

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp706a-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value which is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the Most Significant bit (MSb) is defined as a sign bit. Generally speaking, the range of an N-bit two's complement integer is -2^{N-1} to 2^{N-1} - 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0. For a 32-bit integer, the data is -2,147,483,648 (0x8000 0000) range to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518×10^{-5} . In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product which has a precision of 4.65661×10^{-10} .

The same multiplier is used to support the MCU multiply instructions which include integer 16-bit signed, unsigned and mixed sign multiplies.

The MUL instruction may be directed to use byte or word sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true, or complement data into the other input. In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented), whereas in the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described above and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits have been provided to support saturation and overflow; they are:

- OA: AccA overflowed into guard bits
- OB: AccB overflowed into guard bits
- SA: AccA saturated (bit 31 overflow and saturation) or

AccA overflowed into guard bits and saturated (bit 39 overflow and saturation)

 SB: AccB saturated (bit 31 overflow and saturation) or

AccB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register (refer to **Section 7.0 "Interrupt Controller"**) are set. This allows the user to take immediate action, for example, to correct system gain.

Vector	Interrupt Request (IRQ)	IVT Address	AIVT Address	Interrupt Source	
Number	Number				
54	46	0x000070	0x000170	DMA4 – DMA Channel 4	
55	47	0x000072	0x000172	T6 – Timer6	
56	48	0x000074	0x000174	T7 – Timer7	
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events	
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events	
59	51	0x00007A	0x00017A	T8 – Timer8	
60	52	0x00007C	0x00017C	T9 – Timer9	
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3	
62	54	0x000080	0x000180	INT4 – External Interrupt 4	
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready	
64	56	0x000084	0x000184	C2 – ECAN2 Event	
65	57	0x000086	0x000186	Reserved	
66	58	0x000088	0x000188	Reserved	
67	59	0x00008A	0x00018A	DCIE – DCI Error	
68	60	0x00008C	0x00018C	DCID – DCI Transfer Done	
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5	
70	62	0x000090	0x000190	Reserved	
71	63	0x000092	0x000192	Reserved	
72	64	0x000094	0x000194	Reserved	
73	65	0x000096	0x000196	U1E – UART1 Error	
74	66	0x000098	0x000198	U2E – UART2 Error	
75	67	0x00009A	0x00019A	Reserved	
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6	
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7	
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request	
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request	
80-125	72-117	0x0000A4-0x0000FE	0x0001A4-0x0001FE	Reserved	

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

REGISTER	7-6: IFS1: I	INTERRUPT	FLAG STAT	US REGISTE	ER 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21IF
bit 15		•				·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IF	IC7IF	AD2IF	INT1IF	CNIF	—	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	U2TXIF: UAF 1 = Interrupt 1 0 = Interrupt 1	RT2 Transmitte request has oc request has no	r Interrupt Flag curred t occurred	g Status bit			
DIL 14	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 13	INT2IF: Exter	mal Interrupt 2	Flag Status bi	it			
	1 = Interrupt I 0 = Interrupt I	request has oc request has no	curred t occurred				
bit 12	T5IF: Timer5	Interrupt Flag	Status bit				
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 11	T4IF: Timer4	Interrupt Flag	Status bit				
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 10	OC4IF: Output 1 = Interrupt I 0 = Interrupt I	ut Compare Ch request has oc request has no	annel 4 Interr curred t occurred	upt Flag Status	s bit		
bit 9	OC3IF: Outpu	ut Compare Ch	annel 3 Interr	upt Flag Status	bit		
	1 = Interrupt	request has oc request has no	curred t occurred	1 0			
bit 8	DMA21IF: DM	MA Channel 2	Data Transfer	Complete Inter	rrupt Flag Stat	us bit	
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 7	IC8IF: Input C	Capture Chann	el 8 Interrupt l	Flag Status bit			
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 6	IC7IF: Input C	Capture Chann	el 7 Interrupt l	Flag Status bit			
	1 = Interrupt	request has oc request has no	curred t occurred				
bit 5	AD2IF: ADC2	2 Conversion C	complete Inter	rupt Flag Statu	s bit		
	1 = Interrupt	request has oc	curred				
1.11.4	0 = Interrupt	request has no	t occurred	•			
dit 4	INITIF: Exter	nai interrupt 1	Fiag Status bi	IT			
	1 = 1 interrupt 0 = Interrupt i	request has oc request has no	t occurred				

