

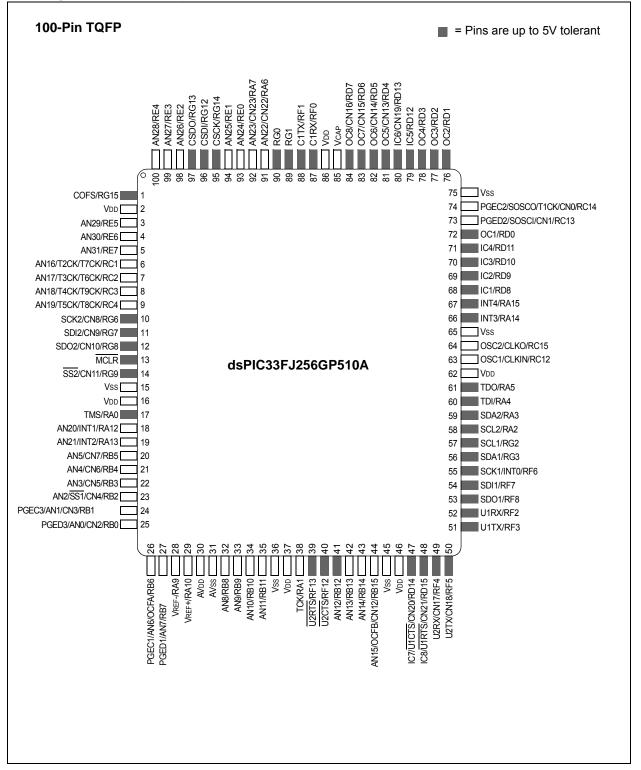
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

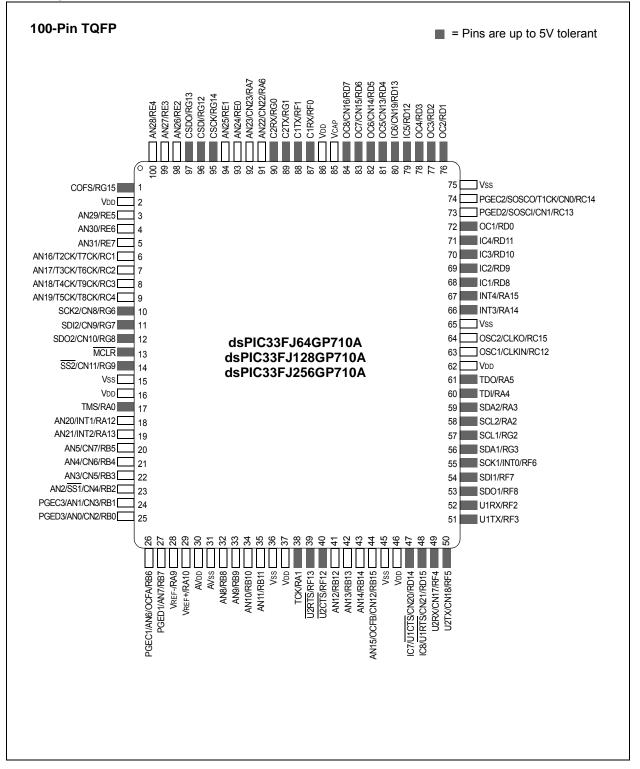
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

