E. Lattice Semiconductor Corporation - <u>LCMXO640E-5TN100C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detans	
Product Status	Active
Number of LABs/CLBs	80
Number of Logic Elements/Cells	640
Total RAM Bits	-
Number of I/O	74
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lcmxo640e-5tn100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MachXO Family Data Sheet Introduction

June 2013

Features

Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- Single chip, no external configuration memory required
- Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through JTAG port
- Supports background programming of non-volatile memory

Sleep Mode

• Allows up to 100x static current reduction

■ TransFR[™] Reconfiguration (TFR)

In-field logic update while system operates

■ High I/O to Logic Density

- 256 to 2280 LUT4s
- 73 to 271 I/Os with extensive package options
- Density migration supported
- Lead free/RoHS compliant packaging

Embedded and Distributed Memory

- Up to 27.6 Kbits sysMEM[™] Embedded Block RAM
- Up to 7.7 Kbits distributed RAM
- Dedicated FIFO control logic

Table 1-1. MachXO Family Selection Guide

■ Flexible I/O Buffer

- Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8/1.5/1.2
 - LVTTL
 - PCI
 - LVDS, Bus-LVDS, LVPECL, RSDS

■ sysCLOCK[™] PLLs

- Up to two analog PLLs per device
- · Clock multiply, divide, and phase shifting

System Level Support

- IEEE Standard 1149.1 Boundary Scan
- Onboard oscillator
- Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply
- IEEE 1532 compliant in-system programming

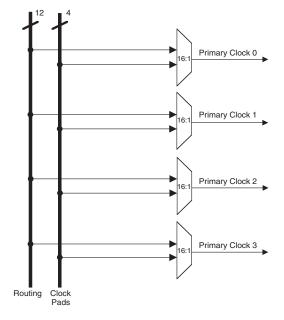
Introduction

The MachXO is optimized to meet the requirements of applications traditionally addressed by CPLDs and low capacity FPGAs: glue logic, bus bridging, bus interfacing, power-up control, and control logic. These devices bring together the best features of CPLD and FPGA devices on a single chip.

Device	LCMXO256	LCMXO640	LCMXO1200	LCMXO2280
LUTs	256	640	1200	2280
Dist. RAM (Kbits)	2.0	6.1	6.4	7.7
EBR SRAM (Kbits)	0	0	9.2	27.6
Number of EBR SRAM Blocks (9 Kbits)	0	0	1	3
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V
Number of PLLs	0	0	1	2
Max. I/O	78	159	211	271
Packages				
100-pin TQFP (14x14 mm)	78	74	73	73
144-pin TQFP (20x20 mm)		113	113	113
100-ball csBGA (8x8 mm)	78	74		
132-ball csBGA (8x8 mm)		101	101	101
256-ball caBGA (14x14 mm)		159	211	211
256-ball ftBGA (17x17 mm)		159	211	211
324-ball ftBGA (19x19 mm)				271

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Data Sheet DS1002

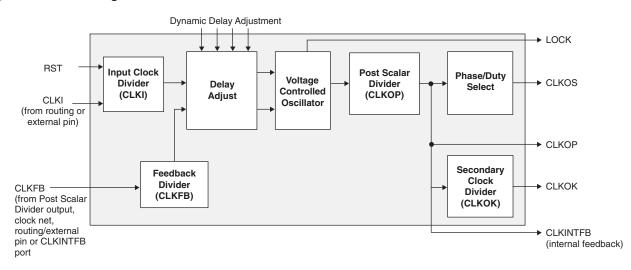


The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

The MachXO family of devices provides global signals that are available to all PFUs. These signals consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the MachXO256 and MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL outputs.

Figure 2-7. Primary Clocks for MachXO256 and MachXO640 Devices



sysCLOCK Phase Locked Loops (PLLs)

The MachXO1200 and MachXO2280 provide PLL support. The source of the PLL input divider can come from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider: from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and from the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

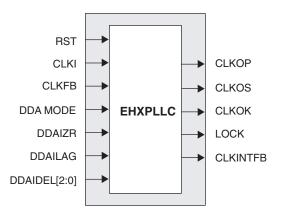

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-10. PLL Diagram

Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.

