

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

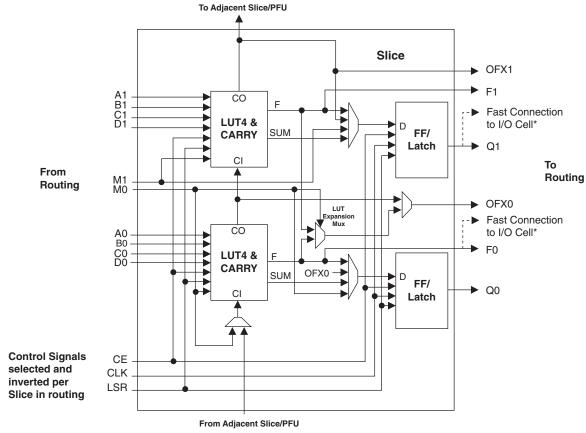
Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	80
Number of Logic Elements/Cells	640
Total RAM Bits	-
Number of I/O	74
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo640e-4t100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flexible and efficient logic implementation. Through non-volatile technology, the devices provide the single-chip, high-security, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design will provide the high pin-to-pin performance also associated with CPLDs.

The ispLEVER® design tools from Lattice allow complex designs to be efficiently implemented using the MachXO family of devices. Popular logic synthesis tools provide synthesis library support for MachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent Slice/PFU). There are 7 outputs: 6 to the routing and one to the carry-chain (to the adjacent Slice/PFU). Table 2-1 lists the signals associated with each Slice.

Figure 2-5. Slice Diagram

Notes:

Some inter-Slice signals are not shown.

Table 2-1. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0/M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT82 MUX depending on the Slice
Output	Inter-PFU signal	FCO	Fast Carry Out ¹

- 1. See Figure 2-4 for connection details.
- 2. Requires two PFUs.

^{*} Only PFUs at the edges have fast connections to the I/O cell.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- · Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

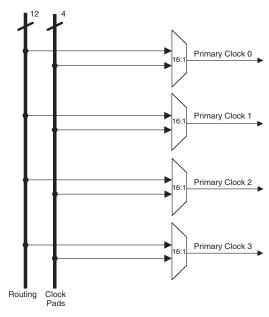
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM



The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

The MachXO family of devices provides global signals that are available to all PFUs. These signals consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the MachXO256 and MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the MachXO1200 and MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL outputs.

Figure 2-7. Primary Clocks for MachXO256 and MachXO640 Devices

The EBR memory supports three forms of write behavior for single or dual port operation:

- 1. **Normal** data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. **Write Through** a copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old contents of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

FIFO Configuration

The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. The range of programming values for these flags are in Table 2-7.

Table 2-7. Programmable FIFO Flag Ranges

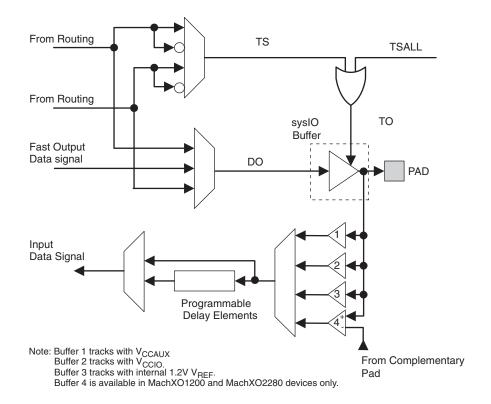
Flag Name	Programming Range
Full (FF)	1 to (up to 2 ^N -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0

N = Address bit width

The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-13.



output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17 shows the MachXO PIO logic.

The tristate control signal is multiplexed from the output data signals and their complements. In addition a global signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.

Figure 2-17. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the Bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers.

MachXO256 and MachXO640 devices contain single-ended input buffers and single-ended output buffers with complementary outputs on all the I/O Banks.