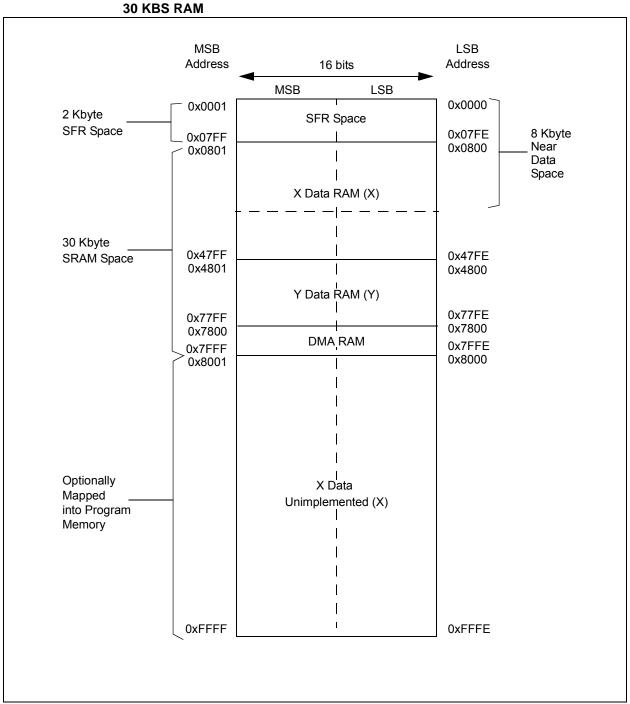
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XE

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp310a-e-pt


Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06A/X08A/X10A DEVICES WITH 30 KBS RAM

TABLE 4-9: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_		—	—		_	_					Receive	Register				0000
I2C1TRN	0202	—		_	_	_	_	— — Transmit Register							OOFF			
I2C1BRG	0204	_	_	_	_	_	_								0000			
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					Address	Register					0000
I2C1MSK	020C	_	_	_	_	_	_	Address Mask Register							0000			

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: I2C2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C2RCV	0210	—	—		—	_	-	_					Receive	Register				0000
I2C2TRN	0212	_	_	_	_	_	_	_	_				Transmit	t Register				OOFF
I2C2BRG	0214	_	_	_	_	_	_	_				Baud Rat	e Generato	r Register				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	—	—	_	_	_						Address	Register					0000
I2C2MSK	021C	-	—		—	_						Address Ma	ask Register	r				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: DCI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
DCICON1	0280	DCIEN	—	DCISIDL	_	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST			—	COFSM1	COFSM0	0000 0000 0000 0000
DCICON2	0282	_	_	_	_	BLEN1	BLEN0	_		COFSO	G<3:0>		-		V	VS<3:0>		0000 0000 0000 0000
DCICON3	0284	_	_	_	_						BCG<1	1:0>						0000 0000 0000 0000
DCISTAT	0286	_	_	_	_	SLOT3	SLOT2	SLOT1	SLOT0		_	-	-	ROV	RFUL	TUNF	TMPTY	0000 0000 0000 0000
TSCON	0288	TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8	TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0	0000 0000 0000 0000
RSCON	028C	RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8	RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0	0000 0000 0000 0000
RXBUF0	0290							Receive E	Buffer #0 D	ata Regis	ster							0000 0000 0000 0000
RXBUF1	0292							Receive E	Buffer #1 D	ata Regis	ster							0000 0000 0000 0000
RXBUF2	0294							Receive E	Buffer #2 D	ata Regis	ster							0000 0000 0000 0000
RXBUF3	0296							Receive E	Buffer #3 D	ata Regis	ster							0000 0000 0000 0000
TXBUF0	0298							Transmit I	Buffer #0 D	ata Regi	ster							0000 0000 0000 0000
TXBUF1	029A							Transmit I	Buffer #1 D	ata Regi	ster							0000 0000 0000 0000
TXBUF2	029C							Transmit I	Buffer #2 D	ata Regi	ster							0000 0000 0000 0000
TXBUF3	029E							Transmit I	Buffer #3 D	ata Regi	ster							0000 0000 0000 0000

dsPIC33FJXXXGPX06A/X08A/X10A

Legend:

— = unimplemented, read as '0'. Refer to the *"dsPIC33F/PIC24H Family Reference Manual"* for descriptions of register bit fields. Note 1:

TABLE 4-25: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14	TRISA13	TRISA12	_	TRISA10	TRISA9		TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	F6FF
PORTA	02C2	RA15	RA14	RA13	RA12	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	LATA13	LATA12	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA ⁽²⁾	06C0	ODCA15	ODCA14	_	_	_	_	_		_		ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Legend:

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-26: PORTB REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

© 2009-2012 Microchip Technology Inc.