REGISTER 7	EGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2							
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
T6IF	DMA4IF		OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown	
bit 15	T6IF: Timer6	Interrupt Flag	Status bit					
	1 = Interrupt i 0 = Interrupt i	request has oc request has no	curred t occurred					
bit 14	DMA4IF: DM	A Channel 4 D	ata Transfer C	omplete Interr	upt Flag Status	bit		
	1 = Interrupt i 0 = Interrupt i	request has oc request has no	curred t occurred					
bit 13	Unimplemen	ted: Read as '	0'					
bit 12	OC8IF: Outpu	ut Compare Ch	annel 8 Interru	upt Flag Status	s bit			
	1 = Interrupt ı 0 = Interrupt ı	request has oc request has no	curred t occurred					
bit 11	OC7IF: Outpu	ut Compare Ch	annel 7 Interru	upt Flag Status	s bit			
	1 = Interrupt i 0 = Interrupt i	request has oc request has no	curred t occurred					
bit 10	OC6IF: Outpu	ut Compare Ch	annel 6 Interru	upt Flag Status	s bit			
	1 = Interrupt ı 0 = Interrupt ı	request has oc request has no	curred t occurred					
bit 9	OC5IF: Outpu	ut Compare Ch	annel 5 Interru	upt Flag Status	s bit			
	1 = Interrupt ı 0 = Interrupt ı	request has oc request has no	curred t occurred					
bit 8	IC6IF: Input C	Capture Chann	el 6 Interrupt F	lag Status bit				
	1 = Interrupt ı 0 = Interrupt ı	request has oc request has no	curred t occurred					
bit 7	IC5IF: Input C	Capture Chann	el 5 Interrupt F	lag Status bit				
	1 = Interrupt ı 0 = Interrupt ı	request has oc request has no	curred t occurred					
bit 6	IC4IF: Input C	Capture Chann	el 4 Interrupt F	lag Status bit				
	1 = Interrupt ı 0 = Interrupt ı	request has oc request has no	curred t occurred					
bit 5	IC3IF: Input C	Capture Chann	el 3 Interrupt F	lag Status bit				
	1 = Interrupt ı 0 = Interrupt ı	request has oc request has no	curred t occurred					
bit 4	DMA3IF: DM	A Channel 3 D	ata Transfer C	omplete Interr	upt Flag Status	bit		
	1 = Interrupt ı 0 = Interrupt ı	request has oc request has no	curred t occurred					
bit 3	C1IF: ECAN1	Event Interrup	ot Flag Status	bit				
	1 = Interrupt i 0 = Interrupt i	request has oc request has no	curred t occurred					

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
IC8IE	IC7IE	AD2IE	INT1IE	CNIE		MI2C1IE	SI2C1IE		
bit 7		1					bit 0		
L									
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown		
bit 15	U2TXIE: UAF	RT2 Transmitte	r Interrupt Ena	able bit					
	1 = Interrupt	request enable	d						
	0 = Interrupt	request not ena	abled						
DIT 14	U2RXIE: UAP		nterrupt Enab	Ie dit					
	0 = Interrupt	request enable	u abled						
bit 13	INT2IE: Exter	rnal Interrupt 2	Enable bit						
	1 = Interrupt i	request enable	d						
	0 = Interrupt	request not ena	abled						
bit 12	T5IE: Timer5	Interrupt Enab	le bit						
	1 = Interrupt	request enable	d						
bit 11	0 = Interrupt 1	errupi requesi noi errableo Fimera Interrupt Enable bit							
	1 = Interrunt	request enable	d						
	0 = Interrupt I	request not enable	abled						
bit 10	OC4IE: Output	ut Compare Ch	annel 4 Interr	upt Enable bit	t				
	1 = Interrupt	request enable	d						
hit Q		ut Compare Ch	ionnel 3 Interr	unt Enable bit	÷				
Dit 9	1 = Interrupt	request enable	d						
	0 = Interrupt	request not ena	abled						
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer (Complete Inter	rrupt Enable bit				
	1 = Interrupt	request enable	d						
	0 = Interrupt	request not ena	abled						
bit 7	IC8IE: Input (Capture Chann	el 8 Interrupt d	Enable bit					
	1 = Interrupt I 0 = Interrupt I	request enable	u abled						
bit 6	IC7IE: Input (Capture Chann	el 7 Interrupt	Enable bit					
	1 = Interrupt	request enable	d						
	0 = Interrupt	request not ena	abled						
bit 5	AD2IE: ADC2	2 Conversion C	omplete Inter	rupt Enable b	it				
	1 = Interrupt	request enable	d						
hit 4		request not ena	IDIEU Enable bit						
	1 = nterrunt	request enable	d						
	0 = Interrupt	request not enable	abled						