MachXO1200 and MachXO2280 devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom

Table 2-8. I/O Support Device by Device

	MachXO256	MachXO640	MachXO1200	MachXO2280
Number of I/O Banks	2	4	8	8
Type of Input Buffers	Single-ended (all I/O Banks)	Single-ended (all I/O Banks)	Single-ended (all I/O Banks) Differential Receivers	Single-ended (all I/O Banks) Differential Receivers
			(all I/O Banks)	(all I/O Banks)
Types of Output Buffers	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)
Types or Garpan Zamore			Differential buffers with true LVDS outputs (50% on left and right side)	Differential buffers with true LVDS outputs (50% on left and right side)
Differential Output Emulation Capability	All I/O Banks	All I/O Banks	All I/O Banks	All I/O Banks
PCI Support	No	No	Top side only	Top side only

Table 2-9. Supported Input Standards

	VCCIO (Typ.)					
Input Standard	3.3V	2.5V	1.8V	1.5V	1.2V	
Single Ended Interfaces						
LVTTL	Yes	Yes	Yes	Yes	Yes	
LVCMOS33	Yes	Yes	Yes	Yes	Yes	
LVCMOS25	Yes	Yes	Yes	Yes	Yes	
LVCMOS18			Yes			
LVCMOS15				Yes		
LVCMOS12	Yes	Yes	Yes	Yes	Yes	
PCI ¹	Yes					
Differential Interfaces						
BLVDS ² , LVDS ² , LVPECL ² , RSDS ²	Yes	Yes	Yes	Yes	Yes	

^{1.} Top Banks of MachXO1200 and MachXO2280 devices only.

^{2.} MachXO1200 and MachXO2280 devices only.

Figure 2-18. MachXO2280 Banks

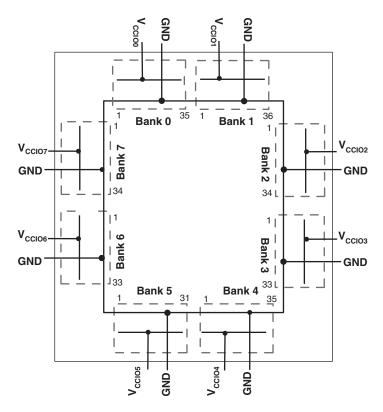
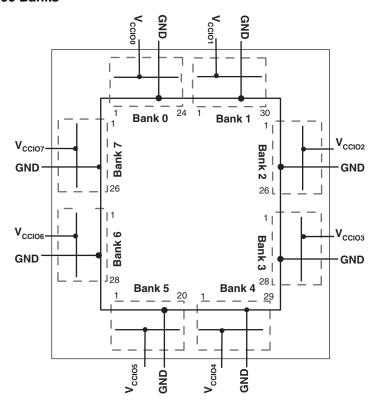



Figure 2-19. MachXO1200 Banks

Device Configuration

All MachXO devices contain a test access port that can be used for device configuration and programming.

The non-volatile memory in the MachXO can be configured in two different modes:

- In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off-line and I/Os are controlled by BSCAN registers.
- In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode while reprogramming takes place.

The SRAM configuration memory can be configured in three different ways:

- At power-up via the on-chip non-volatile memory.
- After a refresh command is issued via the IEEE 1149.1 port.
- In IEEE 1532 mode via the IEEE 1149.1 port.

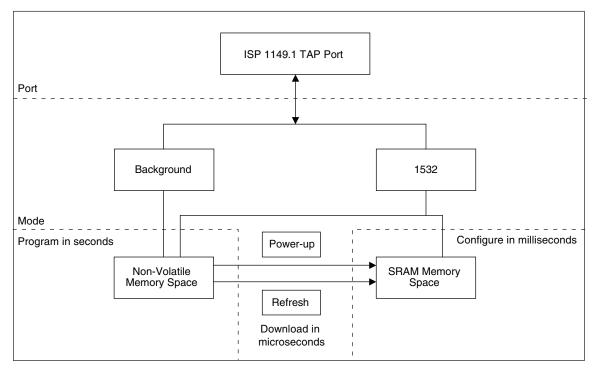
Figure 2-22 provides a pictorial representation of the different programming modes available in the MachXO devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 protocols.

Leave Alone I/O

When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration, or issuing a refresh command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reconfiguration or reprogramming occurs on-the-fly.

TransFR (<u>Trans</u>parent <u>Field Reconfiguration</u>)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.