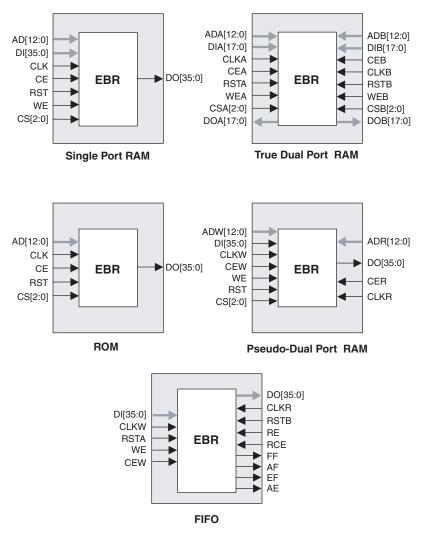
Figure 2-11. PLL Primitive

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.


Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output.

Figure 2-12. sysMEM Memory Primitives

the system. These capabilities make the MachXO ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The MachXO "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.

During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11 compares the characteristics of Normal, Off and Sleep modes.

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	—	Low
Static Icc	Typical <10mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	0	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

Table 2-11. Characteristics of Normal, Off and Sleep Modes

SLEEPN Pin Characteristics

The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet shows a detailed timing diagram.

Oscillator

Every MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 18MHz to 26MHz.

Configuration and Testing

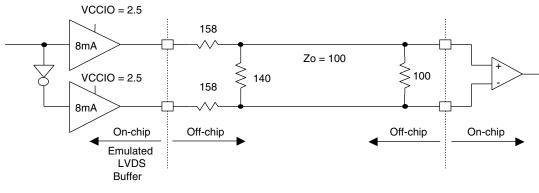
The following section describes the configuration and testing features of the MachXO family of devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the VCCIO Banks (MachXO256: V_{CCIO1} ; MachXO640: V_{CCIO2} ; MachXO1200 and MachXO2280: V_{CCIO5}) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

sysIO Differential Electrical Characteristics LVDS


Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0		2.4	V
V _{THD}	Differential Input Threshold		+/-100	_	—	mV
		$100mV \le V_{THD}$	V _{THD} /2	1.2	1.8	V
V _{CM}	Input Common Mode Voltage	$200mV \le V_{THD}$	V _{THD} /2	1.2	1.9	V
		$350mV \le V_{THD}$	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on	—		+/-10	μΑ
V _{OH}	Output high voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	—	1.38	1.60	V
V _{OL}	Output low voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9V	1.03	—	V
V _{OD}	Output voltage differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV_{OD}	Change in V _{OD} between high and low		—	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2, R_{T} = 100 \text{ Ohm}$	1.125	1.25	1.375	V
ΔV _{OS}	Change in V _{OS} between H and L		—	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	_	_	6	mA

Over Recommended Operating Conditions

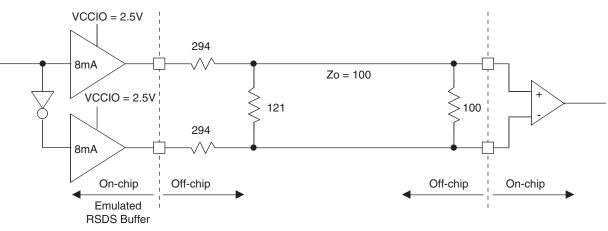
LVDS Emulation

MachXO devices can support LVDS outputs via emulation (LVDS25E), in addition to the LVDS support that is available on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS Using External Resistors (LVDS25E)

Note: All resistors are $\pm 1\%$.

The LVDS differential input buffers are available on certain devices in the MachXO family.



For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	294	Ohms
R _P	Driver parallel resistor	121	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	Ohms
I _{DC}	DC output current	3.66	mA

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-5 Timing	Units
Basic Functions		
16-bit decoder	6.7	ns
4:1 MUX	4.5	ns
16:1 MUX	5.1	ns

Register-to-Register Performance

Function	-5 Timing	Units
Basic Functions		
16:1 MUX	487	MHz
16-bit adder	292	MHz
16-bit counter	388	MHz
64-bit counter	200	MHz
Embedded Memory Functions (120	0 and 2280 Devices Only)	
256x36 Single Port RAM	284	MHz
512x18 True-Dual Port RAM	284	MHz
Distributed Memory Functions		
16x2 Single Port RAM	434	MHz
64x2 Single Port RAM	320	MHz
128x4 Single Port RAM	261	MHz
32x2 Pseudo-Dual Port RAM	314	MHz
64x4 Pseudo-Dual Port RAM	271	MHz

