

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	80
Number of Logic Elements/Cells	640
Total RAM Bits	-
Number of I/O	74
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo640e-3tn100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Architecture

June 2013 Data Sheet DS1002

Architecture Overview

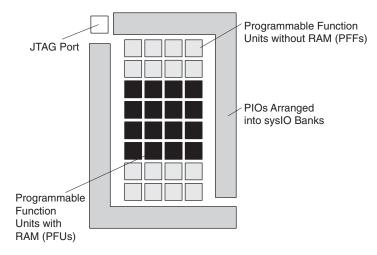
The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM™ Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.

The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row.

In the MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT use.

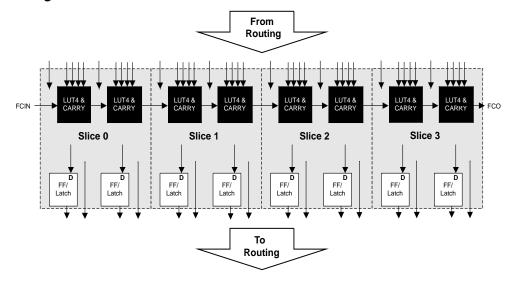
The MachXO registers in PFU and sysl/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.


The MachXO architecture provides up to two sysCLOCK™ Phase Locked Loop (PLL) blocks on larger devices. These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power supplies, providing easy integration into the overall system.

www.latticesemi.com 2-1 DS1002 Architecture_01.5

Figure 2-3. Top View of the MachXO256 Device

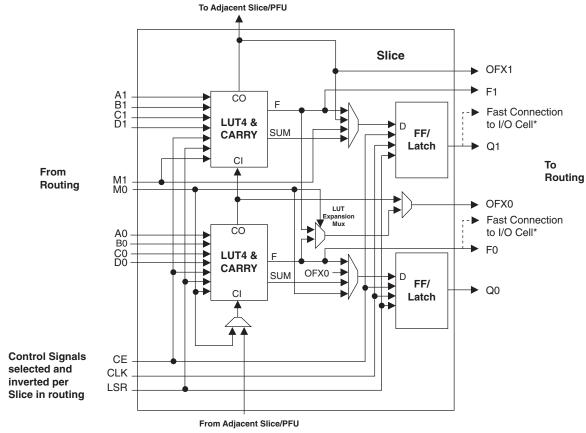


PFU Blocks

The core of the MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM, and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic, and Distributed ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected Slices, numbered 0-3 as shown in Figure 2-4. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-4. PFU Diagram


Slice

Each Slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7, and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select, and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the Slice. The registers in the Slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent Slice/PFU). There are 7 outputs: 6 to the routing and one to the carry-chain (to the adjacent Slice/PFU). Table 2-1 lists the signals associated with each Slice.

Figure 2-5. Slice Diagram

Notes:

Some inter-Slice signals are not shown.

Table 2-1. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT82 MUX depending on the Slice
Output	Inter-PFU signal	FCO	Fast Carry Out ¹

- 1. See Figure 2-4 for connection details.
- 2. Requires two PFUs.

^{*} Only PFUs at the edges have fast connections to the I/O cell.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- · Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. **Write Through** a copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old contents of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

FIFO Configuration

The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. The range of programming values for these flags are in Table 2-7.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to (up to 2 ^N -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

N = Address bit width

The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-13.

PIO Groups

On the MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective sysIO buffers and PADs.

On all MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins.

The MachXO1200 and MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI support.

Figure 2-15. Group of Four Programmable I/O Cells

This structure is used on the left and right of MachXO devices

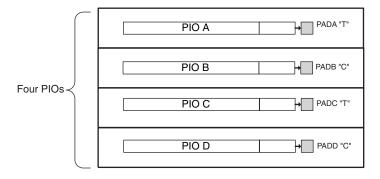
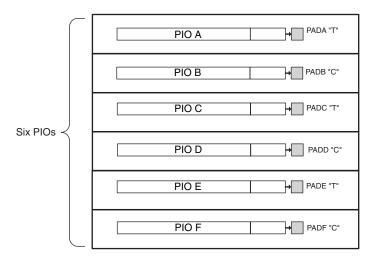
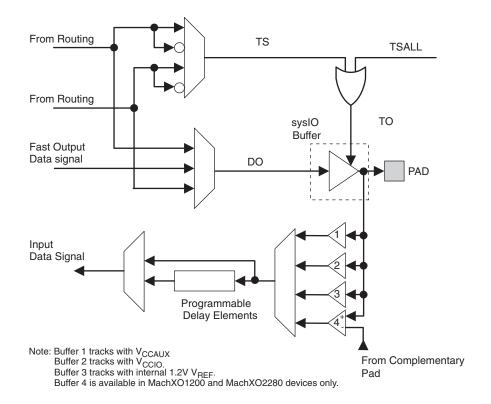



Figure 2-16. Group of bSix Programmable I/O Cells

This structure is used on the top and bottom of MachXO devices

PIO

The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast



output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic.

The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.

Figure 2-17. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the Bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers.

MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks.

MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom

MachXO256 and MachXO640 Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Min.	Тур.	Max	Units
I_{DK}	Input or I/O leakage Current	$0 \le V_{IN} \le V_{IH} (MAX)$	-		+/-1000	μΑ

- 1. Insensitive to sequence of V_{CC,} V_{CCAUX,} and V_{CCIO}. However, assumes monotonic rise/fall rates for V_{CC,} V_{CCAUX,} and V_{CCIO.}
- 2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) and $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).
- 3. I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.