REGISTER	REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3									
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0			
_	—	DMA5IE	DCIIE	DCIEIE	—	_	C2IE			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
C2RXIE			T9IF	TRIE	MI2C2IE	SI2C2IE	T7IF			
bit 7		INTOIL	TUL	TOLE	WIZOZIE	OIZOZIL	bit C			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkn	iown			
bit 15-14	Unimpleme	nted: Read as '	0'							
bit 13	DMA5IE: DN	IA Channel 5 D	ata Transfer (Complete Inter	rupt Enable bit					
	1 = Interrupt	request enable	d							
hit 12			Enablo bit							
	1 = Interrupt	request enable								
	0 = Interrupt	request not en	abled							
bit 11	DCIEIE: DCI	Error Interrupt	Enable bit							
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not en	abled							
bit 10-9	Unimpleme	nted: Read as '	0'							
bit 8	C2IE: ECAN	C2IE: ECAN2 Event Interrupt Enable bit								
	1 = Interrupt 0 = Interrupt	request enable request not ena	d abled							
bit 7	C2RXIE: EC	AN2 Receive D	ata Ready Inf	errupt Enable	bit					
	1 = Interrupt	request enable	d abled	·						
bit 6	INTAIE: Exte	requeet not en	Enable hit							
bit o	1 = Interrupt	request enable	d							
hit 5	0 = Interrupt	request not ena	ableo Enable bit							
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not en	abled							
bit 4	T9IE: Timer9	Interrupt Enab	le bit							
	1 = Interrupt	request enable	d abled							
hit 3	TRIF: Timer8	Interrunt Enab	le hit							
bit 5	1 = Interrupt	request enable	d							
	0 = Interrupt	request not en	abled							
bit 2	MI2C2IE: 120	C2 Master Ever	nts Interrupt E	nable bit						
	1 = Interrupt 0 = Interrupt	request enable request not ena	d abled							
bit 1	SI2C2IE: 120	2 Slave Events	s Interrupt Ena	able bit						
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not ena	abled							
bit 0	T7IE: Timer7	Interrupt Enab	le bit							
	1 = Interrupt 0 = Interrupt	request enable request not enable	d abled							

- 40

~

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
—		CNIP<2:0>									
oit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		MI2C1IP<2:0>				SI2C1IP<2:0>					
bit 7							bit 0				
l ogond:											
R = Readab	le bit	W = Writable I	oit	U = Unimplei	mented bit. rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	Unimplem	ented: Read as '0)'								
bit 14-12	CNIP<2:0>	CNIP<2:0>: Change Notification Interrupt Priority bits									
	111 = Inter	rupt is priority 7 (ł	nighest priori	ity interrupt)							
	•										
	•										
	• 001 = Inter	runt is priority 1									
	000 = Inter	rupt source is disa	abled								
bit 11-7	Unimplem	ented: Read as '()'								
bit 6-4	MI2C1IP<2	:0>: 12C1 Master	Events Inter	rupt Priority bit	5						
	111 = Inter	111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	•										
	001 = Inter 000 = Inter	rupt is priority 1 rupt source is disa	abled								
bit 3	Unimplem	ented: Read as '0)'								
bit 2-0	SI2C1IP<2	:0>: I2C1 Slave E	vents Interru	upt Priority bits							
	111 = Inter	rupt is priority 7 (ł	nighest priori	ty interrupt)							
	•										
	•										
	• 001 - Intor	rupt is priority 1									
	001 - inter	rupt is priority 1	phlod								

VAANTDAL DEALATED (

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PWCOL7 | PWCOL6 | PWCOL5 | PWCOL4 | PWCOL3 | PWCOL2 | PWCOL1 | PWCOL0 |
| bit 15 | • | | | | | | bit 8 |

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| XWCOL7 | XWCOL6 | XWCOL5 | XWCOL4 | XWCOL3 | XWCOL2 | XWCOL1 | XWCOL0 |
| bit 7 | | | | | | | bit 0 |