 The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.
Rev. A 0.19

Derating Logic Timing

Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage.

sysCLOCK PLL Timing

Over Recommended Operating Conditions

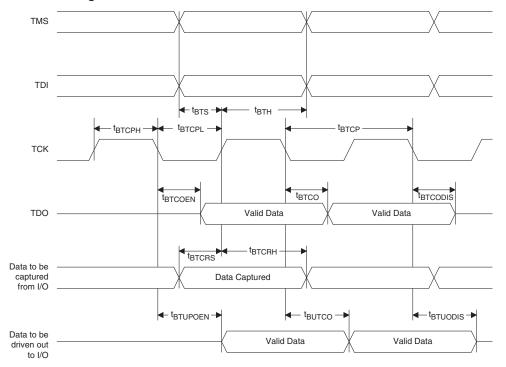
Parameter	Descriptions	Conditions	Min.	Max.	Units
			25	420	MHz
f _{IN}	Input Clock Frequency (CLKI, CLKFB)	Input Divider (M) = 1; Feedback Divider (N) $\leq 4^{5, 6}$	18	25	MHz
fout	Output Clock Frequency (CLKOP, CLKOS)		25	420	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	210	MHz
f _{VCO}	PLL VCO Frequency		420	840	MHz
			25	—	MHz
f _{PFD}	Phase Detector Input Frequency	Input Divider (M) = 1; Feedback Divider (N) $\leq 4^{5, 6}$	18	25	MHz
AC Characte	eristics			•	•
t _{DT}	Output Clock Duty Cycle	Default duty cycle selected ³	45	55	%
t_{PH}^{4}	Output Phase Accuracy		—	0.05	UI
t 1	Output Clock Period Jitter	f _{OUT} >= 100 MHz	—	+/-120	ps
t _{OPJIT} 1		f _{OUT} < 100 MHz	—	0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	—	+/-200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1	—	ns
t _{LOCK} ²	PLL Lock-in Time		—	150	μs
t _{PA}	Programmable Delay Unit		100	450	ps
+	Input Clock Period Jitter	$f_{OUT} \ge 100 \text{ MHz}$	—	+/-200	ps
t _{IPJIT}		f _{OUT} < 100 MHz	—	0.02	UI
t _{FBKDLY}	External Feedback Delay		_	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5	_	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	_	ns
t _{RST}	RST Pulse Width		10	—	ns

1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. CLKOS as compared to CLKOP output.


5. When using an input frequency less than 25 MHz the output frequency must be less than or equal to 4 times the input frequency.

6. The on-chip oscillator can be used to provide reference clock input to the PLL provided the output frequency restriction for clock inputs below 25 MHz are followed.

Rev. A 0.19

Figure 3-5. JTAG Port Timing Waveforms

LCMXO1200 and LCMXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		L	CMXO1200			L	CMXO2280	
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
42	PB9A	4		Т	PB12A	4		Т
43	PB9B	4		С	PB12B	4		С
44	VCCIO4	4			VCCIO4	4		
45	PB10A	4		Т	PB13A	4		Т
46	PB10B	4		С	PB13B	4		С
47***	SLEEPN	-	SLEEPN		SLEEPN	-	SLEEPN	
48	PB11A	4		Т	PB16A	4		Т
49	PB11B	4		С	PB16B	4		С
50**	GNDIO3 GNDIO4	-			GNDIO3 GNDIO4	-		
51	PR16B	3			PR19B	3		
52	PR15B	3		C*	PR18B	3		C*
53	PR15A	3		T*	PR18A	3		T*
54	PR14B	3		C*	PR17B	3		C*
55	PR14A	3		T*	PR17A	3		T*
56	VCCIO3	3			VCCIO3	3		
57	PR12B	3		C*	PR15B	3		C*
58	PR12A	3		T*	PR15A	3		T*
59	GND	-			GND	-		
60	PR10B	3		C*	PR13B	3		C*
61	PR10A	3		T*	PR13A	3		T*
62	PR9B	3		C*	PR11B	3		C*
63	PR9A	3		T*	PR11A	3		T*
64	PR8B	2		C*	PR10B	2		C*
65	PR8A	2		T*	PR10A	2		T*
66	VCC	-			VCC	-		
67	PR6C	2			PR8C	2		
68	PR6B	2		C*	PR8B	2		C*
69	PR6A	2		T*	PR8A	2		T*
70	VCCIO2	2			VCCIO2	2		
71	PR4D	2			PR5D	2		
72	PR4B	2		C*	PR5B	2		C*
73	PR4A	2		T*	PR5A	2		T*
74	PR2B	2		С	PR3B	2		C*
75	PR2A	2		Т	PR3A	2		T*
76**	GNDIO1 GNDIO2	-			GNDIO1 GNDIO2	-		
77	PT11C	1			PT15C	1		
78	PT11B	1		С	PT14B	1		С
79	PT11A	1		Т	PT14A	1		Т
80	VCCIO1	1			VCCIO1	1		
81	PT9E	1			PT12D	1		С