MachXO1200 and MachXO2280 Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
Non-LVDS G	Non-LVDS General Purpose syslOs						
I _{DK}	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX.)	_	_	+/-1000	μΑ	
LVDS Genera	LVDS General Purpose syslOs						
1	Input or I/O Leakage Current	$V_{IN} \le V_{CCIO}$	_	_	+/-1000	μΑ	
IDK_LVDS	Imput of 1/O Leakage Current	V _{IN} > V _{CCIO}	_	35	_	mA	

- 1. Insensitive to sequence of $V_{CC,}$ $V_{CCAUX,}$ and V_{CCIO} . However, assumes monotonic rise/fall rates for $V_{CC,}$ $V_{CCAUX,}$ and $V_{CCIO,}$
- 2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX), and $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).
- 3. I_{DK} is additive to I_{PU} , I_{PW} or I_{BH} .

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL,} I _{IH} ^{1, 4, 5}	Input or I/O Leakage	$0 \le V_{IN} \le (V_{CCIO} - 0.2V)$	_	_	10	μΑ
'IL, 'IH	linput of 1/O Leakage	$(V_{CCIO} - 0.2V) < V_{IN} \le 3.6V$	_	_	40	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 \ V_{CCIO}$	-30	_	-150	μΑ
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MAX)	30	_	150	μΑ
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL} (MAX)$	30	_	_	μΑ
I _{BHHS}	Bus Hold High sustaining current	$V_{IN} = 0.7V_{CCIO}$	-30	_	_	μΑ
I _{BHLO}	Bus Hold Low Overdrive current	$0 \le V_{IN} \le V_{IH} (MAX)$	_	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{IH} (MAX)$	_	_	-150	μΑ
V _{BHT} ³	Bus Hold trip Points	$0 \le V_{IN} \le V_{IH} (MAX)$	V _{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = Typ., V_{IO} = 0 to V_{IH} (MAX)$	_	8	_	pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = Typ., V_{IO} = 0 to V_{IH} (MAX)$	_	8	_	pf

^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

^{2.} $T_A 25^{\circ}C$, f = 1.0MHz

^{3.} Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

^{4.} Not applicable to SLEEPN pin.

^{5.} When V_{IH} is higher than V_{CCIO} , a transient current typically of 30ns in duration or less with a peak current of 6mA can occur on the high-to-low transition. For MachXO1200 and MachXO2280 true LVDS output pins, V_{IH} must be less than or equal to V_{CCIO} .

Table 3-2. BLVDS DC Conditions1

Over Recommended	Operating	Conditions
------------------	-----------	-------------------

		Non	ninal	
Symbol	Description	Zo = 45	Zo = 90	Units
Z _{OUT}	Output impedance	100	100	Ohms
R _{TLEFT}	Left end termination	45	90	Ohms
R _{TRIGHT}	Right end termination	45	90	Ohms
V _{OH}	Output high voltage	1.375	1.48	V
V_{OL}	Output low voltage	1.125	1.02	V
V _{OD}	Output differential voltage	0.25	0.46	V
V _{CM}	Output common mode voltage	1.25	1.25	V
I _{DC}	DC output current	11.2	10.2	mA

^{1.} For input buffer, see LVDS table.

LVPECL

The MachXO family supports the differential LVPECL standard through emulation. This output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL

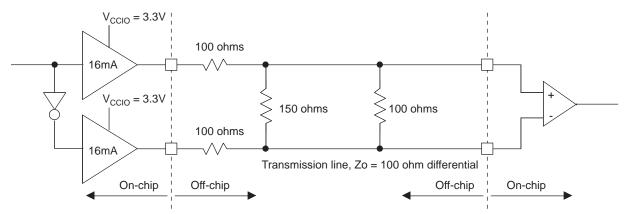


Table 3-3. LVPECL DC Conditions1

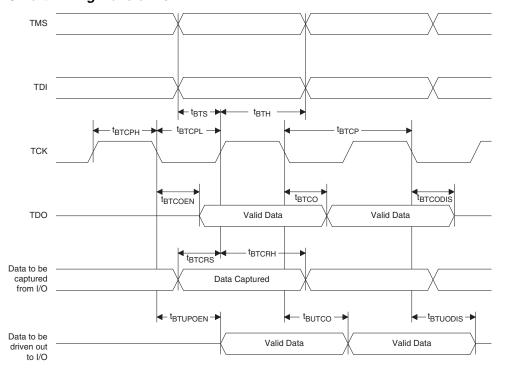
Over Recommended Operating Conditions

Symbol	Description	Nominal	Units
Z _{OUT}	Output impedance	100	Ohms
R _P	Driver parallel resistor	150	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	2.03	V
V _{OL}	Output low voltage	1.27	V
V _{OD}	Output differential voltage	0.76	V
V _{CM}	Output common mode voltage	1.65	V
Z _{BACK}	Back impedance	85.7	Ohms
I _{DC}	DC output current	12.7	mA

^{1.} For input buffer, see LVDS table.

