

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp306a-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33F PRODUCT FAMILIES

The dsPIC33F General Purpose Family of devices are ideal for a wide variety of 16-bit MCU embedded applications. The controllers with codec interfaces are well-suited for speech and audio processing applications.

The device names, pin counts, memory sizes and peripheral availability of each family are listed below, followed by their pinout diagrams.

dsPIC33F	General	Purpose	Family	Controllers
----------	---------	---------	--------	--------------------

Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	16-bit Timer	Input Capture	Output Compare Std. PWM	Codec Interface	ADC	UART	IdS	I²C™	Enhanced CAN™	VO Pins (Max) ⁽²⁾	Packages
dsPIC33FJ64GP206A	64	64	8	9	8	8	1	1 ADC, 18 ch	2	2	1	0	53	PT, MR
dsPIC33FJ64GP306A	64	64	16	9	8	8	1	1 ADC, 18 ch	2	2	2	0	53	PT, MR
dsPIC33FJ64GP310A	100	64	16	9	8	8	1	1 ADC, 32 ch	2	2	2	0	85	PF, PT
dsPIC33FJ64GP706A	64	64	16	9	8	8	1	2 ADC, 18 ch	2	2	2	2	53	PT, MR
dsPIC33FJ64GP708A	80	64	16	9	8	8	1	2 ADC, 24 ch	2	2	2	2	69	PT
dsPIC33FJ64GP710A	100	64	16	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT
dsPIC33FJ128GP206A	64	128	8	9	8	8	1	1 ADC, 18 ch	2	2	1	0	53	PT, MR
dsPIC33FJ128GP306A	64	128	16	9	8	8	1	1 ADC, 18 ch	2	2	2	0	53	PT, MR
dsPIC33FJ128GP310A	100	128	16	9	8	8	1	1 ADC, 32 ch	2	2	2	0	85	PF, PT
dsPIC33FJ128GP706A	64	128	16	9	8	8	1	2 ADC, 18 ch	2	2	2	2	53	PT, MR
dsPIC33FJ128GP708A	80	128	16	9	8	8	1	2 ADC, 24 ch	2	2	2	2	69	PT
dsPIC33FJ128GP710A	100	128	16	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT
dsPIC33FJ256GP506A	64	256	16	9	8	8	1	1 ADC, 18 ch	2	2	2	1	53	PT, MR
dsPIC33FJ256GP510A	100	256	16	9	8	8	1	1 ADC, 32 ch	2	2	2	1	85	PF, PT
dsPIC33FJ256GP710A	100	256	30	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT

Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.

2: Maximum I/O pin count includes pins shared by the peripheral functions.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the documents listed below, browse to the documentation section of the dsPIC33FJ256GP710A product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 6. "Interrupts" (DS70184)
- Section 7. "Oscillator" (DS70186)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit[™] (I2C[™])" (DS70195)
- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Section 22. "Direct Memory Access (DMA)" (DS70182)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)

4.2 Data Address Space

The dsPIC33FJXXXGPX06A/X08A/X10A CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJXXXGPX06A/X08A/X10A devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33FJXXXGPX06A/X08A/X10A instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXGPX06A/X08A/X10A core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A complete listing of implemented SFRs, including their addresses, is shown in Table 4-1 through Table 4-34.

Note:	The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pipeut diagrams for device one-sife
	and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06A/X08A/X10A DEVICES WITH 16 KBS RAM

NOTES:

TABLE 7-1:		TVECTORS		
Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Capture 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – ADC 1
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	ADC2 – ADC 2
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47	39	0x000062	0x000162	IC5 – Input Capture 5
48	40	0x000064	0x000164	IC6 – Input Capture 6
49	41	0x000066	0x000166	OC5 – Output Compare 5
50	42	0x000068	0x000168	OC6 – Output Compare 6
51	43	0x00006A	0x00016A	OC7 – Output Compare 7
52	44	0x00006C	0x00016C	OC8 – Output Compare 8
53	45	0x00006E	0x00016E	Reserved

0

© 2009-2012 Microchip Technology Inc.