LCMXO256 and LCMXO640 Logic Signal Connections: 100 csBGA (Cont.)

		LCMXO256	6		LCMXO640					
Ball Number	Ball Function	Bank	Dual Function	Differen- tial	Ball Number	Ball Function	Bank	Dual Function	Differen- tial	
P13	PB5A	1			P13	PB9C	2		Т	
M12*	SLEEPN	-	SLEEPN		M12*	SLEEPN	-	SLEEPN		
P14	PB5C	1		Т	P14	PB9D	2		С	
N13	PB5D	1		С	N13	PB9F	2			
N14	PR9B	0		С	N14	PR11D	1		С	
M14	PR9A	0		Т	M14	PR11B	1		С	
L13	PR8B	0		С	L13	PR11C	1		Т	
L14	PR8A	0		Т	L14	PR11A	1		Т	
M13	PR7D	0		С	M13	PR10D	1		С	
K14	PR7C	0		Т	K14	PR10C	1		Т	
K13	PR7B	0		С	K13	PR10B	1		С	
J14	PR7A	0		Т	J14	PR10A	1		Т	
J13	PR6B	0		С	J13	PR9D	1			
H13	PR6A	0		Т	H13	PR9B	1			
G14	GNDIO0	0			G14	GNDIO1	1			
G13	PR5D	0		С	G13	PR7B	1			
F14	PR5C	0		Т	F14	PR6C	1			
F13	PR5B	0		С	F13	PR6B	1			
E14	PR5A	0		Т	E14	PR5D	1			
E13	PR4B	0		С	E13	PR5B	1			
D14	PR4A	0		Т	D14	PR4D	1			
D13	PR3D	0		С	D13	PR4B	1			
C14	PR3C	0		Т	C14	PR3D	1			
C13	PR3B	0		С	C13	PR3B	1			
B14	PR3A	0		Т	B14	PR2D	1			
C12	PR2B	0		С	C12	PR2B	1			
B13	GNDIO0	0			B13	GNDIO1	1			
A13	PR2A	0		Т	A13	PT9F	0		С	
A12	PT5C	0			A12	PT9E	0		Т	
B11	PT5B	0		С	B11	PT9C	0			
A11	PT5A	0		Т	A11	PT9A	0			
B12	PT4F	0		С	B12	VCCIO0	0			
A10	PT4E	0		Т	A10	GNDIO0	0			
B10	PT4D	0		С	B10	PT7E	0			
A9	PT4C	0		Т	A9	PT7A	0			
A8	PT4B	0	PCLK0_1**	С	A8	PT6B	0	PCLK0_1**		
B8	PT4A	0	PCLK0_0**	T	B8	PT5B	0	PCLK0_0**	С	
A7	PT3D	0		C	A7	PT5A	0		T	
B7	VCCAUX	-		-	B7	VCCAUX	-			
A6	PT3C	0		Т	A6	PT4F	0			
B6	VCC	-			B6	VCC	-			
A5	PT3B	0		С	A5	PT3F	0			
		v		~			•	1		

LCMXO640, LCMXO1200 and LCMXO2280 Logic Signal Connections: 256 caBGA / 256 ftBGA