MachXO Internal Timing Parameters¹

Over Recommended Operating Conditions


		_	5	-4		-3		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Log	jic Mode Timing		•	•	•		•	,
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)	_	0.28	_	0.34	_	0.39	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)	_	0.44	_	0.53	_	0.62	ns
t _{LSR_PFU}	Set/Reset to output of PFU	_	0.90	_	1.08	_	1.26	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) input setup time	0.10	_	0.13	_	0.15	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) input hold time	-0.05	_	-0.06	_	-0.07	_	ns
t _{SUD_PFU}	Clock to D input setup time	0.13	_	0.16	_	0.18	_	ns
t _{HD_PFU}	Clock to D input hold time	-0.03	_	-0.03	_	-0.04	_	ns
t _{CK2Q_PFU}	Clock to Q delay, D-type register configuration	_	0.40	_	0.48	_	0.56	ns
t _{LE2Q_PFU}	Clock to Q delay latch configuration	_	0.53	_	0.64	_	0.74	ns
t _{LD2Q_PFU}	D to Q throughput delay when latch is enabled	_	0.55	_	0.66	_	0.77	ns
	rt Memory Mode Timing	I	I	I	I	I	I	J.
t _{CORAM_PFU}	Clock to Output		0.40		0.48		0.56	ns
t _{SUDATA_PFU}	Data Setup Time	-0.18	_	-0.22	_	-0.25	_	ns
t _{HDATA_PFU}	Data Hold Time	0.28	—	0.34	—	0.39	—	ns
t _{SUADDR_PFU}	Address Setup Time	-0.46	_	-0.56	_	-0.65	_	ns
t _{HADDR_PFU}	Address Hold Time	0.71	_	0.85	_	0.99	_	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.22	_	-0.26	_	-0.30	_	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.33	_	0.40	_	0.47	_	ns
PIO Input/Ou	tput Buffer Timing		•	•	•		•	,
t _{IN_PIO}	Input Buffer Delay		0.75		0.90		1.06	ns
t _{OUT_PIO}	Output Buffer Delay	_	1.29	_	1.54	_	1.80	ns
	(1200 and 2280 Devices Only)		•	•	•		•	,
t _{CO_EBR}	Clock to output from Address or Data with no output register	_	2.24	_	2.69	_	3.14	ns
t _{COO_EBR}	Clock to output from EBR output Register	_	0.54	_	0.64	_	0.75	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.26	_	-0.31	_	-0.37	_	ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.41	_	0.49	_	0.57	_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.26	—	-0.31	—	-0.37	—	ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.41	_	0.49	_	0.57	_	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.17	_	-0.20	_	-0.23	_	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.26	—	0.31	—	0.36	—	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.19	_	0.23	_	0.27	_	ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register	-0.13	_	-0.16	_	-0.18	_	ns
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register	_	1.03	_	1.23	_	1.44	ns
PLL Paramet	ers (1200 and 2280 Devices Only)	•				•		
t _{RSTREC}	Reset Recovery to Rising Clock	1.00	_	1.00	_	1.00	_	ns
t _{RSTSU}	Reset Signal Setup Time	1.00	_	1.00	_	1.00	_	ns
	•							

^{1.} Internal parameters are characterized but not tested on every device.

Rev. A 0.19

Figure 3-5. JTAG Port Timing Waveforms

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		L	CMXO1200		LCMXO2280						
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential			
42	PB9A	4		Т	PB12A	4		Т			
43	PB9B	4		С	PB12B	4		С			
44	VCCIO4	4			VCCIO4	4					
45	PB10A	4		Т	PB13A	4		Т			
46	PB10B	4		С	PB13B	4		С			
47***	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN				
48	PB11A	4		Т	PB16A	4		Т			
49	PB11B	4		С	PB16B	4		С			
50**	GNDIO3 GNDIO4	-			GNDIO3 GNDIO4	-					
51	PR16B	3			PR19B	3					
52	PR15B	3		C*	PR18B	3		C*			
53	PR15A	3		T*	PR18A	3		T*			
54	PR14B	3		C*	PR17B	3		C*			
55	PR14A	3		T*	PR17A	3		T*			
56	VCCIO3	3			VCCIO3	3					
57	PR12B	3		C*	PR15B	3		C*			
58	PR12A	3		T*	PR15A	3		T*			
59	GND	-			GND	-					
60	PR10B	3		C*	PR13B	3		C*			
61	PR10A	3		T*	PR13A	3		T*			
62	PR9B	3		C*	PR11B	3		C*			
63	PR9A	3		T*	PR11A	3		T*			
64	PR8B	2		C*	PR10B	2		C*			
65	PR8A	2		T*	PR10A	2		T*			
66	VCC	-			VCC	-					
67	PR6C	2			PR8C	2					
68	PR6B	2		C*	PR8B	2		C*			
69	PR6A	2		T*	PR8A	2		T*			
70	VCCIO2	2			VCCIO2	2					
71	PR4D	2			PR5D	2					
72	PR4B	2		C*	PR5B	2		C*			
73	PR4A	2		T*	PR5A	2		T*			
74	PR2B	2		С	PR3B	2		C*			
75	PR2A	2		Т	PR3A	2		T*			
76**	GNDIO1 GNDIO2	-			GNDIO1 GNDIO2	-					
77	PT11C	1			PT15C	1					
78	PT11B	1		С	PT14B	1		С			
79	PT11A	1		Т	PT14A	1		Т			
80	VCCIO1	1			VCCIO1	1					
81	PT9E	1			PT12D	1		С			

