

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp206a-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1:	PINOU	T I/O DESC	CRIPTIONS (CONTINUED)
Pin Name	Pin Type	Buffer Type	Description
RG0-RG3	I/O	ST	PORTG is a bidirectional I/O port.
RG6-RG9	I/O	ST	
RG12-RG15	I/O	ST	
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.
SDI1	1	ST	SPI1 data in.
SDO1	0	_	SPI1 data out.
SS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Synchronous serial clock input/output for SPI2.
SDI2	1	ST	SPI2 data in.
SDO2	0		SPI2 data out.
SS2	I/O	ST	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	Synchronous serial data input/output for I2C1.
SCL2	I/O	ST	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	Synchronous serial data input/output for I2C2.
SOSCI		ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	0	_	32.768 kHz low-power oscillator crystal output.
TMS	1	ST	JTAG Test mode select pin.
тск	1	ST	JTAG test clock input pin.
TDI	1	ST	JTAG test data input pin.
TDO	0	—	JTAG test data output pin.
T1CK		ST	Timer1 external clock input.
T2CK	I	ST	Timer2 external clock input.
T3CK	I	ST	Timer3 external clock input.
T4CK	I	ST	Timer4 external clock input.
T5CK	I	ST	Timer5 external clock input.
T6CK	I	ST	Timer6 external clock input.
T7CK	I	ST	Timer7 external clock input.
T8CK	I	ST	Timer8 external clock input.
T9CK		ST	Timer9 external clock input.
U1CTS	I	ST	UART1 clear to send.
U1RTS	0	—	UART1 ready to send.
U1RX	1	ST	UART1 receive.
U1TX	0		UART1 transmit.
U2CTS		ST	UART2 clear to send.
U2RTS	0		UART2 ready to send.
U2RX		ST	UART2 receive.
U2TX	0	_	UART2 transmit.
VDD	P	—	Positive supply for peripheral logic and I/O pins.
VCAP	P	—	CPU logic fiter capacitor connection.
Vss	P	<u> </u>	Ground reference for logic and I/O pins.
VREF+		Analog	Analog voltage reference (high) input.
VREF-		Analog	Analog voltage reference (low) input.
Legend: CN	IOS = CMO	S compatible	e input or output; Analog = Analog input; P = Power

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels;

Analog = Analog input; O = Output; P = Power I = Input

2.7 Oscillator Value Conditions on Device Start-up

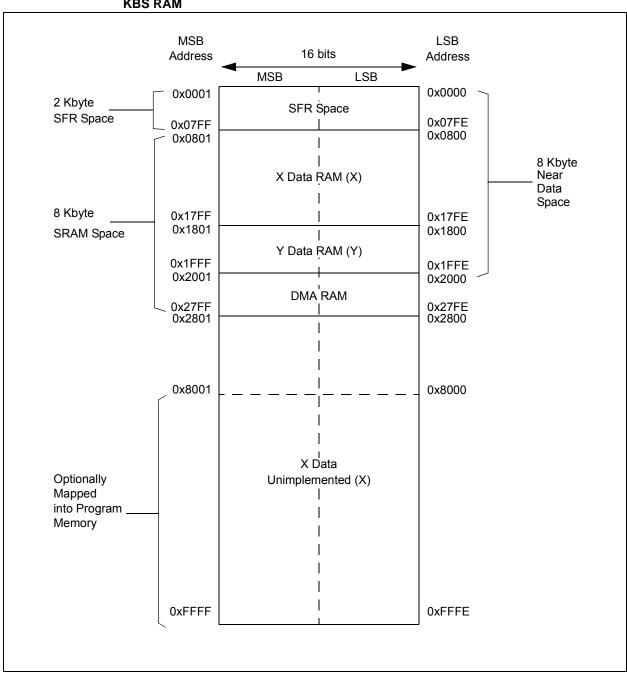
If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to \leq 8 MHz for start-up with PLL enabled to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG and ADPCFG2 registers.

The bits in the registers that correspond to the A/D pins that are initialized by ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.


If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG and ADPCFG2 registers during initialization of the ADC module.

When ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG and ADPCFG2 registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and the unused pins.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06A/X08A/X10A DEVICES WITH 8 KBS RAM

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR dsPIC33FJXXXGP706A/708A/710A DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500							Se	e definition	n when WIN = x								
	- 051E																	
C2BUFPNT1	0520		F3BF	><3:0>			F2BF	~ 3:0>			F1BF	<3:0>			F0BF	P<3:0>		0000
C2BUFPNT2	0522		F7BF	F7BP<3:0> F6BP<3:0>					F5BF	><3:0>			F4BF	P<3:0>		0000		
C2BUFPNT3	0524		F11B	><3:0>			F10BF	><3:0>			F9BF	><3:0>			F8BF	P<3:0>		0000
C2BUFPNT4	0526		F15B	P<3:0>			F14BF	><3:0>			F13BI	><3:0>			F12B	P<3:0>		0000
C2RXM0SID	0530				SID<	10:3>					SID<2:0>		—	MIDE	—	EID<1	7:16>	xxxx
C2RXM0EID	0532				EID<	15:8>							EID∙	<7:0>				xxxx
C2RXM1SID	0534				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<1	7:16>	xxxx
C2RXM1EID	0536				EID<	15:8>							EID	<7:0>				xxxx
C2RXM2SID	0538				SID<	10:3>					SID<2:0>		-	MIDE	—	EID<	7:16>	xxxx
C2RXM2EID	053A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF0SID	0540				SID<	10:3>				SID<2:0> — E>			EXIDE	EXIDE — EID<17:16>			xxxx	
C2RXF0EID	0542				EID<	15:8>				EID<7:0>				xxxx				
C2RXF1SID	0544				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<'	7:16>	xxxx
C2RXF1EID	0546				EID<	15:8>				EID<7:0>					xxxx			
C2RXF2SID	0548				SID<	10:3>				SID<2:0> —			EXIDE		EID<	7:16>	xxxx	
C2RXF2EID	054A				EID<	15:8>				EID<7:0>						xxxx		
C2RXF3SID	054C				SID<	10:3>				SID<2:0> — EXIDE			— EID<17:16>		xxxx			
C2RXF3EID	054E				EID<	15:8>				EID<7:0>						xxxx		
C2RXF4SID	0550				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16>					7:16>	xxxx		
C2RXF4EID	0552				EID<								EID	<7:0>		-		XXXX
C2RXF5SID	0554				SID<						SID<2:0>		—	EXIDE	—	EID<'	7:16>	XXXX
C2RXF5EID	0556				EID<								EID	<7:0>				XXXX
C2RXF6SID	0558				SID<						SID<2:0>		—	EXIDE	—	EID<	7:16>	XXXX
C2RXF6EID	055A				EID<								EID	<7:0>				xxxx
C2RXF7SID	055C				SID<						SID<2:0>		-	EXIDE	—	EID<	7:16>	xxxx
C2RXF7EID	055E	EID<15:8>								EID	<7:0>				xxxx			
C2RXF8SID	0560				SID<					SID<2:0> — EXIDE — EID<17			/:16>	XXXX				
C2RXF8EID	0562				EID<					EID<7:0>			7.40	XXXX				
C2RXF9SID	0564				SID<						SID<2:0>			EXIDE		EID<	7:16>	XXXX
C2RXF9EID	0566				EID<						010 40-0-			<7:0>			7.40	XXXX
C2RXF10SID	0568				SID<						SID<2:0>		—	EXIDE		EID<	7:16>	XXXX

dsPIC33FJXXXGPX06A/X08A/X10A

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE bit (NVMCON<6>) and the WREN bit (NVMCON<14>).
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase operation	
MOV #0x4042, W0	i
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	i
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
	_	_		_		U2EIP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
		U1EIP<2:0>			—	—					
bit 7							bit (
Legend:											
R = Readabl	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value at		'1' = Bit is set		0' = Bit is cleared x = Bit is unknown							
							-				
bit 15-11	Unimplemen	ted: Read as 'o)'								
bit 10-8	U2EIP<2:0>:	UART2 Error In	nterrupt Prior	ity bits							
	111 = Interru	pt is priority 7 (ł	nighest priorit	y interrupt)							
	•										
	•										
	001 = Interru	001 = Interrupt is priority 1									
	000 = Interru	pt source is dis	abled								
bit 7	Unimplemen	ted: Read as 'd)'								
bit 6-4	U1EIP<2:0>:	UART1 Error In	nterrupt Prior	ity bits							
	111 = Interru	pt is priority 7 (I	nighest priorit	y interrupt)							
	•										
	•										
	001 = Interru	pt is priority 1									
		pt source is dis	abled								

bit 3-0 Unimplemented: Read as '0'