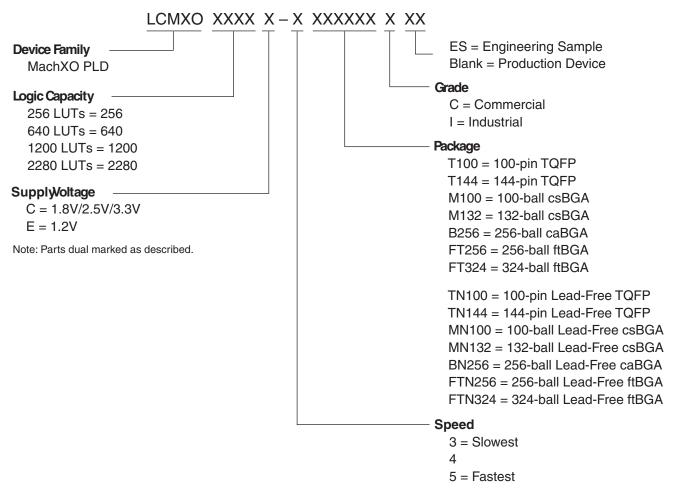
		LCMX	0640				LCM	XO1200				LC	MXO2280	
Ball	Ball	Bonk	Dual	Differential	Ball Number	Ball	Bonk	Dual	Differential	Ball	Ball	Bank	Dual	Differential
Number GND	Function GNDIO3	Bank 3	Function	Differential	GND	Function GNDIO7	Bank 7	Function	Differential	GND	Function GNDIO7	Бапк 7	Function	Differential
VCCIO3	VCCIO3	3			VCCI07	VCCI07	7			VCCI07	VCCI07	7		
E4	NC	5			E4	PL2A	7		т	E4	PL2A	7	LUM0_PLLT_FB_A	Т
E5	NC				E5	PL2B	7		С	E5	PL2B	7	LUM0_PLLC_FB_A	C
F5	NC				F5	PL3A	7		T*	F5	PL3A	7		 T*
F6	NC				F6	PL3B	7		C*	F6	PL3B	7		C*
F3	PL3A	3		т	F3	PL3C	7		Т	F3	PL3C	7	LUM0_PLLT_IN_A	Т
F4	PL3B	3		C	F4	PL3D	7		C	F4	PL3D	7	LUM0_PLLC_IN_A	C
E3	PL2C	3		Т	E3	PL4A	7		T*	E3	PL4A	7		T*
E2	PL2D	3		С	E2	PL4B	7		C*	E2	PL4B	7		C*
C3	NC	-		-	C3	PL4C	7		Т	C3	PL4C	7		Т
C2	NC				C2	PL4D	7		С	C2	PL4D	7		С
B1	PL2A	3		т	B1	PL5A	7		T*	B1	PL5A	7		T*
C1	PL2B	3		C	C1	PL5B	7		C*	C1	PL5B	7		C*
VCCIO3	VCCIO3	3			VCCI07	VCCI07	7			VCCI07	VCCI07	7		-
GND	GNDIO3	3			GND	GNDIO7	7			GND	GNDIO7	7		
D2	PL3C	3		т	D2	PL5C	7		т	D2	PL6C	7		Т
D1	PL3D	3		С	D1	PL5D	7		С	D1	PL6D	7		С
F2	PL5A	3		т	F2	PL6A	7		T*	F2	PL7A	7		T*
G2	PL5B	3	GSRN	С	G2	PL6B	7	GSRN	C*	G2	PL7B	7	GSRN	C*
E1	PL4A	3		Т	E1	PL6C	7		т	E1	PL7C	7		Т
F1	PL4B	3		С	F1	PL6D	7		С	F1	PL7D	7		С
G4	NC				G4	PL7A	7		T*	G4	PL8A	7		T*
G5	NC				G5	PL7B	7		C*	G5	PL8B	7		C*
GND	GND	-			GND	GND	-			GND	GND	-		
G3	PL4C	3		т	G3	PL7C	7		Т	G3	PL8C	7		Т
H3	PL4D	3		С	H3	PL7D	7		С	H3	PL8D	7		С
H4	NC				H4	PL8A	7		T*	H4	PL9A	7		T*
H5	NC				H5	PL8B	7		C*	H5	PL9B	7		C*
-	-				VCCI07	VCCI07	7			VCCI07	VCCI07	7		
-	-				GND	GNDIO7	7			GND	GNDIO7	7		
G1	PL5C	3		Т	G1	PL8C	7		Т	G1	PL10C	7		Т
H1	PL5D	3		С	H1	PL8D	7		С	H1	PL10D	7		С
H2	PL6A	3		Т	H2	PL9A	6		T*	H2	PL11A	6		T*
J2	PL6B	3		С	J2	PL9B	6		C*	J2	PL11B	6		C*
J3	PL7C	3		Т	J3	PL9C	6		Т	J3	PL11C	6		Т
K3	PL7D	3		С	K3	PL9D	6		С	K3	PL11D	6		С
J1	PL6C	3		Т	J1	PL10A	6		T*	J1	PL12A	6		T*
-	-				VCCIO6	VCCIO6	6			VCCIO6		6		
-	-			1	GND	GNDIO6	6			GND	GNDIO6	6		
K1	PL6D	3		С	K1	PL10B	6		C*	K1	PL12B	6		C*
K2	PL9A	3		Т	K2	PL10C	6		Т	K2	PL12C	6		Т
L2	PL9B	3		С	L2	PL10D	6		С	L2	PL12D	6		С
L1	PL7A	3		Т	L1	PL11A	6		T*	L1	PL13A	6		T*
M1	PL7B	3		С	M1	PL11B	6		C*	M1	PL13B	6		C*
P1	PL8D	3		С	P1	PL11D	6		С	P1	PL14D	6		С
N1	PL8C	3	TSALL	Т	N1	PL11C	6	TSALL	Т	N1	PL14C	6	TSALL	Т
L3	PL10A	3		Т	L3	PL12A	6		T*	L3	PL15A	6		T*
M3	PL10B	3		С	M3	PL12B	6		C*	M3	PL15B	6		C*
M2	PL9C	3		Т	M2	PL12C	6		Т	M2	PL15C	6		Т
N2	PL9D	3		С	N2	PL12D	6		С	N2	PL15D	6		С
VCCIO3	VCCIO3	3			VCCIO6	VCCIO6	6			VCCIO6	VCCIO6	6		
GND	GNDIO3	3			GND	GNDIO6	6			GND	GNDIO6	6		

