

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

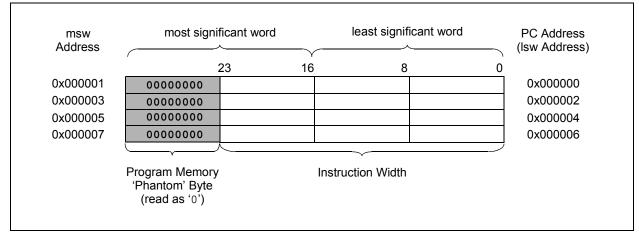
E·XFl

Detuns	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp310at-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJXXXGPX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJXXXGPX06A/X08A/X10A devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-5:	INTERRUPT CONTROLLER REGISTER MAP
------------	-----------------------------------

Name A INTCON1 0	SFR Addr	Bit 15	Bit 14	Bit 13														
				61113	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON2 0	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
	0082	ALTIVT	DISI	—	_	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0 C	0084	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1 C	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	—	MI2C1IF	SI2C1IF	0000
IFS2 C	8800	T6IF	DMA4IF	—	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3 0	008A	_	_	DMA5IF	DCIIF	DCIEIF		_	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4 0	008C	_	_	_	_	-		_	_	C2TXIF	C1TXIF	DMA7IF	DMA6IF	_	U2EIF	U1EIF	_	0000
IEC0 C	0094	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1 C	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC2 C	0098	T6IE	DMA4IE	_	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3 0	009A	_	_	DMA5IE	DCIIE	DCIEIE		_	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4 0	009C	—	—	_	—	_	_	-		C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE		0000
IPC0 0	00A4	—		T1IP<2:0>	•	_	(OC1IP<2:0)>	—		IC1IP<2:0>		—	11	NT0IP<2:0>		4444
IPC1 0	00A6	—		T2IP<2:0>	•	_	(OC2IP<2:0)>	—		IC2IP<2:0>		—	DMA0IP<2:0>		4444	
IPC2 0	00A8	—	L	J1RXIP<2:()>	_	S	SPI1IP<2:0)>	—	SPI1EIP<2:0>		—	T3IP<2:0>			4444	
IPC3 0	00AA	—	—	_	—	_	D	MA1IP<2:	0>	—		AD1IP<2:0>	•	—	U	1TXIP<2:0>	>	0444
IPC4 0	00AC	—		CNIP<2:0>	>	—	-			—	I	MI2C1IP<2:0)>	_	SI	2C1IP<2:0	>	4044
IPC5 0	00AE	—		IC8IP<2:0>	>	—		IC7IP<2:0	>	—		AD2IP<2:0>	•	_	11	VT1IP<2:0>		4444
IPC6 0	00B0	—		T4IP<2:0>	•	—	(C4IP<2:0)>	—		OC3IP<2:0>	>	_	DI	MA2IP<2:0	>	4444
IPC7 0	00B2	_	ι	J2TXIP<2:0)>	-	U	I2RXIP<2:	0>	_		INT2IP<2:0	>	_		T5IP<2:0>		4444
IPC8 0	00B4	—		C1IP<2:0>	>	—	С	1RXIP<2:	0>	—		SPI2IP<2:0	>	_	SF	PI2EIP<2:0	>	4444
IPC9 0	00B6	—		IC5IP<2:0>	>	—		IC4IP<2:0	>	—		IC3IP<2:0>		_	DI	MA3IP<2:0	>	4444
IPC10 0	00B8	—	(OC7IP<2:0	>	—	(C6IP<2:0)>	—		OC5IP<2:0>	>	_	I	C6IP<2:0>		4444
IPC11 0	00BA	—		T6IP<2:0>	•	—	D	MA4IP<2:	0>	—	—			_	C	0C8IP<2:0>		4404
IPC12 0	00BC	_		T8IP<2:0>	•	-	Μ	II2C2IP<2:	0>	_		SI2C2IP<2:0	>	_		T7IP<2:0>		4444
IPC13 0	00BE	_	C	2RXIP<2:0)>	_	I	NT4IP<2:0)>	-		INT3IP<2:0	>	_		T9IP<2:0>		4444
IPC14 0	00C0	_	0	DCIEIP<2:0)>	_	_	—	—	—	—	—	—	—	(C2IP<2:0>		4004
IPC15 0	00C2	_	—	_	—	_	_	—	_	—		DMA5IP<2:0	>	_	[OCIIP<2:0>		0044
IPC16 0	00C4	_	—	_	—	_	l	J2EIP<2:0	>	—		U1EIP<2:0>	•	_		—	—	0440
IPC17 0	00C6	_		C2TXIP<2:0)>	_	C	1TXIP<2:	0>	_		DMA7IP<2:0	>	_	DMA6IP<2:0>		>	4444
INTTREG 0	00E0	_	—	—	—		ILR<	3:0>		_			VE	CNUM<6:0>				0000