Legend:		C = Clear only bit								
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	read as '0'						
-n = Value at I	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15	PWCOL7: (PWCOL7: Channel 7 Peripheral Write Collision Flag bit								
	1 = Write co	ollision detected								
hit 14		Channel 6 Perinheral Write	Collision Flag bit							
	1 = Write co	1 = Write collision detected								
	0 = No write	e collision detected								
bit 13	PWCOL5:	Channel 5 Peripheral Write	e Collision Flag bit							
	1 = Write co	1 = Write collision detected								
h:+ 40	0 = No write	e collision detected								
dit 12	PWCOL4: $($	Unannel 4 Peripheral Write	Collision Flag bit							
	0 = No write	e collision detected								
bit 11	PWCOL3:	Channel 3 Peripheral Write	Collision Flag bit							
	1 = Write co	1 = Write collision detected								
	0 = No write	e collision detected	_							
bit 10		Channel 2 Peripheral Write	e Collision Flag bit							
	1 = Vrite Co 0 = No write	e collision detected								
bit 9	PWCOL1:	Channel 1 Peripheral Write	Collision Flag bit							
	1 = Write co	1 = Write collision detected								
	0 = No write	e collision detected								
bit 8		Channel 0 Peripheral Write	e Collision Flag bit							
	\perp = vvrite co 0 = No write	e collision detected								
bit 7	XWCOL7:	Channel 7 DMA RAM Write	e Collision Flag bit							
	1 = Write co	1 = Write collision detected								
	0 = No write	e collision detected								
bit 6	XWCOL6: (Channel 6 DMA RAM Write	e Collision Flag bit							
	1 = Write co	Dilision detected								
bit 5	XWCOL5: (Channel 5 DMA RAM Write	e Collision Flag bit							
	1 = Write co	ollision detected								
	0 = No write	e collision detected								
bit 4	XWCOL4:	Channel 4 DMA RAM Write	e Collision Flag bit							
	1 = Write co	ollision detected								
	$v = i \mathbf{N} \mathbf{O} \mathbf{W} \mathbf{r} \mathbf{i} \mathbf{t} \mathbf{e}$	e comsion delected								

NOTES:

10.2.2 IDLE MODE

Idle mode has these features:

- The CPU stops executing instructions
- · The WDT is automatically cleared
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLK-DIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLK-DIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLK-DIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

REGIOTER							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
T5MD	T4MD	T3MD	T2MD	T1MD		—	DCIMD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD ⁽¹⁾
bit 7							bit 0
Legena:	- h:4		.:4		antad bit raa		
		vv = vvritable t	JIL	$0^{\circ} = 0$	arod	uas u v = Ditiounku	
	FUR				areu		IOWI
bit 15	T5MD. Timer!	5 Module Disah	le hit				
bit fo	1 = Timer5 m	odule is disable	d				
	0 = Timer5 mo	odule is enable	d				
bit 14	T4MD: Timer4	4 Module Disab	le bit				
	1 = Timer4 mo	odule is disable	ed .				
hit 10	0 = 11mer4 mo		0 Io hit				
DIL 15	1 = Timer3 mer3	odule is disable					
	0 = Timer3 model	odule is enable	d				
bit 12	T2MD: Timer2	2 Module Disab	le bit				
	1 = Timer2 mo	odule is disable	d				
	0 = Timer2 mo	odule is enable	d				
bit 11	T1MD: limer1	I Module Disab	le bit				
	1 = 1 imer 1 mo 0 = Timer 1 mo	odule is disable	a d				
bit 10-9	Unimplement	ted: Read as '0)'				
bit 8	DCIMD: DCI	Module Disable	bit				
	1 = DCI modu	le is disabled					
	0 = DCI modu	le is enabled					
bit 7	I2C1MD: I ² C1	Module Disab	le bit				
	$1 = 1^{2}C1 \mod 1^{2}$	le is disabled					
bit 6	U2MD: UART	2 Module Disal	ole bit				
	1 = UART2 m	odule is disable	ed				
	0 = UART2 m	odule is enable	d				
bit 5	U1MD: UART	1 Module Disal	ole bit				
	1 = UART1 m	odule is disable	ed .d				
hit 4		2 Module Disah	iu Na hit				
	$1 = SPI2 \mod 1$	ule is disabled					
	$0 = SPI2 \mod$	ule is enabled					
bit 3	SPI1MD: SPI	1 Module Disab	ole bit				
	1 = SPI1 mod	ule is disabled					
	0 = 5P11 mod	ule is enabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJXXXGPX06A/X08A/X10A devices support up to eight input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- · Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin

- Capture timer value on every edge (rising and falling)
- Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to 1 (ICI<1:0> = 00).