Security

The MachXO devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear the security bits is to erase the memory space.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

Figure 2-22. MachXO Configuration and Programming

Density Shifting

The MachXO family has been designed to enable density migration in the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Initialization Supply Current^{1, 2, 3, 4}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typ. ⁵	Units
		LCMXO256C	13	mA
Icc		LCMXO640C	17	mA
		LCMXO1200C	21	mA
	Core Power Supply	LCMXO2280C	23	mA
	Core Power Suppry	LCMXO256E	10	mA
		LCMXO640E	14	mA
		LCMXO1200E	18	mA
		LCMXO2280E	20	mA
		LCMXO256E/C	10	mA
1	Auxiliary Power Supply	LCMXO640E/C	13	mA
ICCAUX	$V_{CCAUX} = 3.3V$	LCMXO1200E/C	24	mA
		LCMXO2280E/C	25	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	2	mA

- 1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
- 2. Assumes all I/O pins are held at V_{CCIO} or GND.
- 3. Frequency = 0MHz.
- 4. Typical user pattern.
- 5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.
- 6. Per Bank, V_{CCIO} = 2.5V. Does not include pull-up/pull-down.

Programming and Erase Flash Supply Current^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C	9	mA
		LCMXO640C	11	mA
		LCMXO1200C	16	mA
	Core Power Supply	LCMXO2280C	22	mA
Icc	Core Fower Supply	LCMXO256E	6	mA
		LCMXO640E	8	mA
		LCMXO1200E	12	mA
		LCMXO2280E	14	mA
		LCMXO256C/E	8	mA
Iccaux	Auxiliary Power Supply	LCMXO640C/E	10	mA
	$V_{CCAUX} = 3.3V$	LCMXO1200/E	15	mA
		LCMXO2280C/E	16	mA
I _{CCIO}	Bank Power Supply ⁶	All devices	2	mA

- 1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
- 2. Assumes all I/O pins are held at V_{CCIO} or GND.
- 3. Typical user pattern.
- 4. JTAG programming is at 25MHz.
- 5. $T_J = 25$ °C, power supplies at nominal voltage.
- 6. Per Bank. V_{CCIO} = 2.5V. Does not include pull-up/pull-down.

For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

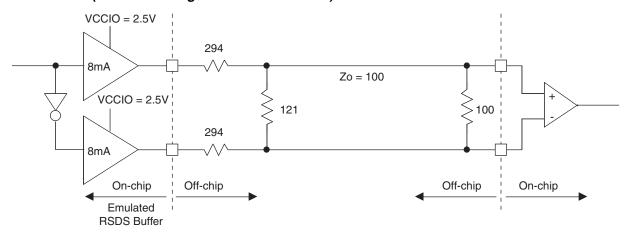


Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
I _{DC}	DC output current	3.66	mA

MachXO External Switching Characteristics¹

Over Recommended Operating Conditions

			-	5	-	4	-	3	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/O	Pin Parameters (Using Global Clock with	nout PLL)1			ı		ı		,
t		LCMXO256	_	3.5	_	4.2	_	4.9	ns
	Post Coost Through 1 LUT	LCMXO640	_	3.5	_	4.2	_	4.9	ns
t _{PD}	Best Case t _{PD} Through 1 LUT	LCMXO1200	_	3.6	_	4.4	_	— 4.9 — 4.9	ns
		LCMXO2280	_	3.6		4.4			ns
		LCMXO256	_	4.0		4.8		5.6	ns
t	Best Case Clock to Output - From PFU	LCMXO640	_	4.0		4.8		5.7	ns
tco	Best Case Clock to Output - From FFO	LCMXO1200	_	4.3		5.2		6.1	ns
		LCMXO2280	_	4.3	_	5.2	_	6.1	ns
	Clock to Data Setup - To PFU	LCMXO256	1.3	_	1.6	_	1.8	_	ns
t		LCMXO640	1.1	_	1.3	_	1.5	_	ns
t _{SU}		LCMXO1200	1.1	_	1.3	_	1.6	_	ns
		LCMXO2280	1.1	_	1.3	_	1.5	_	ns
		LCMXO256	-0.3	_	-0.3	_	-0.3	_	ns
t	Clock to Data Hold - To PFU	LCMXO640	-0.1	_	-0.1	_	-0.1	_	ns
t _H	Clock to Data Hold - 10 1 1 0	LCMXO1200	0.0	_	0.0	_	0.0	_	ns
		LCMXO2280	-0.4	_	-0.4	_	-0.4	4.9 4.9 5.1 5.6 5.7 6.1 — — — 500 500 500 240 240	ns
		LCMXO256	_	600	_	550	_	500	MHz
f	Clock Frequency of I/O and PFU Register	LCMXO640	_	600	_	550	_	500	MHz
f _{MAX_IO}	Clock frequency of 1/O and 1 To fregister	LCMXO1200	_	600	_	550	_	500	MHz
		LCMXO2280	_	600	_	550	_	500	MHz
		LCMXO256	_	200	_	220	_	240	ps
toursu se	Global Clock Skew Across Device	LCMXO640	_	200	_	220	_	240	ps
^t SKEW_PRI	GIODAI CIOCK GREW ACIOSS DEVICE	LCMXO1200	_	220	_	240	_	260	ps
		LCMXO2280	_	220	_	240	_	260	ps