© 2009-2012 Microchip Technology Inc.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: ADC1 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300		ADC Data Buffer 0								xxxx							
AD1CON1	0320	ADON	_	ADSIDL	ADDMABM	_	AD12B	FOR	И<1:0>	:	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	١	/CFG<2:0>	>	_	_	CSCNA	CHP	S<1:0>	BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC		—		S	AMC<4:0>						ADCS	6<7:0>				0000
AD1CHS123	0326	_		—	_		CH123N	NB<1:0>	CH123SB				—	—	CH123N	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB		—		CI	H0SB<4:0>	>		CH0NA				(CH0SA<4:()>		0000
AD1PCFGH(1)	032A	PCFG31	PCFG30	PCFG29	PCFG28	PCFG27	PCFG26	PCFG25	PCFG24	PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16	0000
AD1PCFGL	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSH(1)	032E	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	_	_	—	_	_	_	_	_	_	_	_	_	[DMABL<2:()>	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Not all ANx inputs are available on all devices. See the device pin diagrams for available ANx inputs.

TABLE 4-16: ADC2 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC2BUF0	0340		ADC Data							Buffer 0							xxxx	
AD2CON1	0360	ADON	_	ADSIDL	ADDMABM	_	AD12B	FORI	M<1:0>	Ş	SSRC<2:0	>	_	SIMSAM	ASAM	SAMP	DONE	0000
AD2CON2	0362	Ň	VCFG<2:0>	>	_	_	CSCNA	CHP	S<1:0>	BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000
AD2CON3	0364	ADRC	_	_		S	AMC<4:0>						ADC	S<7:0>				0000
AD2CHS123	0366	_	_	_	_	_	CH123N	IB<1:0>	CH123SB	_	_	_	_	_	CH123N	IA<1:0>	CH123SA	0000
AD2CHS0	0368	CH0NB	_	_	_		CH0S	B<3:0>		CH0NA	_	_	_	— CH0SA<3:0>				0000
Reserved	036A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
AD2PCFGL	036C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
Reserved	036E	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
AD2CSSL	0370	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD2CON4	0372	_	_	_	_		_	_	_	_	_	_	_	_		DMABL<2:	0>	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	See Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—	_	1, 2, 3
	ECPLL, FRCPLL	TPOR + TSTARTUP + TRST	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	TOST + TLOCK	TFSCM	1, 2, 3, 4, 5, 6
BOR	EC, FRC, LPRC	TSTARTUP + TRST	_		3
	ECPLL, FRCPLL	TSTARTUP + TRST	TLOCK	TFSCM	3, 5, 6
	XT, HS, SOSC	TSTARTUP + TRST	Tost	TFSCM	3, 4, 6
	XTPLL, HSPLL	Tstartup + Trst	TOST + TLOCK	TFSCM	3, 4, 5, 6
MCLR	Any Clock	Trst	_	_	3
WDT	Any Clock	Trst	—	—	3
Software	Any Clock	Trst	—	_	3
Illegal Opcode	Any Clock	Trst	—	_	3
Uninitialized W	Any Clock	Trst	—	—	3
Trap Conflict	Any Clock	Trst	—	—	3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μs nominal).