Vector	Interrupt Request (IRQ)	IVT Address	AIVT Address	Interrupt Source
Number	Number			
54	46	0x000070	0x000170	DMA4 – DMA Channel 4
55	47	0x000072	0x000172	T6 – Timer6
56	48	0x000074	0x000174	T7 – Timer7
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59	51	0x00007A	0x00017A	T8 – Timer8
60	52	0x00007C	0x00017C	T9 – Timer9
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready
64	56	0x000084	0x000184	C2 – ECAN2 Event
65	57	0x000086	0x000186	Reserved
66	58	0x000088	0x000188	Reserved
67	59	0x00008A	0x00018A	DCIE – DCI Error
68	60	0x00008C	0x00018C	DCID – DCI Transfer Done
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	62	0x000090	0x000190	Reserved
71	63	0x000092	0x000192	Reserved
72	64	0x000094	0x000194	Reserved
73	65	0x000096	0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	U2E – UART2 Error
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request
80-125	72-117	0x0000A4-0x0000FE	0x0001A4-0x0001FE	Reserved

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

REGISTER	7-13: IEC3:	INTERRUPT	ENABLE C	ONTROL RE	GISTER 3						
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0				
_	—	DMA5IE	DCIIE	DCIEIE	—	_	C2IE				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
C2RXIE			T9IF	TRIE	MI2C2IE	SI2C2IE	T7IF				
bit 7		INTOIL	TUL	TOLE	WIZOZIE	OIZOZIL	bit C				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkn	iown				
bit 15-14	Unimpleme	nted: Read as '	0'								
bit 13	DMA5IE: DN	IA Channel 5 D	ata Transfer (Complete Inter	rupt Enable bit						
	1 = Interrupt	request enable	d								
hit 12			Enablo bit								
	1 = Interrupt	request enable									
	0 = Interrupt	request not en	abled								
bit 11	DCIEIE: DCI	Error Interrupt	Enable bit								
	1 = Interrupt	request enable	d								
	0 = Interrupt	request not en	abled								
bit 10-9	Unimpleme	nted: Read as '	0'								
bit 8	C2IE: ECAN	C2IE: ECAN2 Event Interrupt Enable bit									
	1 = Interrupt 0 = Interrupt	request enable request not ena	d abled								
bit 7	C2RXIE: EC	AN2 Receive D	ata Ready Inf	errupt Enable	bit						
	1 = Interrupt	request enable	d abled	·							
bit 6	INTAIE: Exte	requeet not en	Enable hit								
bit o	1 = Interrupt	request enable	d								
hit 5	0 = Interrupt	request not ena	ableo Enable bit								
	1 = Interrupt	request enable	d								
	0 = Interrupt	request not en	abled								
bit 4	T9IE: Timer9	Interrupt Enab	le bit								
	1 = Interrupt	request enable	d abled								
hit 3	TRIF: Timer8	Interrunt Enab	le hit								
bit 5	1 = Interrupt	request enable	d								
	0 = Interrupt	request not en	abled								
bit 2	MI2C2IE: 120	C2 Master Ever	nts Interrupt E	nable bit							
	1 = Interrupt 0 = Interrupt	request enable request not ena	d abled								
bit 1	SI2C2IE: 120	2 Slave Events	s Interrupt Ena	able bit							
	1 = Interrupt	request enable	d								
	0 = Interrupt	request not ena	abled								
bit 0	T7IE: Timer7	Interrupt Enab	le bit								
	1 = Interrupt 0 = Interrupt	request enable request not enable	d abled								

- 40

~

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		CNIP<2:0>					
oit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		MI2C1IP<2:0>				SI2C1IP<2:0>	
bit 7							bit 0
l ogond:							
R = Readab	le bit	W = Writable I	oit	U = Unimplei	mented bit. rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplem	ented: Read as '0)'				
bit 14-12	CNIP<2:0>	: Change Notifica	tion Interrup	t Priority bits			
	111 = Inter	rupt is priority 7 (ł	nighest priori	ity interrupt)			
	•						
	•						
	• 001 = Inter	runt is priority 1					
	000 = Inter	rupt source is disa	abled				
bit 11-7	Unimplem	ented: Read as '()'				
bit 6-4	MI2C1IP<2	:0>: 12C1 Master	Events Inter	rupt Priority bit	5		
	111 = Inter	rupt is priority 7 (h	ighest priori	ity interrupt)			
	•						
	•						
	•						
	001 = Inter 000 = Inter	rupt is priority 1 rupt source is disa	abled				
bit 3	Unimplem	ented: Read as '0)'				
bit 2-0	SI2C1IP<2	:0>: I2C1 Slave E	vents Interru	upt Priority bits			
	111 = Inter	rupt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	• 001 - Intor	rupt is priority 1					
	001 - inter	rupt is priority 1	phlod				