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

		T2IP<2:0>		—		OC2IP<2:0>	
bit 15							bit
		DAMO		11.0		DAALO	
U-0	R/W-1	R/W-0 IC2IP<2:0>	R/W-0	U-0	R/W-1	R/W-0 DMA0IP<2:0>	R/W-0
bit 7		10211 42.05				Division 42.05	bit
Legend:							
R = Readable		W = Writable k	Dit	•	mented bit, rea		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	Unimplemer	nted: Read as '0)'				
bit 14-12	T2IP<2:0>: 7	Timer2 Interrupt	Priority bits				
	111 = Interru	ıpt is priority 7 (h	nighest priority	y interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 11	Unimplemer	nted: Read as '0)'				
bit 10-8		: Output Compa		=	ity bits		
	111 = Interru	ipt is priority 7 (h	nighest priority	y interrupt)			
	•						
	•						
		ipt is priority 1 ipt source is disa	abled				
bit 7		nted: Read as '0					
bit 6-4	-	Input Capture C		rrupt Priority b	its		
		ipt is priority 7 (h					
	•						
	•						
		pt is priority 1 pt source is disa	abled				
bit 3		nted: Read as '0					
bit 2-0	-	>: DMA Channe		sfer Complete	Interrupt Prio	rity bits	
511 2 0		ipt is priority 7 (h		-			
	•		5	,,			
	•						
	• 001 = Intern	pt is priority 1					
		ipt source is disa	abled				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		T6IP<2:0>		_		DMA4IP<2:0>	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_		_		OC8IP<2:0>	
bit 7				+	•		bit 0
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
pit 11	000 = Interru	upt is priority 1 upt source is disa n ted: Read as '0					
bit 10-8	111 = Interru • • 001 = Interru	DMA Channe upt is priority 7 (h upt is priority 1 upt source is disa	nighest priorit		Interrupt Prior	ity bits	
bit 7-3	Unimplemer	nted: Read as 'o)'				
bit 2-0		: Output Compa ıpt is priority 7 (h			ity bits		
		upt is priority 1 upt source is disa					

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
T9MD	T8MD	T7MD	T6MD				
bit 15	TOMD	TTND	TOND		_	—	bit
DIL 15							DI
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	—	_	—	I2C2MD	AD2MD ⁽¹⁾
bit 7		•					bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	ented bit, rea	id as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unk	nown
bit 15	T9MD: Timer	9 Module Disat	ole bit				
		odule is disable					
	0 = Timer9 m	odule is enable	d				
bit 14	T8MD: Timer	8 Module Disab	ole bit				
		odule is disable					
		odule is enable	-				
bit 13		7 Module Disat					
		odule is disable					
		odule is enable	-				
bit 12		6 Module Disat					
		odule is disable odule is enable					
bit 11-2		ited: Read as '					
bit 1	-	2 Module Disat					
		z woodle Disat	DIE DIL				
		dule is enabled					
bit 0		2 Module Disab	le bit ⁽¹⁾				
		ule is disabled					
		ule is enabled					

Note 1: PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

16.3 SPI Control Registers

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
SPIEN	—	SPISIDL	—	—	_	_	_				
bit 15							bit 8				
	R/C-0						D 0				
U-0	SPIROV	U-0	U-0	U-0	U-0	R-0 SPITBF	R-0 SPIRBF				
 bit 7	SPIRUV	—	_	_	—	SPILBE	bit (
Legend:		C = Clearable	bit								
R = Readabl	le bit	W = Writable I	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 14 bit 13 bit 12-7 bit 6	0 = Disables Unimplemen SPISIDL: Sto 1 = Discontin 0 = Continue Unimplemen SPIROV: Rec 1 = A new by previous	ted: Read as '(p in Idle Mode l ue module operati module operati ted: Read as '(ceive Overflow I	bit ration when de on in Idle mod)' Flag bit pletely receive xBUF register	evice enters Id de ed and discard	lle mode	oftware has not	read the				
bit 5-2		ted: Read as '(
bit 1	•	x Transmit Buffe		bit							
	 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR. 										
bit 0	SPIRBF: SPI	x Receive Buffe	er Full Status b	oit							
	0 = Receive is Automatically	complete, SPIxF s not complete, set in hardward cleared in hard	SPIxRXB is e e when SPIx t	ransfers data		SPIxRXB. reading SPIxRX	ά.				