- **2:** TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, only if the regulator is enabled.
- **3:** TRST = Internal state Reset time (20 μs nominal).
- **4:** Tos⊤ = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5:** TLOCK = PLL lock time (20 μs nominal).
- **6:** TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- · The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

^{© 2009-2012} Microchip Technology Inc.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	 Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		T1IP<2:0>				OC1IP<2:0>	
bit 15							bi
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC1IP<2:0>				INT0IP<2:0>	
bit 7							bi
Legend:							
R = Readabl	e bit	W = Writable I	bit	U = Unimple	mented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as 'o)'				
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits				
	111 = Interr	rupt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis	abled				
bit 11		ented: Read as '					
bit 10-8	-	>: Output Compa		1 Interrupt Prior	ritv bits		
		upt is priority 7 (I					
	•						
	•						
	001 = Interr	upt is priority 1					
		upt source is dis	abled				
bit 7	Unimpleme	ented: Read as 'o)'				
bit 6-4		: Input Capture C			oits		
	111 = Interr	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1	ablad				
bit 3		upt source is disa ented: Read as 'o					
bit 2-0	-			, bite			
DIL 2-0		External Interr upt is priority 7 (I)					
	•		gricot priori	, monuply			
	•						
	• 001 - Interr	upt is priority 1					

REGISTER	7-21: IPC6		PRIORITY	CONTROL R	EGISTER 6		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		T4IP<2:0>		—		OC4IP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
0-0	10,00-1	OC3IP<2:0>	10.00-0	0-0		DMA2IP<2:0>	10.00-0
bit 7		00011 \2.02					bit
Legend:							
R = Readabl		W = Writable I	oit		mented bit, re		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as '0)'				
bit 14-12	T4IP<2:0>:	Timer4 Interrupt	Priority bits				
		rupt is priority 7 (h		ty interrupt)			
	•		•				
	•						
	• 001 - Inter	rupt is priority 1					
		rupt source is disa	abled				
bit 11		ented: Read as 'd					
bit 10-8	OC4IP<2:0	>: Output Compa	re Channel 4	4 Interrupt Prio	rity bits		
	111 = Inter	rupt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	• 001 = Inter	rupt is priority 1					
		rupt source is disa	abled				
bit 7		ented: Read as '0					
bit 6-4	-	>: Output Compa		3 Interrupt Prio	rity bits		
		rupt is priority 7 (h		•			
	•		•				
	•						
	• 001 = Inter	rupt is priority 1					
		rupt source is disa	abled				
bit 3		ented: Read as 'd					
bit 2-0	-	:0>: DMA Channe		nsfer Complete	e Interrupt Pric	prity bits	
		rupt is priority 7 (h					
	•	· · · · · · · · · · · · · · · · · · ·		·) ·······			
	•						
	• 001 - Inter	rupt in priority 4					
		rupt is priority 1 rupt source is disa	abled				

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70182) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The dsPIC33FJXXXGPX06A/X08A/X10A peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

TABLE 8-1: PERIPHERALS WITH DMA SUPPORT

Peripheral	IRQ Number
INT0	0
Input Capture 1	1
Input Capture 2	5
Output Compare 1	2
Output Compare 2	6
Timer2	7
Timer3	8
SPI1	10
SPI2	33
UART1 Reception	11
UART1 Transmission	12
UART2 Reception	30
UART2 Transmission	31
ADC1	13
ADC2	21
DCI	60
ECAN1 Reception	34
ECAN1 Transmission	70
ECAN2 Reception	55
ECAN2 Transmission	71

The DMA controller features eight identical data transfer channels.

Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- · Word or byte sized data transfers
- Transfers from peripheral to DMA RAM or DMA RAM to peripheral
- Indirect Addressing of DMA RAM locations with or without automatic post-increment
- Peripheral Indirect Addressing In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral
- One-Shot Block Transfers Terminating DMA transfer after one block transfer
- Continuous Block Transfers Reloading DMA RAM buffer start address after every block transfer is complete
- Ping-Pong Mode Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately
- Automatic or manual initiation of block transfers
- Each channel can select from 20 possible sources of data sources or destinations

