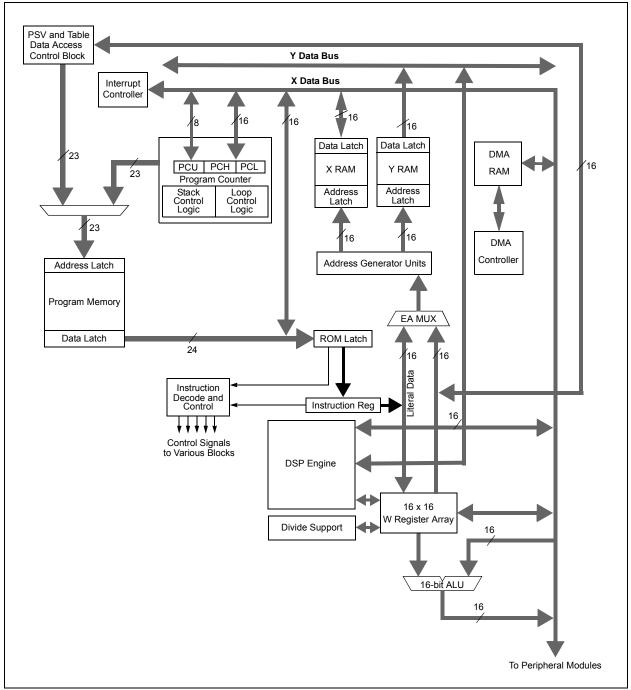


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

 $= K \in$

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp306a-i-mr

Email: info@E-XFL.COM

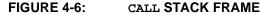
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

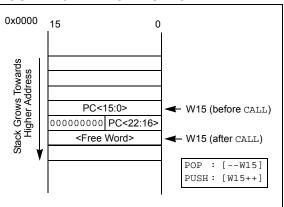
FIGURE 3-1: dsPIC33FJXXXGPX06A/X08A/X10A CPU CORE BLOCK DIAGRAM

4.2.7 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJXXXGPX06A/X08A/X10A devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.

Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.


Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.2.8 DATA RAM PROTECTION FEATURE

The dsPIC33F product family supports Data RAM protection features which enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

The addressing modes in Table 4-35 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file reg-

ister or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The 3-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2 where:

Operand 1 is always a working register (i.e., the addressing mode can only be register direct) which is referred to as Wb.

Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- · Register Direct
- Register Indirect
- Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note:	Not all instructions support all the
	addressing modes given above.
	Individual instructions may support
	different subsets of these addressing
	modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the EA.
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-35: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the Addressing
	mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (Register Offset)
	field is shared between both source and
	destination (but typically only used by
	one).

In summary, the following Addressing modes are supported by move and accumulator instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)

- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not all instructions support all the
	Addressing modes given above.
	Individual instructions may support different subsets of these Addressing
	modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the data pointers through register indirect tables.

The 2-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU and W10 and W11 will always be directed to the Y AGU. The effective addresses generated (before and

SR: CPU STATUS REGISTER⁽¹⁾

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0	
OA	OB	SA	SB	OAB	SAB	DA	DC	
bit 15		÷					bit 8	
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С	
bit 7							bit 0	
Legend:								
C = Clear only bit		R = Readable bit		U = Unimplemented bit, read as '0'				
S = Set only bit		W = Writable	bit	-n = Value at POR				

x = Bit is unknown

bit 7-5

1' = Bit is set

REGISTER 7-1:

IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

'0' = Bit is cleared

- 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0	
	_		US	EDT		DL<2:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0	
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF	
bit 7							bit 0	
Legend:		C = Clear onl	y bit					
R = Readable bit		W = Writable	bit	-n = Value at POR '1' = Bit is set				
0' = Bit is cleared 'x = Bit is unknown			nown	U = Unimplemented bit, read as '0'				
bit 3 IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾								
	1 = CPU inte	rrupt priority lev	/el is greater t	han 7				
	0 = CPU inte	rrupt priority lev	el is 7 or less	;				