FIGURE 14-1: INPUT CAPTURE BLOCK DIAGRAM

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
_	—	OCSIDL	—			—	—		
bit 15							bit 8		
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0		
_	OCFLT OCTSEL OCM<2:0>								
bit 7	•		•	•	·		bit 0		
Legend:		HC = Hardware	Clearable bit						
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown		
bit 15-14	Unimpleme	nted: Read as '0'							
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit								
	1 = Output (Compare x halts in	CPU Idle mode	;					
	0 = Output Compare x continues to operate in CPU Idle mode								

- bit 12-5 Unimplemented: Read as '0'
- bit 4 OCFLT: PWM Fault Condition Status bit
 - 1 = PWM Fault condition has occurred (cleared in hardware only)
 - 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
- bit 3 OCTSEL: Output Compare Timer Select bit
 - 1 = Timer3 is the clock source for Compare x
 - 0 = Timer2 is the clock source for Compare x

bit 2-0 OCM<2:0>: Output Compare Mode Select bits

- 111 = PWM mode on OCx, Fault pin enabled
 - 110 = PWM mode on OCx, Fault pin disabled
 - 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low, generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high, compare event forces OCx pin low
 - 001 = Initialize OCx pin low, compare event forces OCx pin high
 - 000 = Output compare channel is disabled

FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (X = 1 OR 2)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
	—			FBP<	<5:0>					
bit 15		·					bit 8			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
	—		FNRB<5:0>							
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable b	it	U = Unimpleme	ented bit, re	ad as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own			
bit 15-14	Unimpleme	ented: Read as '0'								
bit 13-8	FBP<5:0>:	FIFO Write Buffer	Pointer bits							
	011111 = F	RB31 buffer								
	011110 = F	RB30 buffer								
	•									
	•									
	000001 = T	RB1 buffer								
	000000 = T	RB0 buffer								
bit 7-6	Unimpleme	ented: Read as '0'								
bit 5-0	FNRB<5:0>	: FIFO Next Read	Buffer Poin	iter bits						
	011111 = F	RB31 buffer								
	•	KB30 buller								
	•									
	•									
	000001 = T	RB1 butter								
	000000 = 1									

REGISTER 19-5: CiFIFO: ECAN™ FIFO STATUS REGISTER

REGISTER 19-22: CiRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

RXFUL15:RXFUL0: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 19-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXFUL31:RXFUL16:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

FIGURE 25-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 25-22:	TIMER1 EXTERNAL	CLOCK TIMING	REQUIREMENTS ⁽¹⁾

AC CH	AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic			Min	Тур	Мах	Units	Conditions		
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler		Tcy + 20		_	ns	Must also meet parameter TA15		
	Synchr with pr		Synchro with pres	onous, scaler	(Tcy + 20)/N			ns			
			Asynchr	ronous	20	_	_	ns			
TA11	TA11 TTXL TXCK Low Time Synchronic no pres		Synchro no preso	onous, caler	(Tcy + 20)/N	_	_	ns	Must also meet parameter TA15		
			Synchro with pre	onous, scaler	20	_	—	ns	N = prescale value		
			Asynchr	ronous	20	_	—	ns	(1,8,64,256)		
TA15	ΤτχΡ	TxCK Input Period	Synchro no preso	onous, caler	2Tcy + 40		_	ns	_		
			Synchro with pre	onous, scaler	Greater of 40 ns or (2Tcy + 40)/N				N = prescale value (1, 8, 64, 256)		
			Asynchr	ronous	40			ns	—		
OS60	Ft1	SOSC1/T1CK Oscillator Input frequency Range (oscillator enabled by setting TCS bit (T1CON<1>))		DC		50	kHz	_			
TA20	TCKEXTMRL	Delay from Exter Clock Edge to Ti	rnal TxCK mer Incre	< ement	0.75Tcy+40		1.75Tcy+40	ns	—		

Note 1: Timer1 is a Type A.

TABLE 26-9: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS	Standard Operating Co Operating temperature	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Characteristic Min Typ Max Units Condition								
	LPRC @ 32.768 kHz ⁽¹⁾								
HF21	LPRC -70 ⁽²⁾ - +70 ⁽²⁾ % -40°C \leq TA \leq +150°C								

Note 1: Change of LPRC frequency as VDD changes.

2: Characterized but not tested.

TABLE 26-10: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

/ CHARAC	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns			
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28		—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	_	—	ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 26-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	10	25	ns	_		
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	—	—	ns	—		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E		0.40 BSC		
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B