R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
DCIEN		DCISIDL		DLOOP	CSCKD	CSCKE	COFSD				
bit 15						-	bit 8				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
UNFM	CSDOM	DJST		_		COFS	M<1:0>				
bit 7							bit 0				
Legend:											
R = Readable	e hit	W = Writable	hit	LI = LInimpler	mented bit, read	1 as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
n value at											
bit 15	DCIEN: DCI	Module Enable	bit								
	1 = Module is	s enabled									
	0 = Module is										
bit 14	-	nted: Read as '									
bit 13		CI Stop in Idle C									
		vill halt in CPU I vill continue to c		U Idle mode							
bit 12		nted: Read as '	-								
bit 11	•	ital Loopback M		bit							
		1 = Digital Loopback mode is enabled. CSDI and CSDO pins internally connected									
	•	0 = Digital Loopback mode is disabled									
bit 10		CSCKD: Sample Clock Direction Control bit 1 = CSCK pin is an input when DCI module is enabled									
		n is an input wh n is an output w									
bit 9		nple Clock Edge									
		nges on serial o		dge, sampled c	on serial clock ri	ising edge					
		nges on serial o	-	-	n serial clock fa	Illing edge					
bit 8		me Synchroniza									
		n is an input wh n is an output w									
bit 7	-	erflow Mode bit									
bit i	•••••••••	last value writte	n to the tran	smit registers o	n a transmit un	derflow					
		ʻ0 's on a trans n									
bit 6		rial Data Output									
		n will be tri-state n drives '0's dur									
bit 5	-	ata Justification	-								
	1 = Data trai	1 = Data transmission/reception is begun during the same serial clock cycle as the frame									
		nization pulse	tion in heavy				ation nules				
bit 4-2		nsmission/recep nted: Read as 'o	-	TONE SENALCIO	ok cycle alter fra	ame synchroniz	auon puise				
bit 4-2 bit 1-0	-	>: Frame Sync									
		C-Link mode									
	10 = 16-bit A	C-Link mode									
		me Sync mode									
	00 = Multi-Ch	nannel Frame S	ync mode								

REGISTER 20-1: DCICON1: DCI CONTROL REGISTER 1

TABLE 22-2:	22-2: CONFIGURATION BITS DESCRIPTION						
Bit Field	Register	RTSP Effect	Description				
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected				
BSS<2:0>	FBS	Immediate	 Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0007FEh 010 = High security; boot program Flash segment starts at End of VS, ends at 0007FEh Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at End of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at End of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at End of VS, ends at 001FFEh Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at End of VS, ends at 003FFEh 				
RBS<1:0>	FBS	Immediate	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes				
SWRP	FSS	Immediate	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected				

TABLE 22-2: CONFIGURATION BITS DESCRIPTION

22.4 Watchdog Timer (WDT)

For dsPIC33FJXXXGPX06A/X08A/X10A devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

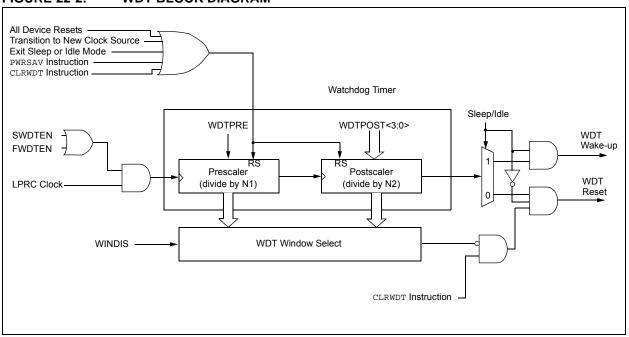
The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler and then can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.