VAANTDAL DEALATED (

OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽²⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			TUN	<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared				ared	x = Bit is unkr	nown	
bit 15-6	Unimplemen	ted: Read as 'o)'				
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾				
	111111 = Ce	enter frequency	- 0.375% (7.3	345 MHz)			
	•						
	•						
	•						
	100001 = Ce	enter frequency	- 11.625% (6	.52 MHz)			
	100000 = Ce	enter frequency	- 12% (6.491 + 11 625% (8	VIHZ) 3 23 MHz)			
	011110 = Ce	enter frequency	+ 11.25% (8.1	20 MHz)			
	•		·	·			
	•						
	•						
	000001 = Ce 000000 = Ce	enter frequency enter frequency	+ 0.375% (7. (7.37 MHz no	40 MHz) ominal)			

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

2: This is register is reset only on a Power-on Reset (POR).

REGISTER 9-4:

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33FJXXXGPX06A/X08A/X10A devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 22.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the status bits, LOCK (OSCCON<5>) and CF (OSCCON<3>) are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRC-PLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** Refer to **Section 7. "Oscillator"** (DS70186) in the *"dsPIC33F/PIC24H Family Reference Manual"* for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2009-2012} Microchip Technology Inc.

REGISTER 1	2-1: T1CO	N: TIMER1 CO	ONTROL R	EGISTER						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	—	TSIDL	_		—	—	_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	<u>U-0</u>	R/W-0	R/W-0	U-0			
	IGATE ICKPS<1:0> — ISYNC ICS									
DIT /							DIT U			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit read	as '0'				
-n = Value at F	POR	'1' = Bit is set	bit	0' = Bit is cle	ared	x = Bit is unkn	own			
				o Bitio di						
bit 15	TON: Timer1	On bit								
	1 = Starts 16-	-bit Timer1								
	0 = Stops 16-	bit Timer1								
bit 14	Unimplemer	ted: Read as '	כ'							
bit 13	TSIDL: Stop	in Idle Mode bit								
	1 = Discontin 0 = Continue	ue module ope module operati	ration when o ion in Idle mo	device enters lo ode	dle mode					
bit 12-7	Unimplemer	Unimplemented: Read as '0'								
bit 6	TGATE: Time	er1 Gated Time	Accumulatio	n Enable bit						
	When TCS =	1:								
	This bit is ign	ored.								
	When TCS = 0:									
	1 = Gated tin	ne accumulation	n disabled							
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Presca	ale Select bits						
	11 = 1:256	·								
	10 = 1:64									
	01 = 1:8									
bit 3	Unimplemen	ted: Read as '	ר,							
bit 2	TSYNC: Time	er1 External Clo	ock Input Svr	hchronization S	elect bit					
2.1 -	When TCS =	1:								
	1 = Synchron	nize external clo	ck input							
	0 = Do not sy	nchronize exte	rnal clock inp	but						
	When TCS =	<u>0:</u> ored								
bit 1	TCS: Timer1	Clock Source S	Select bit							
	1 = External	clock from pin T	1CK (on the	risina edae)						
	0 = Internal c	lock (FCY)								
bit 0	Unimplemer	ted: Read as '	כי							

REGISTER	19-20: CiRX	MnSID: ECAN			ER MASK n S	TANDARD ID	ENTIFIER	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			SID	<10:3>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
	SID<2:0>		—	MIDE	—	EID<1	17:16>	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimple	mented bit, read	1 as '0'		
-n = Value at POR '1		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-5	SID<10:0>:	Standard Identi	fier bits					
	1 = Include I	oit SIDx in filter	comparison					
	0 = Bit SIDx	is don't care in	filter compari	son				
bit 4	Unimpleme	nted: Read as '	0'					
bit 3	MIDE: Ident	ifier Receive M	ode bit					
	1 = Match o 0 = Match e (i.e., if (nly message ty ither standard c Filter SID) = (M	bes (standard or extended a essage SID)	l or extended a ddress messag or if (Filter SID	ddress) that cor je if filters match /EID) = (Messag	respond to EXI າ ge SID/EID))	DE bit in filter	
bit 2	Unimpleme	n ted: Read as '	0'					
bit 1-0	EID<17:16>	Extended Iden	tifier bits					
	1 = Include 0 = Bit EIDx	bit EIDx in filter is don't care in	comparison filter compar	ison				