^{1.} General timing numbers based on LVCMOS2.5V, 12 mA.

Rev. A 0.19

sysCLOCK PLL Timing

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
			25	420	MHz
f _{IN}	Input Clock Frequency (CLKI, CLKFB)	Input Divider (M) = 1; Feedback Divider (N) <= 4 ^{5, 6}	18	25	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		25	420	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	210	MHz
f _{VCO}	PLL VCO Frequency		420	840	MHz
			25	_	MHz
f _{PFD}	Phase Detector Input Frequency	Input Divider (M) = 1; Feedback Divider (N) \leq 4 ^{5, 6}	18	25	MHz
AC Characte	eristics				
t _{DT}	Output Clock Duty Cycle	Default duty cycle selected ³	45	55	%
t _{PH} ⁴	Output Phase Accuracy		_	0.05	UI
t1	Output Clock Period Jitter	f _{OUT} >= 100 MHz	_	+/-120	ps
t _{OPJIT} 1	Output Clock Feriod Sitter	f _{OUT} < 100 MHz	_	0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	_	+/-200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1	_	ns
t _{LOCK} ²	PLL Lock-in Time		_	150	μs
t _{PA}	Programmable Delay Unit		100	450	ps
+	Input Clock Period Jitter	f _{OUT} ≥ 100 MHz	_	+/-200	ps
t _{IPJIT}	Input Clock Feriod Sitter	f _{OUT} < 100 MHz	_	0.02	UI
t _{FBKDLY}	External Feedback Delay		_	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5	_	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	_	ns
t _{RST}	RST Pulse Width		10	_	ns

- 1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock.
- 2. Output clock is valid after $t_{\mbox{\scriptsize LOCK}}$ for PLL reset and dynamic delay adjustment.
- 3. Using LVDS output buffers.
- 4. CLKOS as compared to CLKOP output.
- 5. When using an input frequency less than 25 MHz the output frequency must be less than or equal to 4 times the input frequency.
- 6. The on-chip oscillator can be used to provide reference clock input to the PLL provided the output frequency restriction for clock inputs below 25 MHz are followed.

Rev. A 0.19

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA

LCMXO256					LCMXO640					
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial	
B1	PL2A	1		Т	B1	PL2A	3		Ţ	
C1	PL2B	1		С	C1	PL2C	3		Ţ	
D2	PL3A	1		Т	D2	PL2B	3		С	
D1	PL3B	1		С	D1	PL2D	3		С	
C2	PL3C	1		T	C2	PL3A	3		T	
E1	PL3D	1		С	E1	PL3B	3		С	
E2	PL4A	1		T	E2	PL3C	3		T	
F1	PL4B	1		С	F1	PL3D	3		С	
F2	PL5A	1		Т	F2	PL4A	3			
G2	PL5B	1		С	G2	PL4C	3		Т	
H1	GNDIO1	1			H1	GNDIO3	3			
H2	PL5C	1		T	H2	PL4D	3		С	
J1	PL5D	1	GSRN	С	J1	PL5B	3	GSRN		
J2	PL6A	1		Т	J2	PL7B	3			
K1	PL6B	1	TSALL	С	K1	PL8C	3	TSALL	Т	
K2	PL7A	1		Т	K2	PL8D	3		С	
L1	PL7B	1		С	L1	PL9A	3			
L2	PL7C	1		Т	L2	PL9C	3			
M1	PL7D	1		С	M1	PL10A	3			
M2	PL8A	1		Т	M2	PL10C	3			
N1	PL8B	1		С	N1	PL11A	3			
M3	PL9A	1		Т	M3	PL11C	3			
N2	GNDIO1	1			N2	GNDIO3	3			
P2	TMS	1	TMS		P2	TMS	2	TMS		
P3	PL9B	1		С	P3	PB2C	2			
N4	TCK	1	TCK		N4	TCK	2	TCK		
P4	PB2A	1		Т	P4	VCCIO2	2			
N3	PB2B	1		С	N3	GNDIO2	2			
P5	TDO	1	TDO		P5	TDO	2	TDO		
N5	PB2C	1		Т	N5	PB4C	2			
P6	TDI	1	TDI		P6	TDI	2	TDI		
N6	PB2D	1		С	N6	PB4E	2			
P7	VCC	-			P7	VCC	-			
N7	PB3A	1	PCLK1_1**	Т	N7	PB5B	2	PCLK2_1**		
P8	PB3B	1		С	P8	PB5D	2			
N8	PB3C	1	PCLK1_0**	Т	N8	PB6B	2	PCLK2_0**		
P9	PB3D	1		С	P9	PB6C	2			
N10	GNDIO1	1			N10	GNDIO2	2			
P11	PB4A	1		Т	P11	PB8B	2			
N11	PB4B	1		С	N11	PB8C	2		Т	
P12	PB4C	1		Т	P12	PB8D	2		С	
N12	PB4D	1		С	N12	PB9A	2			