The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

FIGURE 22-2: WDT BLOCK DIAGRAM

24.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

24.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

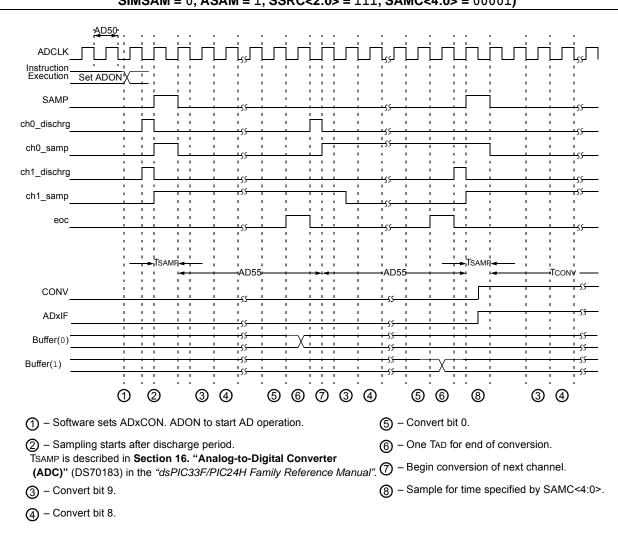

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

TABLE 25-4:	DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
-------------	---

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No. Symbol Characteristic			Min	Тур ⁽¹⁾	Max	Units	Conditions
Operati	ng Voltag	9					
DC10	Supply V	oltage					
	Vdd		3.0	_	3.6	V	—
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_		V	—
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V	_
DC17	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	—	V/ms	0-3.0V in 0.1s

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

FIGURE 25-26:ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

AC CH	AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions		
	-	Cloc	k Parame	ters			·		
AD50b	TAD	ADC Clock Period	76		_	ns	—		
AD51b	TRC	ADC Internal RC Oscillator Period	_	250	_	ns	—		
		Con	version F	late					
AD55b	TCONV	Conversion Time	—	12 Tad	_	_	—		
AD56b	FCNV	Throughput Rate	—		1.1	Msps	—		
AD57b	TSAMP	Sample Time	2 Tad	_	_	_	—		
		Timir	ng Paramo	eters					
AD60b	TPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 TAD	—	3.0 Tad	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61b	TPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad		_		
AD62b	Tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	_	0.5 Tad	_		_		
AD63b	Tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	_	—	20	μS	_		

TABLE 25-45: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: TDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 25-46: DMA READ/WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param Characteristic		Min.	Тур	Max. Units		Conditions		
DM1a	DMA Read/Write Cycle Time	—	_	2 Tcy	ns	This characteristic applies to dsPIC33FJ256GPX06A/X08A/X10A devices only.		
DM1b DMA Read/Write Cycle Time		—	_	1 Тсү	ns	This characteristic applies to all devices with the exception of the dsPIC33FJ256GPX06A/X08A/X10A.		

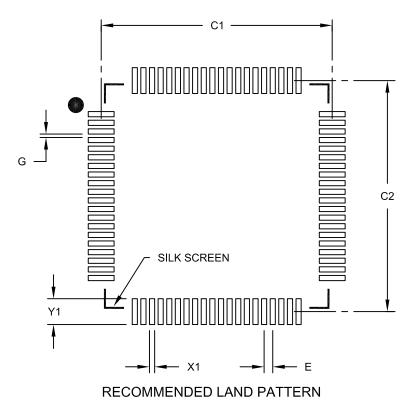
AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No. Symbol		Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		_	35	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2		

TABLE 26-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 26-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS


AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge			35	ns	—		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	_	_	ns	—		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25			ns	_		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	_	55	ns	See Note 2		
HSP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_		55	ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

[Units			-	
	MILLIMETERS				
Dimensi	Dimension Limits			MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X80)	X1			0.30	
Contact Pad Length (X80)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B