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

		LCMXO25	6		LCMXO640						
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial		
P13	PB5A	1			P13	PB9C	2		T		
M12*	SLEEPN	-	SLEEPN		M12*	SLEEPN	-	SLEEPN			
P14	PB5C	1		Т	P14	PB9D	2		С		
N13	PB5D	1		С	N13	PB9F	2				
N14	PR9B	0		С	N14	PR11D	1		С		
M14	PR9A	0		Т	M14	PR11B	1		С		
L13	PR8B	0		С	L13	PR11C	1		Т		
L14	PR8A	0		T	L14	PR11A	1		T		
M13	PR7D	0		С	M13	PR10D	1		С		
K14	PR7C	0		Т	K14	PR10C	1		T		
K13	PR7B	0		С	K13	PR10B	1		С		
J14	PR7A	0		Т	J14	PR10A	1		Т		
J13	PR6B	0		С	J13	PR9D	1				
H13	PR6A	0		Т	H13	PR9B	1				
G14	GNDIO0	0			G14	GNDIO1	1				
G13	PR5D	0		С	G13	PR7B	1				
F14	PR5C	0		Т	F14	PR6C	1				
F13	PR5B	0		С	F13	PR6B	1				
E14	PR5A	0		Т	E14	PR5D	1				
E13	PR4B	0		С	E13	PR5B	1				
D14	PR4A	0		Т	D14	PR4D	1				
D13	PR3D	0		С	D13	PR4B	1				
C14	PR3C	0		Т	C14	PR3D	1				
C13	PR3B	0		С	C13	PR3B	1				
B14	PR3A	0		Т	B14	PR2D	1				
C12	PR2B	0		С	C12	PR2B	1				
B13	GNDIO0	0			B13	GNDIO1	1				
A13	PR2A	0		Т	A13	PT9F	0		С		
A12	PT5C	0			A12	PT9E	0		Т		
B11	PT5B	0		С	B11	PT9C	0				
A11	PT5A	0		Т	A11	PT9A	0				
B12	PT4F	0		С	B12	VCCIO0	0				
A10	PT4E	0		Т	A10	GNDIO0	0				
B10	PT4D	0		С	B10	PT7E	0				
A9	PT4C	0		Т	A9	PT7A	0				
A8	PT4B	0	PCLK0_1**	С	A8	PT6B	0	PCLK0_1**			
B8	PT4A	0	PCLK0_0**	Т	B8	PT5B	0	PCLK0_0**	С		
A7	PT3D	0		С	A7	PT5A	0		Т		
B7	VCCAUX	-			B7	VCCAUX	-				
A6	PT3C	0		Т	A6	PT4F	0				
B6	VCC	-			B6	VCC	-				
A 5	PT3B	0		С	A5	PT3F	0				

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 132 csBGA

		LCMX	CO640				LC	MXO1200	1200 LCMXO2280					
Ball #	Ball Function	Bank	Dual Function	Differential	Ball #	Ball Function	Bank	Dual Function	Differential	Ball #	Ball Function	Bank	Dual Function	Differential
B1	PL2A	3		Т	B1	PL2A	7		Т	B1	PL2A	7	LUM0_PLLT_FB_A	T
C1	PL2B	3		С	C1	PL3C	7		Т	C1	PL3C	7	LUM0_PLLT_IN_A	Т
B2	PL2C	3		Т	B2	PL2B	7		С	B2	PL2B	7	LUM0_PLLC_FB_A	С
C2	PL2D	3		С	C2	PL4A	7		T*	C2	PL4A	7		T*
C3	PL3A	3		Т	C3	PL3D	7		С	C3	PL3D	7	LUM0_PLLC_IN_A	С
D1	PL3B	3		С	D1	PL4B	7		C*	D1	PL4B	7		C*
D3	PL3D	3			D3	PL4C	7			D3	PL4C	7		
E1	GNDIO3	3			E1	GNDIO7	7			E1	GNDIO7	7		
E2	PL5A	3		T	E2	PL6A	7		T*	E2	PL7A	7		T*
E3	PL5B	3	GSRN	С	E3	PL6B	7	GSRN	C*	E3	PL7B	7	GSRN	C*
F2	PL5D	3			F2	PL6D	7			F2	PL7D	7		
F3	PL6B	3			F3	PL7C	7		Т	F3	PL9C	7		T
G1	PL6C	3		Т	G1	PL7D	7		С	G1	PL9D	7		С
G2	PL6D	3		С	G2	PL8C	7		Т	G2	PL10C	7		Т
G3	PL7A	3		Т	G3	PL8D	7		С	G3	PL10D	7		С
H2	PL7B	3		С	H2	PL10A	6		T*	H2	PL12A	6		T*
H1	PL7C	3			H1	PL10B	6		C*	H1	PL12B	6		C*
НЗ	VCC	-			НЗ	VCC	-			НЗ	VCC	-		
J1	PL8A	3			J1	PL11B	6			J1	PL14D	6		С
J2	PL8C	3	TSALL		J2	PL11C	6	TSALL	Т	J2	PL14C	6	TSALL	T
J3	PL9A	3		Т	J3	PL11D	6		С	J3	PL14B	6		
K2	PL9B	3		С	K2	PL12A	6		T*	K2	PL15A	6		T*
K1	PL9C	3			K1	PL12B	6		C*	K1	PL15B	6		C*
L2	GNDIO3	3			L2	GNDIO6	6			L2	GNDIO6	6		
L1	PL10A	3		Т	L1	PL14A	6	LLM0_PLLT_FB_A	T*	L1	PL17A	6	LLM0_PLLT_FB_A	T*
L3	PL10B	3		С	L3	PL14B	6	LLM0_PLLC_FB_A	C*	L3	PL17B	6	LLM0_PLLC_FB_A	C*
M1	PL11A	3		Т	M1	PL15A	6	LLM0_PLLT_IN_A	T*	M1	PL18A	6	LLM0_PLLT_IN_A	T*
N1	PL11B	3		С	N1	PL16A	6		Т	N1	PL19A	6		Т
M2	PL11C	3		Т	M2	PL15B	6	LLM0_PLLC_IN_A	C*	M2	PL18B	6	LLM0_PLLC_IN_A	C*
P1	PL11D	3		С	P1	PL16B	6		С	P1	PL19B	6		С
P2	GNDIO2	2			P2	GNDIO5	5			P2	GNDIO5	5		
P3	TMS	2	TMS		P3	TMS	5	TMS		P3	TMS	5	TMS	
M3	PB2C	2		Т	M3	PB2C	5	_	Т	M3	PB2A	5		Т
N3	PB2D	2		С	N3	PB2D	5		С	N3	PB2B	5		С
P4	TCK	2	TCK	-	P4	TCK	5	TCK	-	P4	TCK	5	TCK	-
M4	PB3B	2			M4	PB3B	5			M4	PB3B	5		
N4	PB3C	2		Т	N4	PB4A	5		Т	N4	PB4A	5		Т
P5	PB3D	2		C	P5	PB4B	5		С	P5	PB4B	5		С
N5	TDO	2	TDO		N5	TDO	5	TDO		N5	TDO	5	TDO	
M5	TDI	2	TDI		M5	TDI	5	TDI		M5	TDI	5	TDI	
N6	PB4E	2	. 51	Т	N6	PB5C	5	1.01		N6	PB6C	5	1.01	
P6	VCC	-		'	P6	VCC	-			P6	VCC	-		
M6	PB4F	2		С	M6	PB6A	5			M6	PB8A	5		
P7	VCCAUX	-			P7	VCCAUX	-			P7	VCCAUX	-		
N7	PB5A	2		Т	N7	PB6F	5			N7	PB8F	5		
M7	PB5B	2	PCLK2_1***	C	M7	PB7B	4	PCLK4_1***		M7	PB10F	4	PCLK4_1***	
N8	PB5B PB5D	2	I ULIKZ_I		N8	PB7B PB7C	4	I OLN4_I	Т	N8	PB10F PB10C	4	I OLN4_I	Т
P8	PB6A	2		Т	P8	PB7D	4		C	P8	PB10D	4		C
		2	PCLK2_0***	C		PB7F		PCLK4_0***	U	M8			PCLK4_0***	
M8 N9	PB6B PB7A	2	I-OLNZ_U	T	M8 N9		4	FULN4_U	Т	N9	PB10B	4	FULN4_U	Т
N9	PD/A	2		1	149	PB9A	4		1	149	PB12A	4		1