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 144 TQFP (Cont.)

	LCMXO640			LCMXO1200				LCMXO2280				
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
101	PR3D	1		С	PR4B	2		C*	PR5B	2		C*
102	PR3C	1		Т	PR4A	2		T*	PR5A	2		T*
103	PR3B	1		С	PR3D	2		С	PR4D	2		С
104	PR2D	1		С	PR3C	2		Т	PR4C	2		Т
105	PR3A	1		Т	PR3B	2		C*	PR4B	2		C*
106	PR2B	1		С	PR3A	2		T*	PR4A	2		T*
107	PR2C	1		Т	PR2B	2		С	PR3B	2		C*
108	PR2A	1		Т	PR2A	2		Т	PR3A	2		T*
109	PT9F	0		С	PT11D	1		С	PT16D	1		С
110	PT9D	0		С	PT11C	1		T	PT16C	1		Т
111	PT9E	0		Т	PT11B	1		С	PT16B	1		С
112	PT9B	0		С	PT11A	1		T	PT16A	1		Т
113	PT9C	0		Т	PT10F	1		С	PT15D	1		С
114	PT9A	0		Т	PT10E	1		Т	PT15C	1		Т
115	PT8C	0			PT10D	1		С	PT14B	1		С
116	PT8B	0		С	PT10C	1		Т	PT14A	1		Т
117	VCCIO0	0			VCCIO1	1			VCCIO1	1		
118	GNDIO0	0			GNDIO1	1			GNDIO1	1		
119	PT8A	0		Т	PT9F	1		С	PT12F	1		С
120	PT7E	0			PT9E	1		Т	PT12E	1		Т
121	PT7C	0			PT9B	1		С	PT12D	1		С
122	PT7A	0			PT9A	1		Т	PT12C	1		Т
123	GND	-			GND	-			GND	-		
124	PT6B	0	PCLK0_1***	С	PT7D	1	PCLK1_1***		PT10B	1	PCLK1_1***	
125	PT6A	0		Т	PT7B	1		С	PT9D	1		С
126	PT5C	0			PT7A	1		Т	PT9C	1		Т
127	PT5B	0	PCLK0_0***		PT6F	0	PCLK1_0***		РТ9В	1	PCLK1_0***	
128	VCCAUX	-			VCCAUX	-			VCCAUX	-		
129	VCC	-			VCC	-			VCC	-		
130	PT4D	0			PT5D	0		С	PT7B	0		С
131	PT4B	0		С	PT5C	0		Т	PT7A	0		Т
132	PT4A	0		Т	PT5B	0		С	PT6D	0		
133	PT3F	0			PT5A	0		Т	PT6E	0		Т
134	PT3D	0			PT4B	0			PT6F	0		С
135	VCCIO0	0			VCCIO0	0			VCCIO0	0		
136	GNDIO0	0			GNDIO0	0			GNDIO0	0		
137	PT3B	0		С	PT3D	0		С	PT4B	0		Т
138	PT2F	0		С	PT3C	0		Т	PT4A	0		С
139	PT3A	0		Т	PT3B	0		С	PT3B	0		С
140	PT2D	0		С	PT3A	0		Т	PT3A	0		Т
141	PT2E	0		Т	PT2D	0		С	PT2D	0		С
142	PT2B	0		С	PT2C	0		Т	PT2C	0		Т
143	PT2C	0		Т	PT2B	0		С	PT2B	0		С
144	PT2A	0		Т	PT2A	0		Т	PT2A	0		Т

^{*}Supports true LVDS outputs.