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7	'-8: IFS3: I	INTERRUPT	FLAG STAT	US REGIST	ER 3					
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0			
_	_	DMA5IF	DCIIF	DCIEIF	_	—	C2IF			
bit 15				•			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'				
-n = Value at I		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	DMA5IF: DM	A Channel 5 D	ata Transfer (Complete Inter	rupt Flag Status	bit				
		request has oc request has no								
bit 12	DCIIF: DCI E	vent Interrupt I	-lag Status bit							
	1 = Interrupt	request has oc	curred							
	•	request has no								
bit 11		Error Interrupt	U	it						
		request has oc request has no								
bit 10-9	Unimplemen	ted: Read as '	0'							
bit 8	C2IF: ECAN2	2 Event Interrup	ot Flag Status	bit						
	•	request has oc request has no								
bit 7	C2RXIF: ECA	AN2 Receive D	ata Ready Int	errupt Flag Sta	atus bit					
		request has oc request has no								
bit 6	•	rnal Interrupt 4		it						
	1 = Interrupt i	request has oc request has no	curred							
bit 5	INT3IF: Exter	rnal Interrupt 3	Flag Status b	it						
	•	request has oc request has no								
bit 4	-	-								
	1 = Interrupt i	T9IF: Timer9 Interrupt Flag Status bit 1 = Interrupt request has occurred								
	0 = Interrupt	request has no	t occurred							
bit 3		Interrupt Flag								
		request has oc								
bit 2	-	request has no 2 Master Even		ag Status bit						
SIL Z		request has oc	•	ug oluluo bit						
		request has no								
bit 1	SI2C2IF: 12C	2 Slave Events	Interrupt Flag	g Status bit						
		request has oc								
	-	request has no								
bit 0		Interrupt Flag								
		request has oc request has no								
		iequest nas no								

10.0 POWER-SAVING FEATURES

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) in "dsPIC33F/PIC24H Familv the Reference Manual", which is available the site from Microchip web (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJXXXGPX06A/X08A/X10A devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

dsPIC33FJXXXGPX06A/X08A/X10A devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

dsPIC33FJXXXGPX06A/X08A/X10A devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE_MODE; Put the device into IDLE mode

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
T5MD	T4MD	T3MD	T2MD	T1MD		_	DCIMD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD ⁽¹⁾
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown
bit 15	T5MD: Timer	5 Module Disat	ole bit				
		nodule is disable nodule is enable					
bit 14	T4MD: Timer	4 Module Disat	ole bit				
	-	nodule is disable nodule is enable					
bit 13		3 Module Disat					
	1 = Timer3 m	nodule is disable	ed				
	0 = Timer3 m	nodule is enable	d				
bit 12	-	2 Module Disat					
	-	nodule is disable nodule is enable					
bit 11	T1MD: Timer	1 Module Disat	ole bit				
		nodule is disable nodule is enable					
bit 10-9	Unimplemer	ted: Read as '	כ'				
bit 8	DCIMD: DCI	Module Disable	e bit				
		ule is disabled ule is enabled					
bit 7	I2C1MD: I ² C	1 Module Disab	le bit				
		dule is disabled dule is enabled					
bit 6		T2 Module Disa	ble bit				
	1 = UART2 module is disabled 0 = UART2 module is enabled						
bit 5		T1 Module Disa					
		nodule is disabl					
	0 = UART1 n	nodule is enable	ed				
bit 4	SPI2MD: SP	I2 Module Disal	ole bit				
		dule is disabled					
		dule is enabled					
bit 3		11 Module Disal	ole bit				
		dule is disabled dule is enabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