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

		LCMX	O640				LCI	MXO1200				LCI	MXO2280	
Ball	Ball		Dual		Ball	Ball	<u>.</u>	_ Dual		Ball	Ball		_ Dual	
Number		Bank	Function	Differential		Function	Bank	Function	Differential			Bank	Function	Differential
J4	PL8A	3		Т	J4	PL13A	6		T*	J4	PL16A	6		T* C*
J5	PL8B PL11A	3		C T	J5 R1	PL13B PL13C	6		C* T	J5 R1	PL16B PL16C	6		T
R1 R2	PL11A PL11B	3		C	R2	PL13D	6		C	R2	PL16D	6		C
- -	- FLIIB	-		C	- nz	-	-		C	GND	GND	-		C
K5	NC	-			- K5	PL14A	6	LLM0_PLLT_FB_A	T*	K5	PL17A	6	LLM0_PLLT_FB_A	T*
K4	NC				K4	PL14B	6	LLM0_PLLC_FB_A	C*	K4	PL17B	6	LLM0_PLLC_FB_A	C*
L5	PL10C	3		Т	L5	PL14C	6	CLINIO_1 CLO_1 B_X	Т	L5	PL17C	6	LLINO_I LLO_I B_A	T
L4	PL10D	3		С	L4	PL14D	6		С	L4	PL17D	6		С
M5	NC				M5	PL15A	6	LLMO PLLT IN A	T*	M5	PL18A	6	LLM0_PLLT_IN_A	T*
M4	NC				M4	PL15B	6	LLM0_PLLC_IN_A	C*	M4	PL18B	6	LLM0_PLLC_IN_A	C*
N4	PL11C	3		Т	N4	PL16A	6	LLINO_I LLO_IIV_A	Т	N4	PL19A	6	ELWIO_I ELO_IIV_A	T
N3	PL11D	3		C	N3	PL16B	6		C	N3	PL19B	6		C
VCCIO3	VCCIO3	3			VCCIO6	VCCIO6	6			VCCIO6	VCCIO6	6		
GND	GNDIO3	3			GND	GNDIO6	6			GND	GNDIO6	6		
GND	GNDIO2	2			GND	GNDIO5	5			GND	GNDIO5	5		
VCCIO2	VCCIO2	2			VCCIO5	VCCIO5	5			VCCIO5	VCCIO5	5		
P4	TMS	2	TMS		P4	TMS	5	TMS		P4	TMS	5	TMS	
P2	NC		TIVIO		P2	PB2A	5	TIVIO	Т	P2	PB2A	5	TIVIO	Т
P3	NC				P3	PB2B	5		C	P3	PB2B	5		C
N5	NC				N5	PB2C	5		Т	N5	PB2C	5		Т
R3	TCK	2	TCK		R3	TCK	5	TCK	'	R3	TCK	5	TCK	'
N6	NC		1010		N6	PB2D	5	TOIL	С	N6	PB2D	5	TOR	С
T2	PB2A	2		Т	T2	PB3A	5		Т	T2	PB3A	5		Т
T3	PB2B	2		C	T3	PB3B	5		C	T3	PB3B	5		C
R4	PB2C	2		Т	R4	PB3C	5		T	R4	PB3C	5		T
R5	PB2D	2		C	R5	PB3D	5		C	R5	PB3D	5		C
P5	PB3A	2		T	P5	PB4A	5		T	P5	PB4A	5		T
P6	PB3B	2		C	P6	PB4B	5		C	P6	PB4B	5		C
T5	PB3C	2		Т	T5	PB4C	5		Т	T5	PB4C	5		Т
M6	TDO	2	TDO		M6	TDO	5	TDO	'	M6	TDO	5	TDO	'
T4	PB3D	2		С	T4	PB4D	5		С	T4	PB4D	5		С
R6	PB4A	2		T	R6	PB5A	5		T	R6	PB5A	5		T
GND	GNDIO2	2			GND	GNDIO5	5			GND	GNDIO5	5		
VCCIO2	VCCIO2	2			VCCIO5	VCCIO5	5			VCCIO5	VCCIO5	5		
T6	PB4B	2		С	T6	PB5B	5		С	T6	PB5B	5		С
N7	TDI	2	TDI		N7	TDI	5	TDI		N7	TDI	5	TDI	
T8	PB4C	2		Т	T8	PB5C	5		Т	T8	PB6A	5		Т
T7	PB4D	2		С	T7	PB5D	5		С	T7	PB6B	5		С
M7	NC				M7	PB6A	5		Т	M7	PB7C	5		Т
M8	NC				M8	PB6B	5		С	M8	PB7D	5		С
Т9	VCCAUX	-			T9	VCCAUX	-			T9	VCCAUX	-		
R7	PB4E	2		Т	R7	PB6C	5		Т	R7	PB8C	5		Т
R8	PB4F	2		С	R8	PB6D	5		С	R8	PB8D	5		С
-	-				VCCIO5	VCCIO5	5			VCCIO5	VCCIO5	5		
-	-				GND	GNDIO5	5			GND	GNDIO5	5		
P7	PB5C	2		Т	P7	PB6E	5		Т	P7	PB9A	4		Т
P8	PB5D	2		С	P8	PB6F	5		С	P8	PB9B	4		С
N8	PB5A	2		Т	N8	PB7A	4		Т	N8	PB10E	4		Т
N9	PB5B	2	PCLK2_1***	С	N9	PB7B	4	PCLK4_1***	С	N9	PB10F	4	PCLK4_1***	С
P10	PB7B	2		С	P10	PB7D	4		С	P10	PB10D	4		С
P9	PB7A	2		Т	P9	PB7C	4		Т	P9	PB10C	4		Т
M9	PB6B	2	PCLK2_0***	С	M9	PB7F	4	PCLK4_0***	С	M9	PB10B	4	PCLK4_0***	С