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	
	_		_	_	_	_	PLLDIV<8>	
bit 15	·	·	·	•	•	•	bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
R/W-U	R/W-0	R/ W- I		IV<7:0>	R/W-0	R/ W-U	R/W-0	
bit 7			FLLD	10~7.02			bit 0	
							DILU	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'		
						x = Bit is unknown		
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unl	known	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unl	known	
-n = Value a		'1' = Bit is set	-	ʻ0' = Bit is cle	ared	x = Bit is unl	known	
	Unimpleme		ʻ0'				known	
bit 15-9	Unimpleme	nted: Read as '	ʻ0'				known	
bit 15-9	Unimplemer PLLDIV<8:0	nted: Read as '	ʻ0'				known	
bit 15-9	Unimplemer PLLDIV<8:0	nted: Read as '	ʻ0'				(nown	
bit 15-9	Unimplemer PLLDIV<8:0	nted: Read as '	ʻ0'				(nown	
bit 15-9	Unimplemei PLLDIV<8:0 111111111 • •	nted: Read as '	ʻ0'				(nown	
bit 15-9	Unimplemei PLLDIV<8:0 111111111 • •	nted: Read as >: PLL Feedba = 513	ʻ0'				<u>known</u>	
bit 15-9	Unimplemei PLLDIV<8:0 111111111 • •	nted: Read as >: PLL Feedba = 513	ʻ0'				<u>known</u>	
bit 15-9	Unimplemei PLLDIV<8:0 111111111 • •	nted: Read as >: PLL Feedba = 513	ʻ0'				<u>Known</u>	
bit 15-9	Unimplemei PLLDIV<8:0 111111111 • •	nted: Read as >: PLL Feedba = 513 = 50 (default)	ʻ0'				<u>Known</u>	
bit 15-9	Unimplemen PLLDIV<8:0 111111111 • • • • • • • • • • • • • •	nted: Read as >: PLL Feedba = 513 = 50 (default) = 4	ʻ0'				<u>Known</u>	

Note 1: This is register is reset only on a Power-on Reset (POR).

10.2.2 IDLE MODE

Idle mode has these features:

- The CPU stops executing instructions
- · The WDT is automatically cleared
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

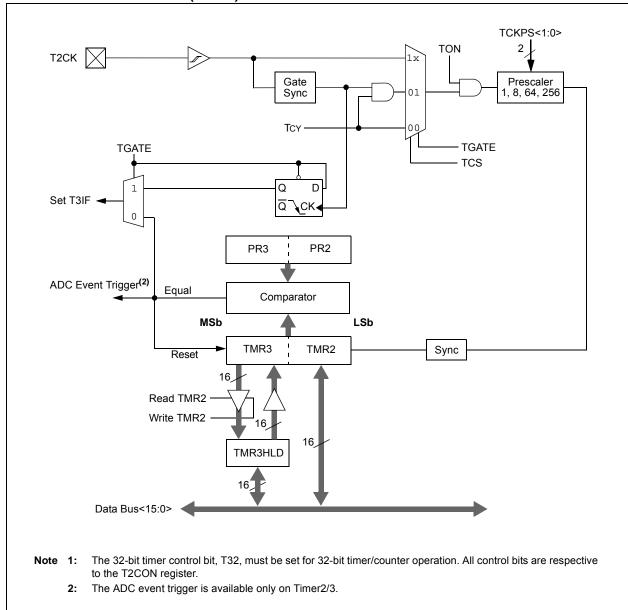
Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLK-DIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLK-DIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLK-DIV<15>). By default, interrupt events have no effect on Doze mode operation.


For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

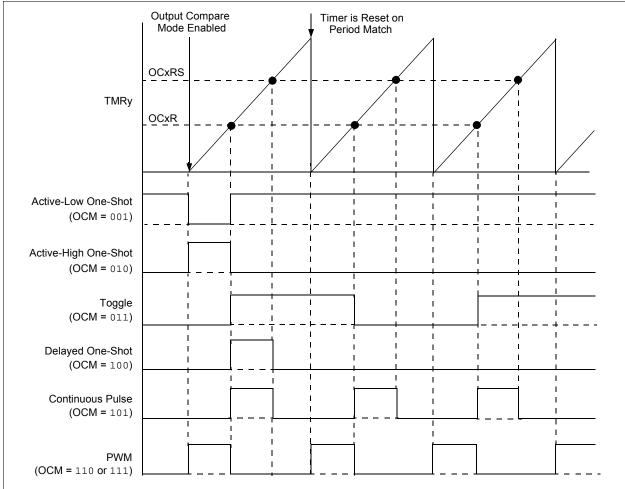
A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