^{**}NC for "E" devices.

^{***}Primary clock inputs arer single-ended.

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA (Cont.)

	LCMXO640			LCMXO1200				LCMXO2280						
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
-	-				VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
-	-				GND	GNDIO4	4			GND	GNDIO4	4		
M10	PB6A	2		Т	M10	PB7E	4		Т	M10	PB10A	4		Т
R9	PB6C	2		T	R9	PB8A	4		Т	R9	PB11C	4		Т
R10	PB6D	2		С	R10	PB8B	4		С	R10	PB11D	4		С
T10	PB7C	2		Т	T10	PB8C	4		Т	T10	PB12A	4		Т
T11	PB7D	2		С	T11	PB8D	4		С	T11	PB12B	4		С
N10	NC				N10	PB8E	4		Т	N10	PB12C	4		Т
N11	NC				N11	PB8F	4		С	N11	PB12D	4		С
VCCIO2	VCCIO2	2			VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
GND	GNDIO2	2			GND	GNDIO4	4			GND	GNDIO4	4		
R11	PB7E	2		T	R11	PB9A	4		T	R11	PB13A	4		Т
R12	PB7F	2		С	R12	PB9B	4		С	R12	PB13B	4		С
P11	PB8A	2		T	P11	PB9C	4		T	P11	PB13C	4		Т
P12	PB8B	2		С	P12	PB9D	4		С	P12	PB13D	4		С
T13	PB8C	2		Т	T13	PB9E	4		Т	T13	PB14A	4		Т
T12	PB8D	2		С	T12	PB9F	4		С	T12	PB14B	4		С
R13	PB9A	2		Т	R13	PB10A	4		Т	R13	PB14C	4		Т
R14	PB9B	2		С	R14	PB10B	4		С	R14	PB14D	4		С
GND	GND	-			GND	GND	-			GND	GND	-		
T14	PB9C	2		T	T14	PB10C	4		T	T14	PB15A	4		Т
T15	PB9D	2		С	T15	PB10D	4		С	T15	PB15B	4		С
P13**	SLEEPN	-	SLEEPN		P13**	SLEEPN	-	SLEEPN		P13**	SLEEPN	-	SLEEPN	
P14	PB9F	2			P14	PB10F	4			P14	PB15D	4		
R15	NC				R15	PB11A	4		Т	R15	PB16A	4		Т
R16	NC				R16	PB11B	4		С	R16	PB16B	4		С
P15	NC				P15	PB11C	4		Т	P15	PB16C	4		Т
P16	NC				P16	PB11D	4		С	P16	PB16D	4		С
VCCIO2	VCCIO2	2			VCCIO4	VCCIO4	4			VCCIO4	VCCIO4	4		
GND	GNDIO2	2			GND	GNDIO4	4			GND	GNDIO4	4		
GND	GNDIO1	1			GND	GNDIO3	3			GND	GNDIO3	3		
VCCIO1	VCCIO1	1			VCCIO3	VCCIO3	3			VCCIO3	VCCIO3	3		
M11	NC				M11	PR16B	3		С	M11	PR20B	3		С
L11	NC				L11	PR16A	3		Т	L11	PR20A	3		Т
N12	NC				N12	PR15B	3		C*	N12	PR18B	3		C*
N13	NC				N13	PR15A	3		T*	N13	PR18A	3		T*
M13	NC				M13	PR14D	3		С	M13	PR17D	3		С
M12	NC				M12	PR14C	3		T	M12	PR17C	3		Т
N14	PR11D	1		С	N14	PR14B	3		C*	N14	PR17B	3		C*
N15	PR11C	1		Т	N15	PR14A	3		T*	N15	PR17A	3		T*
L13	PR11B	1		С	L13	PR13D	3		С	L13	PR16D	3		С
L12	PR11A	1		Т	L12	PR13C	3		Т	L12	PR16C	3		Т
M14	PR10B	1		С	M14	PR13B	3		C*	M14	PR16B	3		C*
VCCIO1	VCCIO1	1			VCCIO3	VCCIO3	3			VCCIO3	VCCIO3	3		
GND	GNDIO1	1			GND	GNDIO3	3			GND	GNDIO3	3		
L14	PR10A	1		Т	L14	PR13A	3		T*	L14	PR16A	3		T*
N16	PR10D	1		С	N16	PR12D	3		С	N16	PR15D	3		С
M16	PR10C	1		Т	M16	PR12C	3		T	M16	PR15C	3		Т
M15	PR9D	1		С	M15	PR12B	3		C*	M15	PR15B	3		C*
L15	PR9C	1		T	L15	PR12A	3		T*	L15	PR15A	3		T*
L16	PR9B	1		С	L16	PR11D	3		С	L16	PR14D	3		С
K16	PR9A	1	· · · · · · · · · · · · · · · · · · ·	Т	K16	PR11C	3		T	K16	PR14C	3		Т
K13	PR8D	1		С	K13	PR11B	3		C*	K13	PR14B	3		C*