LCMXO2280 Logic Signal Connections: 324 ftBGA

	T =	LCMXO2280		
Ball Number	Ball Function	Bank	Dual Function	Differential
GND	GNDIO7	7		
VCCIO7	VCCIO7	7		
D4	PL2A	7	LUM0_PLLT_FB_A	Т
F5	PL2B	7	LUM0_PLLC_FB_A	С
B3	PL3A	7		T*
C3	PL3B	7		C*
E4	PL3C	7	LUM0_PLLT_IN_A	T
G6	PL3D	7	LUM0_PLLC_IN_A	С
A1	PL4A	7		T*
B1	PL4B	7		C*
F4	PL4C	7		Т
VCC	VCC	-		
E3	PL4D	7		С
D2	PL5A	7		T*
D3	PL5B	7		C*
G5	PL5C	7		Т
F3	PL5D	7		С
C2	PL6A	7		T*
VCCIO7	VCCIO7	7		
GND	GNDIO7	7		
C1	PL6B	7		C*
H5	PL6C	7		Т
G4	PL6D	7		С
E2	PL7A	7		T*
D1	PL7B	7	GSRN	C*
J6	PL7C	7		Т
H4	PL7D	7		С
F2	PL8A	7		T*
E1	PL8B	7		C*
GND	GND	-		
J3	PL8C	7		Т
J5	PL8D	7		С
G3	PL9A	7		T*
H3	PL9B	7		C*
КЗ	PL9C	7		Т
K5	PL9D	7		С
F1	PL10A	7		T*
VCCIO7	VCCIO7	7		
GND	GNDIO7	7		
G1	PL10B	7		C*
K4	PL10C	7		Т
K6	PL10D	7	+	С

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

Dall Number	Dell Function	LCMXO2280	Duel Function	Differential
Ball Number	Ball Function	Bank	Dual Function	Differential
A10	PT8E	0		Ţ
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
A9	PT8D	0		С
C9	PT8C	0		T
B9	PT8B	0		С
F9	VCCAUX	-		
A8	PT8A	0		T
B8	PT7D	0		С
C8	PT7C	0		Т
VCC	VCC	-		
A7	PT7B	0		С
B7	PT7A	0		Т
A6	PT6A	0		Т
B6	PT6B	0		С
D8	PT6C	0		Т
F8	PT6D	0		С
C7	PT6E	0		Т
E8	PT6F	0		С
D7	PT5D	0		С
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
E7	PT5C	0		Т
A5	PT5B	0		С
C6	PT5A	0		Т
B5	PT4A	0		Т
A4	PT4B	0		С
D6	PT4C	0		Т
F7	PT4D	0		С
B4	PT4E	0		Т
GND	GND	-		
C5	PT4F	0		С
F6	PT3D	0		С
E5	PT3C	0		Т
E6	PT3B	0		С
D5	PT3A	0		T
A3	PT2D	0		С
C4	PT2C	0		Т
A2	PT2B	0		С
B2	PT2A	0		Т
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
E14	GND			