Dell Number	Poll Constinue	LCMXO2280	Dual Constinue	D:#
Ball Number	Ball Function	Bank	Dual Function	Differential
T2	PL20B	6		С
P6	TMS	5	TMS	
V1	PB2A	5		Т
U2	PB2B	5		С
Т3	PB2C	5		Т
N7	ТСК	5	ТСК	
R4	PB2D	5		С
R5	PB3A	5		Т
T4	PB3B	5		С
VCC	VCC	-		
R6	PB3C	5		Т
P7	PB3D	5		С
U3	PB4A	5		Т
T5	PB4B	5		С
V2	PB4C	5		Т
N8	TDO	5	TDO	
V3	PB4D	5		С
T6	PB5A	5		Т
GND	GNDIO5	5		
VCCIO5	VCCIO5	5		
U4	PB5B	5		С
P8	PB5C	5		Т
T7	PB5D	5		С
V4	TDI	5	TDI	
R8	PB6A	5		т
N9	PB6B	5		С
U5	PB6C	5		т
V5	PB6D	5		С
U6	PB7A	5		Т
VCC	VCC	-		
V6	PB7B	5		С
P9	PB7C	5		T
T8	PB7D	5		C
U7	PB8A	5		T
V7	PB8B	5		C
M10	VCCAUX	-		-
U8	PB8C	5		т
 	PB8D	5		C
VCCIO5	VCCIO5	5		Ŭ
GND	GNDIO5	5		
T9	PB8E	5		т
U9	PB8F	5		C
V9	PB9A	4		т

		LCMXO2280				
Ball Number	Ball Function	Bank	Dual Function	Differential		
J13	PR10C	2		Т		
M18	PR10B	2		C*		
L18	PR10A	2		T*		
GND	GNDIO2	2				
VCCIO2	VCCIO2	2				
H16	PR9D	2		С		
H14	PR9C	2		Т		
K18	PR9B	2		C*		
J18	PR9A	2		T*		
J17	PR8D	2		С		
VCC	VCC	-				
H18	PR8C	2		Т		
H17	PR8B	2		C*		
G17	PR8A	2		Τ*		
H13	PR7D	2		С		
H15	PR7C	2		Т		
G18	PR7B	2		C*		
F18	PR7A	2		T*		
G14	PR6D	2		С		
G16	PR6C	2		Т		
VCCIO2	VCCIO2	2				
GND	GNDIO2	2				
E18	PR6B	2		C*		
F17	PR6A	2		T*		
G13	PR5D	2		С		
G15	PR5C	2		Т		
E17	PR5B	2		C*		
E16	PR5A	2		T*		
GND	GND	-				
F15	PR4D	2		С		
E15	PR4C	2		Т		
D17	PR4B	2		C*		
D18	PR4A	2		T*		
B18	PR3D	2		С		
C18	PR3C	2		Т		
C16	PR3B	2		C*		
D16	PR3A	2		T*		
C17	PR2B	2		С		
D15	PR2A	2		Т		
VCCIO2	VCCIO2	2				
GND	GNDIO2	2				
GND	GNDIO1	1				
VCCIO1	VCCIO1	1				