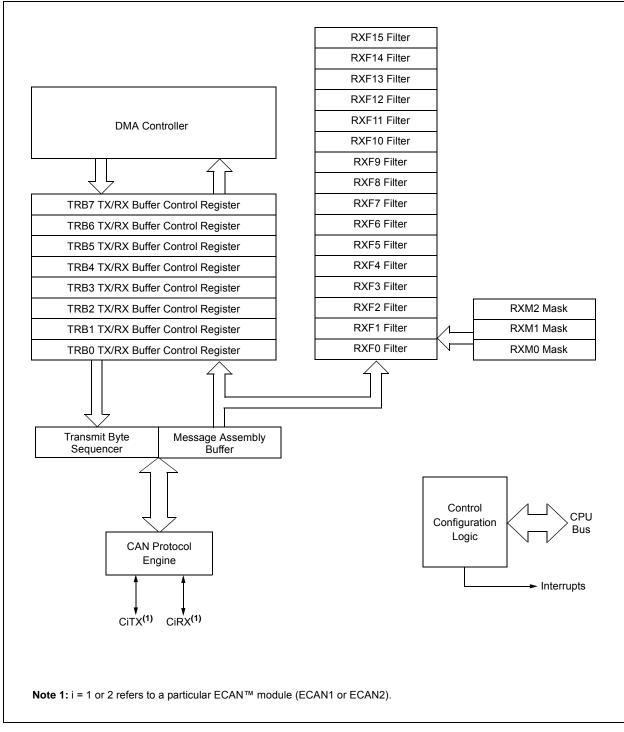
FIGURE 13-1: TIMER2/3 (32-BIT) BLOCK DIAGRAM⁽¹⁾

15.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user


TABLE 15-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.


Note:	See Section 13. "Output Compare"
	(DS70209) in the "dsPIC33F/PIC24H
	Family Reference Manual" for OCxR and
	OCxRS register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	_
001	Active-Low One-Shot	0	OCx rising edge
010	Active-High One-Shot	1	OCx falling edge
011	Toggle	Current output is maintained	OCx rising and falling edge
100	Delayed One-Shot	0	OCx falling edge
101	Continuous Pulse	0	OCx falling edge
110	PWM without Fault Protection	ʻ0', if OCxR is zero ʻ1', if OCxR is non-zero	No interrupt
111	PWM with Fault Protection	ʻ0', if OCxR is zero ʻ1', if OCxR is non-zero	OCFA falling edge for OC1 to OC4

FIGURE 19-1: ECAN™ MODULE BLOCK DIAGRAM

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

REGISTER 19-2: CiCTRL2: ECAN™ CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	_	—	—	—	_			
bit 15							bit 8			
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
—	—	_			DNCNT<4:0>					
bit 7							bit 0			
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-5	Unimplemen	ted: Read as '	0'							
bit 4-0	DNCNT<4:0>	-: DeviceNet™	Filter Bit Num	iber bits						
	11111 = Inv	alid selection								
	•									
	•									
	•									
	10010 = Inva	10010 = Invalid selection								
	10001 = Con	npare up to dat	a byte 3, bit 6	with EID<17>						
	•									
	•									
	00001 = Con	npare up to dat	a bvte 1. bit 7	with EID<0>						