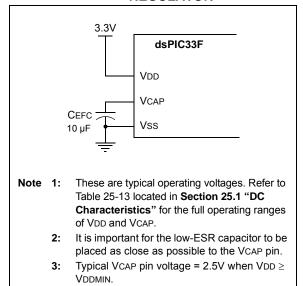
U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0			
_	—	CSIDL	ABAT	—		REQOP<2:0>				
bit 15							bit			
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0			
	OPMODE<2:0		_	CANCAP	_	_	WIN			
bit 7							bit			
Legend:										
R = Readable	hit	W = Writable	hit	II = I Inimplen	nented bit, read	1 as 'N'				
-n = Value at I		'1' = Bit is se		'0' = Bit is clea		r = Bit is Rese	erved			
	Ölt	1 Dit io oo								
bit 15-14	Unimplemer	nted: Read as	'0'							
bit 13	CSIDL: Stop	o in Idle Mode I	oit							
				levice enters Idl	e mode					
		module opera								
bit 12		All Pending Tr								
	 1 = Signal all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted 									
bit 11	Reserved: D				bontou					
bit 10-8			peration Mode	bits						
	REQOP<2:0>: Request Operation Mode bits 111 = Set Listen All Messages mode									
	110 = Reserved - do not use									
	101 = Reserved - do not use									
	100 = Set Configuration mode									
	011 = Set Listen Only Mode 010 = Set Loopback mode									
	001 = Set Disable mode									
	000 = Set N o	ormal Operatio	n mode							
bit 7-5	OPMODE<2	:0>: Operation	Mode bits							
	111 = Module is in Listen All Messages mode									
	110 = Reserved 101 = Reserved									
		e is in Configu	ration mode							
	011 = Module is in Listen Only mode									
		e is in Loopba								
	001 = Module is in Disable mode 000 = Module is in Normal Operation mode									
bit 4		nted: Read as	-							
bit 3	-			Capture Event	Enable bit					
bit o		•		nessage receive						
	0 = Disable 0									
bit 2-1	Unimplemer	nted: Read as	'0'							
bit 0	WIN: SFR M	lap Window Se	elect bit							
	WIN: SFR Map Window Select bit 1 = Use filter window									
	0 = Use buffe									

REGISTER 19-1: CiCTRL1: ECAN™ CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15M	SK<1:0>	F14MS	<<1:0>	F13M	SK<1:0>	F12MSI	K<1:0>
bit 15		ł				ł	bi
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11M	SK<1:0>	F10MS	<<1:0>	F9MS	SK<1:0>	F8MSK	(<1:0>
bit 7							bi
Legend:							
R = Readable		W = Writable I	bit	-	mented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
				,			
bit 15-14		>: Mask Source	e for Filter 15	DIT			
	11 = Reserve	nce Mask 2 reg	isters contain	mask			
		nce Mask 1 reg					
		nce Mask 0 reg					
bit 13-12	F14MSK<1:0	>: Mask Source	e for Filter 14	bit			
	11 = Reserve	-,					
		nce Mask 2 reg					
		nce Mask 1 reg nce Mask 0 reg					
bit 11-10	-	>: Mask Source					
	11 = Reserve			5 TC			
	10 = Accepta	nce Mask 2 reg	isters contain	mask			
		nce Mask 1 reg					
	-	nce Mask 0 reg					
bit 9-8	F12MSK<1:0 11 = Reserve	>: Mask Source	e for Filter 12	bit			
		nce Mask 2 reg	isters contain	mask			
		nce Mask 1 reg					
	•	nce Mask 0 reg					
bit 7-6		>: Mask Source	e for Filter 11 b	oit			
	11 = Reserve						
		nce Mask 2 reg					
		nce Mask 1 reg nce Mask 0 reg					
bit 5-4		Source					
	11 = Reserve			5 TC			
		nce Mask 2 reg	isters contain	mask			
	•	nce Mask 1 reg					
		nce Mask 0 reg					
bit 3-2		: Mask Source	for Filter 9 bit				
	11 = Reserve	nce Mask 2 reg	istore contain	mask			
		nce Mask 1 reg					
		nce Mask 0 reg					
bit 1-0		: Mask Source					
	11 = Reserve	ed; do not use					
	10 = Accepta	nce Mask 2 reg					
			· · · · · · · · · · · · · · · · · · ·				
		nce Mask 1 reg nce Mask 0 reg					

NOTES:

22.2 On-Chip Voltage Regulator


All of the dsPIC33FJXXXGPX06A/X08A/X10A devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJXXXGPX06A/X08A/X10A family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. The regulator requires that a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) be connected to the VCAP pin (Figure 22-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 25-13 of **Section 25.0** "**Electrical Characteristics**".