LCMXO2280						
Ball Number	Ball Function	Bank	Dual Function	Differential		
E13	PT16D	1		С		
C15	PT16C	1		Т		
F13	PT16B	1		С		
D14	PT16A	1		Т		
A18	PT15D	1		С		
B17	PT15C	1		Т		
A16	PT15B	1		С		
A17	PT15A	1		Т		
VCC	VCC	-				
D13	PT14D	1		С		
F12	PT14C	1		Т		
C14	PT14B	1		С		
E12	PT14A	1		Т		
C13	PT13D	1		С		
B16	PT13C	1		Т		
B15	PT13B	1		С		
A15	PT13A	1		Т		
VCCIO1	VCCIO1	1				
GND	GNDIO1	1				
B14	PT12F	1		С		
A14	PT12E	1		Т		
D12	PT12D	1		С		
F11	PT12C	1		Т		
B13	PT12B	1		С		
A13	PT12A	1		Т		
C12	PT11D	1		С		
GND	GND	-				
B12	PT11C	1		Т		
E11	PT11B	1		С		
D11	PT11A	1		Т		
C11	PT10F	1		С		
A12	PT10E	1		Т		
VCCIO1	VCCIO1	1				
GND	GNDIO1	1				
F10	PT10D	1		С		
D10	PT10C	1		Т		
B11	PT10B	1	PCLK1_1***	С		
A11	PT10A	1		Т		
E10	PT9D	1		С		
C10	PT9C	1		Т		
D9	PT9B	1	PCLK1_0***	С		
E9	PT9A	1		Т		
B10	PT8F	0		С		

LCMXO2280						
Ball Number	Ball Function	Bank	Dual Function	Differential		
A10	PT8E	0		Т		
VCCIO0	VCCIO0	0				
GND	GNDIO0	0				
A9	PT8D	0		С		
C9	PT8C	0		Т		
B9	PT8B	0		С		
F9	VCCAUX	-				
A8	PT8A	0		Т		
B8	PT7D	0		С		
C8	PT7C	0		Т		
VCC	VCC	-				
A7	PT7B	0		С		
B7	PT7A	0		Т		
A6	PT6A	0		Т		
B6	PT6B	0		С		
D8	PT6C	0		Т		
F8	PT6D	0		С		
C7	PT6E	0		Т		
E8	PT6F	0		С		
D7	PT5D	0		С		
VCCIO0	VCCIO0	0				
GND	GNDIO0	0				
E7	PT5C	0		Т		
A5	PT5B	0		С		
C6	PT5A	0		Т		
B5	PT4A	0		Т		
A4	PT4B	0		С		
D6	PT4C	0		Т		
F7	PT4D	0		С		
B4	PT4E	0		Т		
GND	GND	-				
C5	PT4F	0		С		
F6	PT3D	0		С		
E5	PT3C	0		Т		
E6	PT3B	0		С		
D5	PT3A	0		Т		
A3	PT2D	0		С		
C4	PT2C	0		Т		
A2	PT2B	0		С		
B2	PT2A	0		Т		
VCCIO0	VCCIO0	0				
GND	GNDIO0	0				
E14	GND	-				



MachXO Family Data Sheet Ordering Information

June 2013

Data Sheet DS1002

Part Number Description

Ordering Information

Note: MachXO devices are dual marked except the slowest commercial speed grade device.bFor example the commercial speed grade LCMXO640E-4F256C is also marked with industrial grade -3I grade.bThe slowest commercial speed grade does not have industrial markings.b The markings appears as follows:

