3	caBGA	256	COM
LCMXO640E-4B256C	640	1.2V	159	-4	caBGA	256	COM
LCMXO640E-5B256C	640	1.2V	159	-5	caBGA	256	COM
LCMXO640E-3FT256C	640	1.2V	159	-3	ftBGA	256	COM
LCMXO640E-4FT256C	640	1.2V	159	-4	ftBGA	256	COM
LCMXO640E-5FT256C	640	1.2V	159	-5	ftBGA	256	COM

Lead-Free Packaging

Commercial

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256C-3TN100C	256	1.8V/2.5V/3.3V	78	-3	Lead-Free TQFP	100	COM
LCMXO256C-4TN100C	256	1.8V/2.5V/3.3V	78	-4	Lead-Free TQFP	100	COM
LCMXO256C-5TN100C	256	1.8V/2.5V/3.3V	78	-5	Lead-Free TQFP	100	COM
LCMXO256C-3MN100C	256	1.8V/2.5V/3.3V	78	-3	Lead-Free csBGA	100	COM
LCMXO256C-4MN100C	256	1.8V/2.5V/3.3V	78	-4	Lead-Free csBGA	100	COM
LCMXO256C-5MN100C	256	1.8V/2.5V/3.3V	78	-5	Lead-Free csBGA	100	COM

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO640C-3TN100C	640	1.8V/2.5V/3.3V	74	-3	Lead-Free TQFP	100	COM
LCMXO640C-4TN100C	640	1.8V/2.5V/3.3V	74	-4	Lead-Free TQFP	100	COM
LCMXO640C-5TN100C	640	1.8V/2.5V/3.3V	74	-5	Lead-Free TQFP	100	COM
LCMXO640C-3MN100C	640	1.8V/2.5V/3.3V	74	-3	Lead-Free csBGA	100	COM
LCMXO640C-4MN100C	640	1.8V/2.5V/3.3V	74	-4	Lead-Free csBGA	100	COM
LCMXO640C-5MN100C	640	1.8V/2.5V/3.3V	74	-5	Lead-Free csBGA	100	COM
LCMXO640C-3TN144C	640	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO640C-4TN144C	640	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	COM
LCMXO640C-5TN144C	640	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO640C-3MN132C	640	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO640C-4MN132C	640	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	COM
LCMXO640C-5MN132C	640	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	COM
LCMXO640C-3BN256C	640	1.8V/2.5V/3.3V	159	-3	Lead-Free caBGA	256	COM
LCMXO640C-4BN256C	640	1.8V/2.5V/3.3V	159	-4	Lead-Free caBGA	256	COM
LCMXO640C-5BN256C	640	1.8V/2.5V/3.3V	159	-5	Lead-Free caBGA	256	COM
LCMXO640C-3FTN256C	640	1.8V/2.5V/3.3V	159	-3	Lead-Free ftBGA	256	COM
LCMXO640C-4FTN256C	640	1.8V/2.5V/3.3V	159	-4	Lead-Free ftBGA	256	COM
LCMXO640C-5FTN256C	640	1.8V/2.5V/3.3V	159	-5	Lead-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3TN100C	1200	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	COM
LCMXO1200C-4TN100C	1200	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	COM
LCMXO1200C-5TN100C	1200	1.8V/2.5V/3.3V	73	-5	Lead-Free TQFP	100	COM
LCMXO1200C-3TN144C	1200	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO1200C-4TN144C	1200	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	COM
LCMXO1200C-5TN144C	1200	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO1200C-3MN132C	1200	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO1200C-4MN132C	1200	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	COM
LCMXO1200C-5MN132C	1200	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	COM
LCMXO1200C-3BN256C	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free caBGA	256	COM
LCMXO1200C-4BN256C	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free caBGA	256	COM
LCMXO1200C-5BN256C	1200	1.8V/2.5V/3.3V	211	-5	Lead-Free caBGA	256	COM
LCMXO1200C-3FTN256C	1200	1.8V/2.5V/3.3V	211	-3	Lead-Free ftBGA	256	COM
LCMXO1200C-4FTN256C	1200	1.8V/2.5V/3.3V	211	-4	Lead-Free ftBGA	256	COM
LCMXO1200C-5FTN256C	1200	1.8V/2.5V/3.3V	211	-5	Lead-Free ftBGA	256	COM

Date	Version	Section	Change Summary
April 2006 (cont.)	02.0 (cont.)	Architecture (cont.)	"Top View of the MachXO1200 Device" figure updated.
			"Top View of the MachXO640 Device" figure updated.
			"Top View of the MachXO256 Device" figure updated.
			"Slice Diagram" figure updated.
			Slice Signal Descriptions table updated.
			Routing section updated.
			sysCLOCK Phase Lockecd Loops (PLLs) section updated.
			PLL Diagram updated.
			PLL Signal Descriptions table updated.
			sysMEM Memory section has been updated.
			PIO Groups section has been updated.
			PIO section has been updated.
			MachXO PIO Block Diagram updated.
			Supported Input Standards table updated.
			MachXO Configuration and Programming diagram updated.
		DC and Switching Characteristics	Recommended Operating Conditions table - footnotes updated.
			MachXO256 and MachXO640 Hot Socketing Specifications - footnotes updated.
			Added MachXO1200 and MachXO2280 Hot Socketing Specifications table.
			DC Electrical Characteristics, footnotes have been updated.
			Supply Current (Sleep Mode) table has been updated, removed "4W" references. Footnotes have been updated.
			Supply Current (Standby) table and associated footnotes updated.
			Intialization Supply Current table and footnotes updated.
			Programming and Erase Flash Supply Current table and associated footnotes have been updatd.
			Register-to-Register Performance table updated (rev. A 0.19).
			MachXO External Switching Characteristics updated (rev. A 0.19).
			MachXO Internal Timing Parameters updated (rev. A 0.19).
			MachXO Family Timing Adders updated (rev. A 0.19).
			sysCLOCK Timing updated (rev. A 0.19).
			MachXO "C" Sleep Mode Timing updated (A 0.19).
			JTAG Port Timing Specification updated (rev. A 0.19).
			Test Fixture Required Components table updated.
		Pinout Information	Signal Descriptions have been updated.
			Pin Information Summary has been updated. Footnote has been added.
			Power Supply and NC Connection table has been updated.
			Logic Signal Connections have been updated (PCLKTx_x> PCLKx_x)
		Ordering Information	Removed "4W" references.
			Added 256-ftBGA Ordering Part Numbers for MachXO640.
May 2006	02.1	Pinout Information	Removed [LOC][0]_PLL_RST from Signal Description table.
-			PCLK footnote has been added to all appropriate pins.
August 2006	02.2	Multiple	Removed 256 fpBGA information for MachXO640.