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

LCMXO2280										
Ball Number	Ball Function	Bank	Dual Function	Differential						
G2	PL11A	6		T*						
H2	PL11B	6		C*						
L3	PL11C	6		Т						
L5	PL11D	6		С						
H1	PL12A	6		T*						
VCCIO6	VCCIO6	6								
GND	GNDIO6	6								
J2	PL12B	6		C*						
L4	PL12C	6		Т						
L6	PL12D	6		С						
K2	PL13A	6		T*						
K1	PL13B	6		C*						
J1	PL13C	6		Т						
VCC	VCC	-								
L2	PL13D	6		С						
M5	PL14D	6		С						
M3	PL14C	6	TSALL	Т						
L1	PL14B	6		C*						
M2	PL14A	6		T*						
M1	PL15A	6		T*						
N1	PL15B	6		C*						
M6	PL15C	6		Ŧ						
M4	PL15D	6		С						
VCCIO6	VCCIO6	6								
GND	GNDIO6	6								
P1	PL16A	6		T*						
P2	PL16B	6		C*						
N3	PL16C	6		Т						
N4	PL16D	6		С						
GND	GND	-								
T1	PL17A	6	LLM0_PLLT_FB_A	T*						
R1	PL17B	6	LLM0_PLLC_FB_A	C*						
P3	PL17C	6		Т						
N5	PL17D	6		С						
R3	PL18A	6	LLM0_PLLT_IN_A	T*						
R2	PL18B	6	LLM0_PLLC_IN_A	C*						
P4	PL19A	6		Т						
N6	PL19B	6		С						
U1	PL20A	6		Т						
VCCIO6	VCCIO6	6								
GND	GNDIO6	6								
GND	GNDIO5	5								
VCCIO5	VCCIO5	5								

LCMXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

Dall Number	Dell Function	LCMXO2280	Duel Function	Differential
Ball Number	Ball Function	Bank	Dual Function	Differential
A10	PT8E	0		Ţ
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
A9	PT8D	0		С
C9	PT8C	0		T
B9	PT8B	0		С
F9	VCCAUX	-		
A8	PT8A	0		T
B8	PT7D	0		С
C8	PT7C	0		Т
VCC	VCC	-		
A7	PT7B	0		С
B7	PT7A	0		Т
A6	PT6A	0		Т
B6	PT6B	0		С
D8	PT6C	0		Т
F8	PT6D	0		С
C7	PT6E	0		Т
E8	PT6F	0		С
D7	PT5D	0		С
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
E7	PT5C	0		Т
A5	PT5B	0		С
C6	PT5A	0		Т
B5	PT4A	0		Т
A4	PT4B	0		С
D6	PT4C	0		Т
F7	PT4D	0		С
B4	PT4E	0		Т
GND	GND	-		
C5	PT4F	0		С
F6	PT3D	0		С
E5	PT3C	0		Т
E6	PT3B	0		С
D5	PT3A	0		Т
A3	PT2D	0		С
C4	PT2C	0		Т
A2	PT2B	0		С
B2	PT2A	0		T
VCCIO0	VCCIO0	0		
GND	GNDIO0	0		
E14	GND	-		