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3T100C	2280	1.8V/2.5V/3.3V	73	-3	TQFP	100	COM
LCMXO2280C-4T100C	2280	1.8V/2.5V/3.3V	73	-4	TQFP	100	COM
LCMXO2280C-5T100C	2280	1.8V/2.5V/3.3V	73	-5	TQFP	100	COM
LCMXO2280C-3T144C	2280	1.8V/2.5V/3.3V	113	-3	TQFP	144	COM
LCMXO2280C-4T144C	2280	1.8V/2.5V/3.3V	113	-4	TQFP	144	COM
LCMXO2280C-5T144C	2280	1.8V/2.5V/3.3V	113	-5	TQFP	144	COM
LCMXO2280C-3M132C	2280	1.8V/2.5V/3.3V	101	-3	csBGA	132	COM
LCMXO2280C-4M132C	2280	1.8V/2.5V/3.3V	101	-4	csBGA	132	COM
LCMXO2280C-5M132C	2280	1.8V/2.5V/3.3V	101	-5	csBGA	132	COM
LCMXO2280C-3B256C	2280	1.8V/2.5V/3.3V	211	-3	caBGA	256	COM
LCMXO2280C-4B256C	2280	1.8V/2.5V/3.3V	211	-4	caBGA	256	COM
LCMXO2280C-5B256C	2280	1.8V/2.5V/3.3V	211	-5	caBGA	256	COM
LCMXO2280C-3FT256C	2280	1.8V/2.5V/3.3V	211	-3	ftBGA	256	COM
LCMXO2280C-4FT256C	2280	1.8V/2.5V/3.3V	211	-4	ftBGA	256	COM
LCMXO2280C-5FT256C	2280	1.8V/2.5V/3.3V	211	-5	ftBGA	256	COM
LCMXO2280C-3FT324C	2280	1.8V/2.5V/3.3V	271	-3	ftBGA	324	COM
LCMXO2280C-4FT324C	2280	1.8V/2.5V/3.3V	271	-4	ftBGA	324	COM
LCMXO2280C-5FT324C	2280	1.8V/2.5V/3.3V	271	-5	ftBGA	324	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3T100C	256	1.2V	78	-3	TQFP	100	COM
LCMXO256E-4T100C	256	1.2V	78	-4	TQFP	100	COM
LCMXO256E-5T100C	256	1.2V	78	-5	TQFP	100	COM
LCMXO256E-3M100C	256	1.2V	78	-3	csBGA	100	COM
LCMXO256E-4M100C	256	1.2V	78	-4	csBGA	100	COM
LCMXO256E-5M100C	256	1.2V	78	-5	csBGA	100	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640E-3T100C	640	1.2V	74	-3	TQFP	100	COM
LCMXO640E-4T100C	640	1.2V	74	-4	TQFP	100	COM
LCMXO640E-5T100C	640	1.2V	74	-5	TQFP	100	COM
LCMXO640E-3M100C	640	1.2V	74	-3	csBGA	100	COM
LCMXO640E-4M100C	640	1.2V	74	-4	csBGA	100	COM
LCMXO640E-5M100C	640	1.2V	74	-5	csBGA	100	COM
LCMXO640E-3T144C	640	1.2V	113	-3	TQFP	144	COM
LCMXO640E-4T144C	640	1.2V	113	-4	TQFP	144	COM
LCMXO640E-5T144C	640	1.2V	113	-5	TQFP	144	COM
LCMXO640E-3M132C	640	1.2V	101	-3	csBGA	132	COM
LCMXO640E-4M132C	640	1.2V	101	-4	csBGA	132	COM
LCMXO640E-5M132C	640	1.2V	101	-5	csBGA	132	COM
LCMXO640E-3B256C	640	1.2V	159	-3	caBGA	256	COM
LCMXO640E-4B256C	640	1.2V	159	-4	caBGA	256	COM
LCMXO640E-5B256C	640	1.2V	159	-5	caBGA	256	COM
LCMXO640E-3FT256C	640	1.2V	159	-3	ftBGA	256	COM
LCMXO640E-4FT256C	640	1.2V	159	-4	ftBGA	256	COM
LCMXO640E-5FT256C	640	1.2V	159	-5	ftBGA	256	COM