8.0 DIRECT MEMORY ACCESS (DMA)

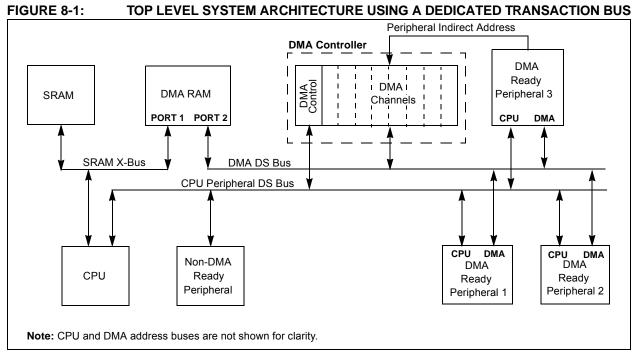
- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70182) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The dsPIC33FJXXXGPX06A/X08A/X10A peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

TABLE 8-1: PERIPHERALS WITH DMA SUPPORT

Peripheral	IRQ Number
INT0	0
Input Capture 1	1
Input Capture 2	5
Output Compare 1	2
Output Compare 2	6
Timer2	7
Timer3	8
SPI1	10
SPI2	33
UART1 Reception	11
UART1 Transmission	12
UART2 Reception	30
UART2 Transmission	31
ADC1	13
ADC2	21
DCI	60
ECAN1 Reception	34
ECAN1 Transmission	70
ECAN2 Reception	55
ECAN2 Transmission	71


The DMA controller features eight identical data transfer channels.

Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- · Word or byte sized data transfers
- Transfers from peripheral to DMA RAM or DMA RAM to peripheral
- Indirect Addressing of DMA RAM locations with or without automatic post-increment
- Peripheral Indirect Addressing In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral
- One-Shot Block Transfers Terminating DMA transfer after one block transfer
- Continuous Block Transfers Reloading DMA RAM buffer start address after every block transfer is complete
- Ping-Pong Mode Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately
- Automatic or manual initiation of block transfers
- Each channel can select from 20 possible sources of data sources or destinations

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

8.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address Offset register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address Offset register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels.

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PWCOL7 | PWCOL6 | PWCOL5 | PWCOL4 | PWCOL3 | PWCOL2 | PWCOL1 | PWCOL0 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| XWCOL7 | XWCOL6 | XWCOL5 | XWCOL4 | XWCOL3 | XWCOL2 | XWCOL1 | XWCOL0 |
| bit 7 | | | | | | | bit 0 |

Legend:		C = Clear only bit		
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	It POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	1 = Write	7: Channel 7 Peripheral Writ collision detected rite collision detected	e Collision Flag bit	
bit 14	1 = Write	5: Channel 6 Peripheral Writ collision detected rite collision detected	e Collision Flag bit	
bit 13	1 = Write	5: Channel 5 Peripheral Writ collision detected rite collision detected	e Collision Flag bit	
bit 12	1 = Write	 Channel 4 Peripheral Writ collision detected rite collision detected 	e Collision Flag bit	
bit 11	1 = Write	3: Channel 3 Peripheral Writ collision detected rite collision detected	e Collision Flag bit	
bit 10	1 = Write	2: Channel 2 Peripheral Writ collision detected rite collision detected	e Collision Flag bit	
bit 9	1 = Write	I: Channel 1 Peripheral Writ collision detected rite collision detected	e Collision Flag bit	
bit 8	1 = Write	D: Channel 0 Peripheral Writ collision detected rite collision detected	e Collision Flag bit	
bit 7	1 = Write	7: Channel 7 DMA RAM Writ collision detected rite collision detected	e Collision Flag bit	
bit 6	1 = Write	5: Channel 6 DMA RAM Writ collision detected rite collision detected	te Collision Flag bit	
bit 5	1 = Write	5: Channel 5 DMA RAM Writ collision detected rite collision detected	e Collision Flag bit	
bit 4	1 = Write	I: Channel 4 DMA RAM Write collision detected rite collision detected	te Collision Flag bit	