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3T100C	2280	1.8V/2.5V/3.3V	73	-3	TQFP	100	COM
LCMXO2280C-4T100C	2280	1.8V/2.5V/3.3V	73	-4	TQFP	100	COM
LCMXO2280C-5T100C	2280	1.8V/2.5V/3.3V	73	-5	TQFP	100	COM
LCMXO2280C-3T144C	2280	1.8V/2.5V/3.3V	113	-3	TQFP	144	COM
LCMXO2280C-4T144C	2280	1.8V/2.5V/3.3V	113	-4	TQFP	144	COM
LCMXO2280C-5T144C	2280	1.8V/2.5V/3.3V	113	-5	TQFP	144	COM
LCMXO2280C-3M132C	2280	1.8V/2.5V/3.3V	101	-3	csBGA	132	COM
LCMXO2280C-4M132C	2280	1.8V/2.5V/3.3V	101	-4	csBGA	132	COM
LCMXO2280C-5M132C	2280	1.8V/2.5V/3.3V	101	-5	csBGA	132	COM
LCMXO2280C-3B256C	2280	1.8V/2.5V/3.3V	211	-3	caBGA	256	COM
LCMXO2280C-4B256C	2280	1.8V/2.5V/3.3V	211	-4	caBGA	256	COM
LCMXO2280C-5B256C	2280	1.8V/2.5V/3.3V	211	-5	caBGA	256	COM
LCMXO2280C-3FT256C	2280	1.8V/2.5V/3.3V	211	-3	ftBGA	256	COM
LCMXO2280C-4FT256C	2280	1.8V/2.5V/3.3V	211	-4	ftBGA	256	COM
LCMXO2280C-5FT256C	2280	1.8V/2.5V/3.3V	211	-5	ftBGA	256	COM
LCMXO2280C-3FT324C	2280	1.8V/2.5V/3.3V	271	-3	ftBGA	324	COM
LCMXO2280C-4FT324C	2280	1.8V/2.5V/3.3V	271	-4	ftBGA	324	COM
LCMXO2280C-5FT324C	2280	1.8V/2.5V/3.3V	271	-5	ftBGA	324	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3T100C	256	1.2V	78	-3	TQFP	100	COM
LCMXO256E-4T100C	256	1.2V	78	-4	TQFP	100	COM
LCMXO256E-5T100C	256	1.2V	78	-5	TQFP	100	COM
LCMXO256E-3M100C	256	1.2V	78	-3	csBGA	100	COM
LCMXO256E-4M100C	256	1.2V	78	-4	csBGA	100	COM
LCMXO256E-5M100C	256	1.2V	78	-5	csBGA	100	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640E-3T100C	640	1.2V	74	-3	TQFP	100	COM
LCMXO640E-4T100C	640	1.2V	74	-4	TQFP	100	COM
LCMXO640E-5T100C	640	1.2V	74	-5	TQFP	100	COM
LCMXO640E-3M100C	640	1.2V	74	-3	csBGA	100	COM
LCMXO640E-4M100C	640	1.2V	74	-4	csBGA	100	COM
LCMXO640E-5M100C	640	1.2V	74	-5	csBGA	100	COM
LCMXO640E-3T144C	640	1.2V	113	-3	TQFP	144	COM
LCMXO640E-4T144C	640	1.2V	113	-4	TQFP	144	COM
LCMXO640E-5T144C	640	1.2V	113	-5	TQFP	144	COM
LCMXO640E-3M132C	640	1.2V	101	-3	csBGA	132	COM
LCMXO640E-4M132C	640	1.2V	101	-4	csBGA	132	COM
LCMXO640E-5M132C	640	1.2V	101	-5	csBGA	132	COM
LCMXO640E-3B256C	640	1.2V	159	-3	caBGA	256	COM
LCMXO640E-4B256C	640	1.2V	159	-4	caBGA	256	COM
LCMXO640E-5B256C	640	1.2V	159	-5	caBGA	256	COM
LCMXO640E-3FT256C	640	1.2V	159	-3	ftBGA	256	COM
LCMXO640E-4FT256C	640	1.2V	159	-4	ftBGA	256	COM
LCMXO640E-5FT256C	640	1.2V	159	-5	ftBGA	256	COM