Conventional Packaging

Industrial

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256C-3T100I	256	1.8V/2.5V/3.3V	78	-3	TQFP	100	IND
LCMXO256C-4T100I	256	1.8V/2.5V/3.3V	78	-4	TQFP	100	IND
LCMXO256C-3M100I	256	1.8V/2.5V/3.3V	78	-3	csBGA	100	IND
LCMXO256C-4M100I	256	1.8V/2.5V/3.3V	78	-4	csBGA	100	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640C-3T100I	640	1.8V/2.5V/3.3V	74	-3	TQFP	100	IND
LCMXO640C-4T100I	640	1.8V/2.5V/3.3V	74	-4	TQFP	100	IND
LCMXO640C-3M100I	640	1.8V/2.5V/3.3V	74	-3	csBGA	100	IND
LCMXO640C-4M100I	640	1.8V/2.5V/3.3V	74	-4	csBGA	100	IND
LCMXO640C-3T144I	640	1.8V/2.5V/3.3V	113	-3	TQFP	144	IND
LCMXO640C-4T144I	640	1.8V/2.5V/3.3V	113	-4	TQFP	144	IND
LCMXO640C-3M132I	640	1.8V/2.5V/3.3V	101	-3	csBGA	132	IND
LCMXO640C-4M132I	640	1.8V/2.5V/3.3V	101	-4	csBGA	132	IND
LCMXO640C-3B256I	640	1.8V/2.5V/3.3V	159	-3	caBGA	256	IND
LCMXO640C-4B256I	640	1.8V/2.5V/3.3V	159	-4	caBGA	256	IND
LCMXO640C-3FT256I	640	1.8V/2.5V/3.3V	159	-3	ftBGA	256	IND
LCMXO640C-4FT256I	640	1.8V/2.5V/3.3V	159	-4	ftBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3T100I	1200	1.8V/2.5V/3.3V	73	-3	TQFP	100	IND
LCMXO1200C-4T100I	1200	1.8V/2.5V/3.3V	73	-4	TQFP	100	IND
LCMXO1200C-3T144I	1200	1.8V/2.5V/3.3V	113	-3	TQFP	144	IND
LCMXO1200C-4T144I	1200	1.8V/2.5V/3.3V	113	-4	TQFP	144	IND
LCMXO1200C-3M132I	1200	1.8V/2.5V/3.3V	101	-3	csBGA	132	IND
LCMXO1200C-4M132I	1200	1.8V/2.5V/3.3V	101	-4	csBGA	132	IND
LCMXO1200C-3B256I	1200	1.8V/2.5V/3.3V	211	-3	caBGA	256	IND
LCMXO1200C-4B256I	1200	1.8V/2.5V/3.3V	211	-4	caBGA	256	IND
LCMXO1200C-3FT256I	1200	1.8V/2.5V/3.3V	211	-3	ftBGA	256	IND
LCMXO1200C-4FT256I	1200	1.8V/2.5V/3.3V	211	-4	ftBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3T100I	2280	1.8V/2.5V/3.3V	73	-3	TQFP	100	IND
LCMXO2280C-4T100I	2280	1.8V/2.5V/3.3V	73	-4	TQFP	100	IND
LCMXO2280C-3T144I	2280	1.8V/2.5V/3.3V	113	-3	TQFP	144	IND
LCMXO2280C-4T144I	2280	1.8V/2.5V/3.3V	113	-4	TQFP	144	IND
LCMXO2280C-3M132I	2280	1.8V/2.5V/3.3V	101	-3	csBGA	132	IND
LCMXO2280C-4M132I	2280	1.8V/2.5V/3.3V	101	-4	csBGA	132	IND
LCMXO2280C-3B256I	2280	1.8V/2.5V/3.3V	211	-3	caBGA	256	IND
LCMXO2280C-4B256I	2280	1.8V/2.5V/3.3V	211	-4	caBGA	256	IND
LCMXO2280C-3FT256I	2280	1.8V/2.5V/3.3V	211	-3	ftBGA	256	IND
LCMXO2280C-4FT256I	2280	1.8V/2.5V/3.3V	211	-4	ftBGA	256	IND
LCMXO2280C-3FT324I	2280	1.8V/2.5V/3.3V	271	-3	ftBGA	324	IND
LCMXO2280C-4FT324I	2280	1.8V/2.5V/3.3V	271	-4	ftBGA	324	IND

Date	Version	Section	Change Summary				
April 2006 (cont.)	02.0 (cont.)	Architecture (cont.)	"Top View of the MachXO1200 Device" figure updated.				
			"Top View of the MachXO640 Device" figure updated.				
			"Top View of the MachXO256 Device" figure updated.				
			"Slice Diagram" figure updated.				
			Slice Signal Descriptions table updated.				
			Routing section updated.				
			sysCLOCK Phase Lockecd Loops (PLLs) section updated.				
			PLL Diagram updated.				
			PLL Signal Descriptions table updated.				
			sysMEM Memory section has been updated.				
			PIO Groups section has been updated.				
			PIO section has been updated.				
			MachXO PIO Block Diagram updated.				
			Supported Input Standards table updated.				
			MachXO Configuration and Programming diagram updated.				
		DC and Switching Characteristics	Recommended Operating Conditions table - footnotes updated.				
			MachXO256 and MachXO640 Hot Socketing Specifications - footnotes updated.				
			Added MachXO1200 and MachXO2280 Hot Socketing Specifications table.				
			DC Electrical Characteristics, footnotes have been updated.				
			Supply Current (Sleep Mode) table has been updated, removed "4W" references. Footnotes have been updated.				
			Supply Current (Standby) table and associated footnotes updated.				
			Intialization Supply Current table and footnotes updated.				
			Programming and Erase Flash Supply Current table and associated footnotes have been updatd.				
			Register-to-Register Performance table updated (rev. A 0.19).				
			MachXO External Switching Characteristics updated (rev. A 0.19).				
			MachXO Internal Timing Parameters updated (rev. A 0.19).				
			MachXO Family Timing Adders updated (rev. A 0.19).				
			sysCLOCK Timing updated (rev. A 0.19).				
			MachXO "C" Sleep Mode Timing updated (A 0.19).				
			JTAG Port Timing Specification updated (rev. A 0.19).				
			Test Fixture Required Components table updated.				
		Pinout Information	Signal Descriptions have been updated.				
			Pin Information Summary has been updated. Footnote has been added.				
			Power Supply and NC Connection table has been updated.				
			Logic Signal Connections have been updated (PCLKTx_x> PCLKx_x)				
		Ordering Information	Removed "4W" references.				
			Added 256-ftBGA Ordering Part Numbers for MachXO640.				
May 2006	02.1	Pinout Information	Removed [LOC][0]_PLL_RST from Signal Description table.				
			PCLK footnote has been added to all appropriate pins.				
August 2006	02.2	Multiple	Removed 256 fpBGA information for MachXO640.				