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the VCAP
	pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 22-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

22.3 BOR: Brown-out Reset

The BOR (Brown-out Reset) module is based on an internal voltage reference circuit that monitors the regulated voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR will generate a Reset pulse which will reset the device. The BOR will select the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>). Furthermore, if an oscillator mode is selected, the BOR will activate the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, then the clock will be held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) will be set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and will reset the device should VDD fall below the BOR threshold voltage.

25.1 DC Characteristics

TABLE 25-1:	OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temp Range	Max MIPS
Characteristic	(in Volts)	(in °C)	dsPIC33FJXXXGPX06A/X08A/X10A
	VBOR-3.6V ⁽¹⁾	-40°C to +85°C	40
_	VBOR-3.6V ⁽¹⁾	-40°C to +125°C	40

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 25-11 for the minimum and maximum BOR values.

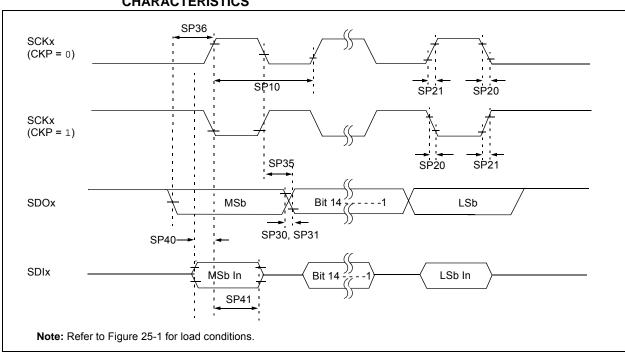
TABLE 25-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
dsPIC33FJXXXGPX06A/X08A/X10A					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+150	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ PDPINT + PI/O)	W		
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	Pdmax	(TJ - TA)/θJ	A	W

TABLE 25-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic		Тур	Max	Unit	Notes
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θja	40	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θја	40	—	°C/W	1
Package Thermal Resistance, 80-pin TQFP (12x12x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θja	28	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.


TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			$\label{eq:standard operating Conditions: 3.0V to 3.6V} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units	Conditions			
Operating Cur	rent (IDD) ⁽¹⁾						
DC20d	27	30	mA	-40°C			
DC20a	27	30	mA	+25°C	3.3V	10 MIPS	
DC20b	27	30	mA	+85°C	3.3V	10 10195	
DC20c	27	35	mA	+125°C			
DC21d	36	40	mA	-40°C		16 MIDS	
DC21a	37	40	mA	+25°C	3.3V		
DC21b	38	45	mA	+85°C	3.3V	16 MIPS	
DC21c	39	45	mA	+125°C			
DC22d	43	50	mA	-40°C			
DC22a	46	50	mA	+25°C	2.21/	20 MIPS	
DC22b	46	55	mA	+85°C	- 3.3V		
DC22c	47	55	mA	+125°C			
DC23d	65	70	mA	-40°C			
DC23a	65	70	mA	+25°C	2.21/		
DC23b	65	70	mA	+85°C	- 3.3V	30 MIPS	
DC23c	65	70	mA	+125°C	7		
DC24d	84	90	mA	-40°C			
DC24a	84	90	mA	+25°C	2.21/		
DC24b	84	90	mA	+85°C	- 3.3V	40 MIPS	
DC24c	84	90	mA	+125°C	7		

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- · JTAG is disabled
- **2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

FIGURE 25-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS

TABLE 25-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

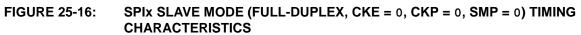
AC CHARACTERISTICS			(unless c	Operatin otherwise g temperat	stated) ture -40	°C ≤ Ta ≤	/ to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	—	_	10	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	-	ns	—