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1					
—	_	—	—		LSTCH	+<3:0>						
oit 15	÷						bit					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0					
bit 7						I	bit					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-12	Unimplemen	ted: Read as '	0'									
bit 11-8	LSTCH<3:0>	: Last DMA Ch	annel Active t	oits								
	1111 = No DM	MA transfer ha	s occurred sin	ce system Res	et							
	1110-1000 =											
		lata transfer wa										
		0110 = Last data transfer was by DMA Channel 6										
	0101 = Last data transfer was by DMA Channel 5 0100 = Last data transfer was by DMA Channel 4											
	0011 = Last data transfer was by DMA Channel 3											
	0010 = Last data transfer was by DMA Channel 2											
		0001 = Last data transfer was by DMA Channel 1										
bit 7		0000 = Last data transfer was by DMA Channel 0 PPST7: Channel 7 Ping-Pong Mode Status Flag bit										
	1 = DMA7STE	B register selec	ted	S Flag bit								
bit 6		0 = DMA7STA register selected PPST6: Channel 6 Ping-Pong Mode Status Flag bit										
		1 = DMA6STB register selected										
		A register selec										
bit 5	PPST5: Chan	nel 5 Ping-Por	ng Mode Statu	s Flag bit								
	1 = DMA5STE	PPST5: Channel 5 Ping-Pong Mode Status Flag bit 1 = DMA5STB register selected										
	0 = DMA5STA	A register selec	ted									
bit 4	PPST4: Chan	inel 4 Ping-Por	ng Mode Statu	s Flag bit								
		B register select A register select										
bit 3	PPST3: Chan	inel 3 Ping-Por	ng Mode Statu	s Flag bit								
		B register select A register select										
bit 2	PPST2: Channel 2 Ping-Pong Mode Status Flag bit											
	1 = DMA2STE	B register select	ted									
bit 1		inel 1 Ping-Por		s Flao bit								
	1 = DMA1STE	B register select register select	cted									
bit 0		inel 0 Ping-Por		s Flag bit								
		B register selec	-									

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	OC4MD: Output Compare 4 Module Disable bit
	1 = Output Compare 4 module is disabled0 = Output Compare 4 module is enabled
bit 2	OC3MD: Output Compare 3 Module Disable bit
	1 = Output Compare 3 module is disabled0 = Output Compare 3 module is enabled
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled
	0 = Output Compare 1 module is enabled

REGISTER	12-1: T1CO	N: TIMER1 C	ONTROL R	EGISTER							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL	—	_	—	—	_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	TGATE	TCKP	S<1:0>		TSYNC	TCS	_				
bit 7							bit 0				
											
Legend:						1					
R = Readabl		W = Writable		-	mented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15	TON: Timer1 1 = Starts 16- 0 = Stops 16-	bit Timer1									
bit 14	-	ited: Read as '	0'								
bit 13	-	in Idle Mode bi									
	1 = Discontin		ration when	device enters lo ode	lle mode						
bit 12-7	Unimplemen	ted: Read as '	0'								
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit										
		When TCS = 1:									
	•	This bit is ignored.									
		When TCS = 0: 1 = Gated time accumulation enabled									
		ne accumulatio									
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Presca	ale Select bits							
	11 = 1:256										
		10 = 1:64									
	01 = 1:8 00 = 1:1										
bit 3	Unimplemen	ted: Read as '	0'								
bit 2	TSYNC: Time	er1 External Cl	ock Input Syr	hchronization S	elect bit						
	When TCS =										
		ize external clo									
	0 = Do not sy When TCS =	nchronize exte	ernal clock inp	but							
	This bit is ign										
bit 1	-	Clock Source	Select bit								
		clock from pin		rising edge)							
	0 = Internal c										
bit 0	Unimplemen	ted: Read as '	0'								