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	LUTs	Supply Voltage	l/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3TN100C	1200	1.2V	73	-3	Lead-Free TQFP	100	COM
LCMXO1200E-4TN100C	1200	1.2V	73	-4	Lead-Free TQFP	100	COM
LCMXO1200E-5TN100C	1200	1.2V	73	-5	Lead-Free TQFP	100	COM
LCMXO1200E-3TN144C	1200	1.2V	113	-3	Lead-Free TQFP	144	COM
LCMXO1200E-4TN144C	1200	1.2V	113	-4	Lead-Free TQFP	144	COM
LCMXO1200E-5TN144C	1200	1.2V	113	-5	Lead-Free TQFP	144	COM
LCMXO1200E-3MN132C	1200	1.2V	101	-3	Lead-Free csBGA	132	COM
LCMXO1200E-4MN132C	1200	1.2V	101	-4	Lead-Free csBGA	132	COM
LCMXO1200E-5MN132C	1200	1.2V	101	-5	Lead-Free csBGA	132	COM
LCMXO1200E-3BN256C	1200	1.2V	211	-3	Lead-Free caBGA	256	COM
LCMXO1200E-4BN256C	1200	1.2V	211	-4	Lead-Free caBGA	256	COM
LCMXO1200E-5BN256C	1200	1.2V	211	-5	Lead-Free caBGA	256	COM
LCMXO1200E-3FTN256C	1200	1.2V	211	-3	Lead-Free ftBGA	256	COM
LCMXO1200E-4FTN256C	1200	1.2V	211	-4	Lead-Free ftBGA	256	COM
LCMXO1200E-5FTN256C	1200	1.2V	211	-5	Lead-Free ftBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3TN100C	2280	1.2V	73	-3	Lead-Free TQFP	100	COM
LCMXO2280E-4TN100C	2280	1.2V	73	-4	Lead-Free TQFP	100	COM
LCMXO2280E-5TN100C	2280	1.2V	73	-5	Lead-Free TQFP	100	COM
LCMXO2280E-3TN144C	2280	1.2V	113	-3	Lead-Free TQFP	144	COM
LCMXO2280E-4TN144C	2280	1.2V	113	-4	Lead-Free TQFP	144	COM
LCMXO2280E-5TN144C	2280	1.2V	113	-5	Lead-Free TQFP	144	COM
LCMXO2280E-3MN132C	2280	1.2V	101	-3	Lead-Free csBGA	132	COM
LCMXO2280E-4MN132C	2280	1.2V	101	-4	Lead-Free csBGA	132	COM
LCMXO2280E-5MN132C	2280	1.2V	101	-5	Lead-Free csBGA	132	COM
LCMXO2280E-3BN256C	2280	1.2V	211	-3	Lead-Free caBGA	256	COM
LCMXO2280E-4BN256C	2280	1.2V	211	-4	Lead-Free caBGA	256	COM
LCMXO2280E-5BN256C	2280	1.2V	211	-5	Lead-Free caBGA	256	COM
LCMXO2280E-3FTN256C	2280	1.2V	211	-3	Lead-Free ftBGA	256	COM
LCMXO2280E-4FTN256C	2280	1.2V	211	-4	Lead-Free ftBGA	256	COM
LCMXO2280E-5FTN256C	2280	1.2V	211	-5	Lead-Free ftBGA	256	COM
LCMXO2280E-3FTN324C	2280	1.2V	271	-3	Lead-Free ftBGA	324	COM
LCMXO2280E-4FTN324C	2280	1.2V	271	-4	Lead-Free ftBGA	324	COM
LCMXO2280E-5FTN324C	2280	1.2V	271	-5	Lead-Free ftBGA	324	COM

MachXO Family Data Sheet Supplemental Information

June 2013

Data Sheet DS1002

For Further Information

A variety of technical notes for the MachXO family are available on the Lattice web site.

- TN1091, MachXO sysIO Usage Guide
- TN1089, MachXO sysCLOCK Design and Usage Guide
- TN1092, Memory Usage Guide for MachXO Devices
- TN1090, Power Estimation and Management for MachXO Devices
- TN1086, MachXO JTAG Programming and Configuration User's Guide
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- TN1097, MachXO Density Migration
- AN8066, Boundary Scan Testability with Lattice sysIO Capability

For further information on interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS): www.jedec.org
- PCI: <u>www.pcisig.com</u>

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.