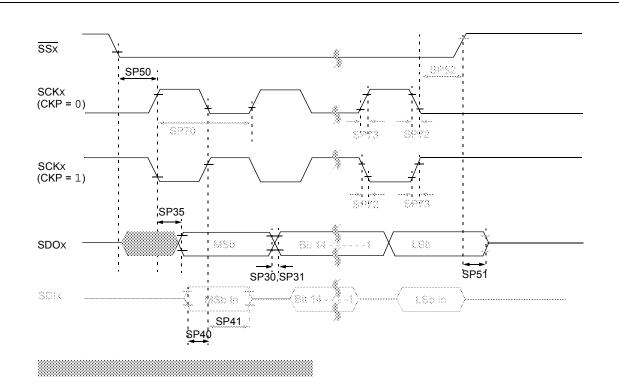
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

TABLE 25-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extend} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—		ns	See Note 4


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions	
	Clock Parameters							
AD50b	TAD	ADC Clock Period	76		_	ns	—	
AD51b	TRC	ADC Internal RC Oscillator Period	_	250	_	ns	—	
Conversion Rate								
AD55b	TCONV	Conversion Time	—	12 Tad	_	_	—	
AD56b	FCNV	Throughput Rate	—		1.1	Msps	—	
AD57b	TSAMP	Sample Time	2 Tad	_	_	_	—	
		Timir	ng Paramo	eters				
AD60b	TPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 TAD	—	3.0 Tad	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected	
AD61b	TPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad		_	
AD62b	Tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	_	0.5 Tad	_		_	
AD63b	Tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	_	—	20	μS	_	

TABLE 25-45: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

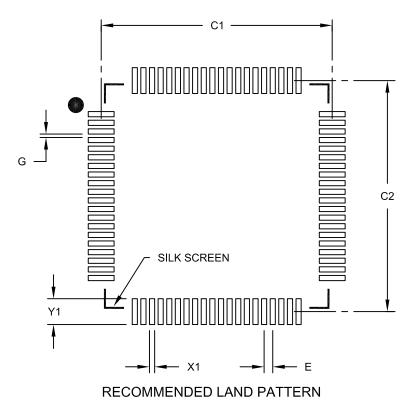

3: TDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 25-46: DMA READ/WRITE TIMING REQUIREMENTS

AC CH	ARACTERISTICS	(unless o	therwise	stated) ure -40°	°C ≤ TA	0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended	
Param No.	Characteristic	Min.	Min. Typ Max. Units Conditions				
DM1a	DMA Read/Write Cycle Time	—	_	2 Tcy	ns	This characteristic applies to dsPIC33FJ256GPX06A/X08A/X10A devices only.	
DM1b	DMA Read/Write Cycle Time	—	_	1 Тсү	ns	This characteristic applies to all devices with the exception of the dsPIC33FJ256GPX06A/X08A/X10A.	

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

[-
	Units		MILLIMETER	S
Dimensi	on Limits	MIN	NOM	MAX
Contact Pitch E			0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B

TABLE B-2:	MAJOR SECTION UPDATES (CONTINUED)
------------	-----------------------------------

Section Name	Update Description
Section 25.0 "Electrical Characteristics"	Removed Note 4 from the DC Temperature and Voltage Specifications (see Table 25-4).
	Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input Specifications (see Table 25-9).
	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 25-18).
	Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 25-20).
	Updated the ADC Module Specification minimum values for parameters AD05 and AD07, and updated the maximum value for parameter AD06 (see Table 25-41).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 25-42).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 25-43).
	Added DMA Read/Write Timing Requirements (see Table 25-46).
Section 26.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.
	Updated the storage temperature end range to +160°C.
	Updated the maximum junction temperature from +145°C to +155°C.
	Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 26-2).
	Added Note 3 and updated the ADC Module Specifications (12-bit Mode), removing all parameters with the exception of HAD33a (see Table 26-16).
	Added Note 3 and updated the ADC Module Specifications (10-bit Mode), removing all parameters with the exception of HAD33b (see Table 26-17).