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

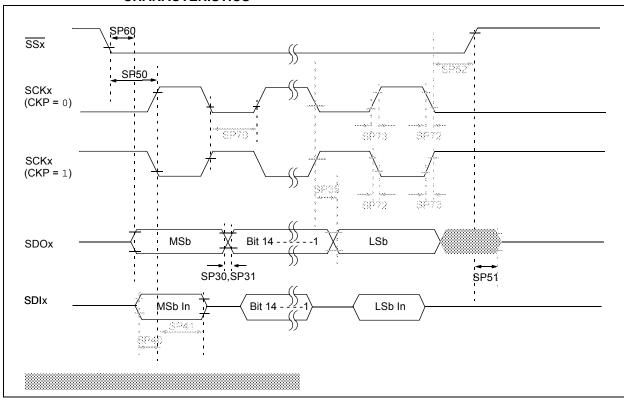
If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0				
_	—	CSIDL	ABAT	—		REQOP<2:0>					
bit 15							bit				
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0				
	OPMODE<2:0		_	CANCAP	_	_	WIN				
bit 7							bit				
Legend:											
R = Readable	hit	W = Writable	hit	II = I Inimplen	nented bit, read	1 as 'N'					
-n = Value at I		'1' = Bit is se		'0' = Bit is clea		r = Bit is Rese	rved				
	Ölt	1 Dit io oo									
bit 15-14	Unimplemer	nted: Read as	'0'								
bit 13	CSIDL: Stop	o in Idle Mode I	oit								
	1 = Discontinue module operation when device enters Idle mode										
		module opera									
bit 12	ABAT: Abort All Pending Transmissions bit										
	 1 = Signal all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted 										
bit 11	Reserved: D										
bit 10-8	REQOP<2:0>: Request Operation Mode bits										
	111 = Set Listen All Messages mode										
	110 = Reserved - do not use										
	101 = Reserved - do not use										
	100 = Set Configuration mode										
	011 = Set Listen Only Mode 010 = Set Loopback mode										
	001 = Set Disable mode										
	000 = Set Normal Operation mode										
bit 7-5	OPMODE<2:0>: Operation Mode bits										
	111 = Module is in Listen All Messages mode										
	110 = Reserved 101 = Reserved										
	100 = Module is in Configuration mode										
	011 = Module is in Listen Only mode										
	010 = Module is in Loopback mode										
	001 = Module is in Disable mode 000 = Module is in Normal Operation mode										
bit 4		nted: Read as	-								
bit 3	CANCAP: CAN Message Receive Timer Capture Event Enable bit										
	1 = Enable input capture based on CAN message receive										
	0 = Disable 0			0							
bit 2-1	Unimplemer	nted: Read as	'0'								
bit 0	WIN: SFR M	lap Window Se	elect bit								
	1 = Use filter window 0 = Use buffer window										

REGISTER 19-1: CiCTRL1: ECAN™ CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
_	—	_	—	SLOT<3:0>						
bit 15							bit			
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
	—	_	_	ROV	RFUL	TUNF	TMPTY			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at POR		'1' = Bit is set	t	'0' = Bit is cle	'0' = Bit is cleared		x = Bit is unknown			
	<pre>1111 = Slot #15 is currently active</pre>									
bit 7-4	Unimplemented: Read as '0'									
bit 3	ROV: Receive Overflow Status bit 1 = A receive overflow has occurred for at least one receive register 0 = A receive overflow has not occurred									
bit 2	RFUL: Receive Buffer Full Status bit 1 = New data is available in the receive registers 0 = The receive registers have old data									
bit 1	TUNF: Transmit Buffer Underflow Status bit 1 = A transmit underflow has occurred for at least one transmit register 0 = A transmit underflow has not occurred									
bit 0	TMPTY: Trans									

REGISTER 20-4: DCISTAT: DCI STATUS REGISTER


NOTES:

REGISTER 21-2: ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2)