REGISTER 19-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EID	<15:8>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EID)<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Wri			bit	U = Unimpler	nented bit, read	d as '0'		
-n = Value at POR		'1' = Bit is set	'1' = Bit is set		ared	x = Bit is unknown		

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

Bit Fiel	d	Register	RTSP Effect	Description					
SSS<2:0	0>	FSS	Immediate	Secure Segment Program Flash Code Protection Size					
				(FOR 128K and 256K DEVICES) x11 = No Secure program Flash segment					
				Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE					
				Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE					
				Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE					
				(FOR 64K DEVICES) x11 = No Secure program Flash segment					
				Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE					
				Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End o BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS ends at 0x003FFE					
				Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 007FFEh 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE					
RSS<1:0	0>	FSS	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM					
GSS<1:0	0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security; general program Flash segment starts at End of SS, ends at EOM 0x = High security; general program Flash segment starts at End of SS, ends at EOM					

TABLE 22-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 23-2:											
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected				
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV				
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV				
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV				
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV				
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV				
31	DO	DO	<pre>#lit14,Expr</pre>	Do code to PC + Expr, lit14 + 1 times	2	2	None				
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None				
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB				
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB				
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None				
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С				
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С				
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С				
38	GOTO	GOTO	Expr	Go to address	2	2	None				
		GOTO	Wn	Go to indirect	1	2	None				
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z				
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z				
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z				
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z				
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z				
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z				
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z				
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z				
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z				
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z				
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z				
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB				
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None				
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z				
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z				
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z				
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z				
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z				
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB				
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB				
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None				
		MOV	f	Move f to f	1	1	None				
		MOV	f,WREG	Move f to WREG	1	1	N,Z				
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None				
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None				
		MOV	Wn,f	Move Wn to f	1	1	None				
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None				
		MOV	WREG, f	Move WREG to f	1	1	None				
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None				
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None				
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None				

1110

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,A	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)		1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)		1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	1,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
64	DT 1-7	RLC	WS,Wd	wu = Rotate Left through Carry Ws	1	1	U,N,Z
04	RLNC	RLNC	I C UDDO		1	1	N,Z
		RLNC	I,WREG	WREG = Rotate Left (No Carry) T	1	1	N,∠
6F	DDC	RLNC	ws,Wa	f = Pototo Pight through Correct	1	1	
00	KKC	RRC	L f WDEC	I - Rotate Right through Carry f	1	1	
		RRC	L, WKEG	Wite - Rotate Right through Carry We	1	1	
1	1	NN	ws,wu	Wu - Notate Night through Cally WS			0,IN,Z

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 25-11:	ELECTRICAL CHARACTERISTICS: BOR
--------------	---------------------------------

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C < TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteris	stic ⁽¹⁾	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD tran	sition high-to-low	2.40	_	2.55	V	Vdd
Mate 4.	Note 4. Descriptions are fair descriptions and and are not to study in any factories.							

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 25-12: DC CHARACTERISTICS: PROGRAM MEMORY

	DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)							
DC CHA	RACIER	151105	Operating temperature			-40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended					
Param.	Symbol	Characteristic ⁽³⁾	Min	Typ ⁽¹⁾	Max	Units	Conditions				
		Program Flash Memory									
D130	Eр	Cell Endurance	10,000	—	—	E/W					
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage				
D132b	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage				
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated				
D135	IDDP	Supply Current during Programming	—	10	—	mA					
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2				
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, TA = +150°C, See Note 2				
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2				
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +150°C, See Note 2				
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2				
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +150°C, See Note 2				

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b '011111 (for Min), TUN<5:0> = b '100000 (for Max). This parameter depends on the FRC accuracy (see Table 25-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

3: These parameters are assured by design, but are not characterized or tested in manufacturing.

TABLE 25-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Standar (unless Operation	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param.	Symbol	Characteristics	Min	Тур	Max	Units	Comments			
_	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10	1	μF	Capacitor must be low series resistance (< 5 ohms)			

Note 1: Typical VCORE voltage = 2.5V when $VDD \ge VDDMIN$.

VOL (V)

VOL – 8x DRIVER PINS

DS70593D-page 332