IPC7 (Interrupt Priority Control 7) 121
IPC8 (Interrupt Priority Control 8) 122
IPC9 (Interrupt Priority Control 9) 123
NVMCOM (Flash Memory Control)79, 80
OCxCON (Output Compare x Control)
OSCCON (Oscillator Control) 148
OSCTUN (FRC Oscillator Tuning) 152
PLLFBD (PLL Feedback Divisor)151
PMD1 (Peripheral Module Disable Control
Register 1) 157
PMD1 (Peripheral Module Disable
Control Register 1)157
PMD2 (Peripheral Module Disable Control
Register 2) 159
PMD3 (Peripheral Module Disable Control
Register 3) 161
PMD3 (Peripheral Module Disable
Control Register 3)161
RCON (Reset Control)84
RSCON (DCI Receive Slot Control)235
SPIxCON1 (SPIx Control 1)184
SPIxCON2 (SPIx Control 2)186
SPIxSTAT (SPIx Status and Control) 183
SR (CPU Status)94
T1CON (Timer1 Control)168
TSCON (DCI Transmit Slot Control)
TxCON (T2CON, T4CON, T6CON or
T8CON Control)172
TyCON (T3CON, T5CON, T7CON or
T9CON Control)173
UxMODE (UARTx Mode)197
UxSTA (UARTx Status and Control)
Reset
Clock Source Selection 86
Special Function Register Reset States87
Times86
Reset Sequence
Resets
S
-
Serial Peripheral Interface (SPI)
Software Simulator (MPLAB SIM)
Software Stack Pointer, Frame Pointer
CALLL Stack Frame
Special Features of the CPU251 SPI Module
SPI Module SPI1 Pagiatar Man 54

SPI1 Register Map	
SPI2 Register Map	
Symbols Used in Opcode Descriptions	
System Control	
Register Map	66

Т

Temperature and Voltage Specifications
AC
Timer1
Timer2/3, Timer4/5, Timer6/7 and Timer8/9169
Timing Characteristics
CLKO and I/O285
Timing Diagrams
10-bit A/D Conversion (CHPS<1:0> = 01, SIMSAM = 0,
ASAM = 0, SSRC<2:0> = 000)
10-bit A/D Conversion (CHPS<1:0> = 01, SIMSAM = 0,
ASAM = 1, SSRC<2:0> = 111,
SAMC<4:0> = 00001)319

12-bit A/D Conversion (ASAM = 0, SSRC = 000)	
CAN I/O	
DCI AC-Link Mode	310
DCI Multi -Channel, I ² S Modes	308
External Clock	
I2Cx Bus Data (Master Mode)	304
I2Cx Bus Data (Slave Mode)	306
I2Cx Bus Start/Stop Bits (Master Mode)	304
I2Cx Bus Start/Stop Bits (Slave Mode)	306
Input Capture (CAPx)	
OC/PWM	
Output Compare (OCx)	
Reset, Watchdog Timer, Oscillator Start-up Timer	
and Power-up Timer	286
Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock	
Timing Requirements	200
ADC Conversion (10-bit mode)	320
ADC Conversion (12-bit Mode)	
CLKO and I/O	
DCI AC-Link Mode	
DCI Multi-Channel, I ² S Modes	
External Clock	
Input Capture	
SPIx Master Mode (CKE = 0)	
SPIx Module Master Mode (CKE = 1)	
SPIx Module Slave Mode (CKE = 0)	
SPIx Module Slave Mode (CKE = 1)	327
Timing Specifications	
10-bit A/D Conversion Requirements	
12-bit A/D Conversion Requirements	
CAN I/O Requirements	
I2Cx Bus Data Requirements (Master Mode)	
I2Cx Bus Data Requirements (Slave Mode)	
Output Compare Requirements	290
PLL Clock 284,	325
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out	
Reset Requirements	287
Simple OC/PWM Mode Requirements	
Timer1 External Clock Requirements	
Timer2, Timer4, Timer6 and Timer8 External	
Clock Requirements	289
Timer3, Timer5, Timer7 and Timer9 External	
Clock Requirements	289
•	_00
11	

U

UART Module	
UART1 Register Map	
UART2 Register Map	

V

Voltage Regulator (On-Chip).	
------------------------------	--

w

Watchdog Timer (WDT)	251, 257
Programming Considerations	
WWW Address	357
WWW, On-Line Support	