00000 = Do not compare data bytes

REGISTER 19-7: CiINTE: ECAN™ INTERRUPT ENABLE REGISTER											
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
			_								
bit 15							bit				
D 444 0	5444.0	D 444 0		D 444 0	Dates	Dates	D N N O				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
IVRIE bit 7	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE				
							DI				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
hit 15 0	Unimplomor	ted. Dood oo f	o,'								
bit 15-8	-	nted: Read as '									
bit 7		d Message Inter	•	bit							
		 Interrupt request enabled Interrupt request not enabled 									
		•									
bit 6		Wake-up Activi		nable bit							
		request enable									
	-	request not ena									
bit 5		Interrupt Enab									
		request enable									
	0 = Interrupt	request not ena	abled								
bit 4	Unimplemen	nted: Read as '	0'								
bit 3	FIFOIE: FIFO	O Almost Full In	terrupt Enabl	e bit							
	1 = Interrupt request enabled										
	0 = Interrupt	request not ena	abled								
bit 2	RBOVIE: RX	Buffer Overflow	v Interrupt Er	nable bit							
	1 = Interrupt request enabled										
	0 = Interrupt	request not ena	abled								
bit 1		iffer Interrupt Er									
		request enable									
	0 = Interrupt	request not ena	abled								
bit 0		ffer Interrupt En									
		request enable									
	0 = Interrupt	request not ena	abled								

REGISTER 19-7: CIINTE: ECAN™ INTERRUPT ENABLE REGISTER

Bit Field	Register	RTSP Effect	Description
SSS<2:0>	FSS	Immediate	Secure Segment Program Flash Code Protection Size
			(FOR 128K and 256K DEVICES) x11 = No Secure program Flash segment
			Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS,
			ends at 0x007FFE
			Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE
			(FOR 64K DEVICES) x11 = No Secure program Flash segment
			Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE
			Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 007FFEh 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0>	FSS	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security; general program Flash segment starts at End of SS, ends at EOM 0x = High security; general program Flash segment starts at End of SS,
			ends at EOM

TABLE 22-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 25-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SY10	ТмсL	MCLR Pulse-Width (low)	2	_		μS	-40°C to +85°C		
SY11 SY12	TPWRT	Power-up Timer Period Power-on Reset Delay	 3	2 4 8 16 32 64 128 10	 30	ms μs	-40°C to +85°C User programmable -40°C to +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	_		
SY20	Twdt1	Watchdog Timer Time-out Period	—	—	_	_	See Section 22.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 25-19)		
SY30	Тоѕт	Oscillator Start-up Timer Period	—	1024 Tosc		—	Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μS	-40°C to +85°C		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 25-23: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СН	ARACTERIS	TICS	(unle	$ \begin{array}{ c c c c c c } \hline Standard Operating Conditions: 3.0V to 3.6V \\ \hline (unless otherwise stated) \\ \hline Operating temperature & -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} \\ \hline \end{array} $					
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of 20 or (Tcy + 20)/N	_	_	ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)	
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_		ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)	
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—		ns	N = prescale value (1, 8, 64, 256)	
TB20	TCKEXTMRL		External TxCK to Timer Incre			1.75 Tcy + 40	ns	_	

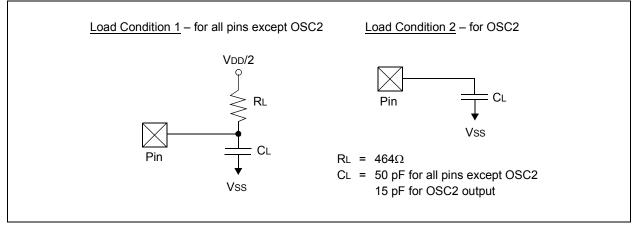
Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 25-24:TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING
REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charac	acteristic ⁽¹⁾ Min			Мах	Units	Conditions	
TC10	TtxH	TxCK High Time	Synchronous	Тсү + 20	—	_	ns	Must also meet parameter TC15	
TC11	TtxL	TxCK Low Time	Synchronous	TCY + 20	—	—	ns	Must also meet parameter TC15	
TC15	TtxP	TxCK Input Period	Synchronous with prescale		—	_	ns	N = prescale value (1, 8, 64, 256)	
TC20	TCKEXTMRL	· · j	xternal TxCK o Timer Incre-	0.75 Tcy + 40		1.75 Tcy + 40	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

26.2 AC Characteristics and Timing Parameters


The information contained in this section defines dsPIC33FJXXXGPX06A/X08A/X10A AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in Section 25.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 25.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 26-7: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
	$\begin{array}{llllllllllllllllllllllllllllllllllll$					

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-8: PLL CLOCK TIMING SPECIFICATIONS

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol Characteristic Min Typ Max U		Units	Conditions			
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

Note 1: These parameters are characterized, but are not tested in manufacturing.