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
VCFG<2:0>					CSCNA	CHPS	i<1:0>			
bit 15							bit 8			
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	—		SMP	<3:0>		BUFM	ALTS			
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writabl	e bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is s	et	'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-13	VCFG<2:0>:	Converter Vo	ltage Reference	Configuration	n bits					
		VREF+	VREF-							
	000	Avdd	Avss							
	001 Exte	ernal VREF+	Avss							
	010	Avdd	External VREF-							
	011 Exte	ernal VREF+	External VREF-							
	1xx	Avdd	Avss							
bit 12-11	Unimplemer	nted: Read as	s 'O'							
bit 10	CSCNA: Scan Input Selections for CH0+ during Sample A bit									
	1 = Scan inputs									
	0 = Do not scan inputs									
bit 9-8	CHPS<1:0>: Selects Channels Utilized bits									
	When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as '0' 1x = Converts CH0, CH1, CH2 and CH3									
	1x = Converts CH0, CH1, CH2 and CH3 01 = Converts CH0 and CH1									
	00 = Conve	rts CH0								
bit 7	BUFS: Buffer Fill Status bit (only valid when BUFM = 1)									
			second half of b first half of buffe							
bit 6	0 = ADC is currently filling first half of buffer, user should access data in second half Unimplemented: Read as '0'									
bit 5-2	SMPI<3:0>: Selects Increment Rate for DMA Addresses bits or number of sample/conversion operations per interrupt									
	1111 = Increments the DMA address or generates interrupt after completion of every 16th sample									
	conversion operation									
	1110 = Increments the DMA address or generates interrupt after completion of every 15th sample conversion operation									
	•									
	• 0001 = Increments the DMA address or generates interrupt after completion of every 2nd sample.									
	conversion operation									
	0000 = Incre	•	/A address or ge	enerates interr	upt after comple	etion of every sa	ample/conver			
bit 1	BUFM: Buffer Fill Mode Select bit									
	 1 = Starts filling first half of buffer on first interrupt and second half of the buffer of 0 = Always starts filling buffer from the beginning 						interrupt			
	0 = Always s	starts filling bu	iffer from the beg	jinning						
bit 0	-	-	ifter from the beg							

REGISTER 21-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

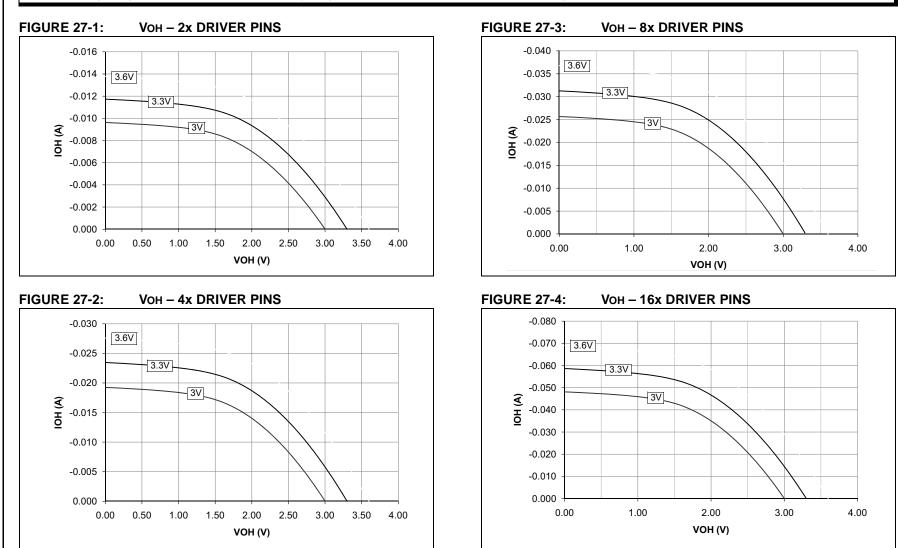

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—		_	_	_	CH123NB<1:0>		CH123SB			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
		—			CH123	NA<1:0>	CH123SA			
bit 7							bit C			
Legend:										
R = Readab		W = Writable b	bit	U = Unimplemented bit, read as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	known			
bit 15-11	•	ted: Read as '0								
bit 10-9	CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits									
	When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0'									
	11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11									
	10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8									
	0x = CH1, CH2, CH3 negative input is VREF-									
bit 8	CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit									
	When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0'									
	 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 									
	•	•	•	e input is AN1,	CH3 positive	input is AN2				
bit 7-3	Unimplemented: Read as '0'									
bit 2-1	CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits									
	When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0'									
	11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11									
	10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8									
	0x = CH1, CH2, CH3 negative input is VREF-									
bit 0	CH123SA: CI	nannel 1, 2, 3 P	ositive Input S	Select for Sam	ole A bit					
		B = 1, CHxSA is								
		tive input is AN3								
	0 = CH1 posit	tive input is AN0), CH2 positive	e input is AN1,	CH3 positive	input is AN2				

FIGURE 25-13: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

27.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

