

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 $= K \in$

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp706a-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	TABLE 4-5:	INTERRUPT	CONTROLLER	REGISTER	MAP
--	------------	-----------	------------	----------	-----

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	—	_	—	_	—	_	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	—	MI2C1IF	SI2C1IF	0000
IFS2	0088	T6IF	DMA4IF	—	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	008A	—	—	DMA5IF	DCIIF	DCIEIF	—	—	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	008C	—	—	—	—	—	—	—	—	C2TXIF	C1TXIF	DMA7IF	DMA6IF	—	U2EIF	U1EIF	—	0000
IEC0	0094	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE		MI2C1IE	SI2C1IE	0000
IEC2	0098	T6IE	DMA4IE	_	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	009A	—	—	DMA5IE	DCIIE	DCIEIE			C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	009C		_	—	—	_		—	—	C2TXIE	C1TXIE	DMA7IE	DMA6IE	_	U2EIE	U1EIE	—	0000
IPC0	00A4	—		T1IP<2:0>	>	_	(OC1IP<2:0>		_	IC1IP<2:0>		_	INT0IP<2:0>		4444		
IPC1	00A6	—		T2IP<2:0>	>	—	OC2IP<2:0>		—		IC2IP<2:0>		—	D	MA0IP<2:0	>	4444	
IPC2	00A8		ι	J1RXIP<2:	0>	_	SPI1IP<2:0>		—		SPI1EIP<2:0	>	_		T3IP<2:0>		4444	
IPC3	00AA		_	—	—	_	D	MA1IP<2:	:0>	—		AD1IP<2:0>	•	_	U	1TXIP<2:0	>	0444
IPC4	00AC			CNIP<2:0	>	_		—	—	_		MI2C1IP<2:0	>	_	S	I2C1IP<2:0	>	4044
IPC5	00AE	—		IC8IP<2:0	>	—		IC7IP<2:0	>	—		AD2IP<2:0>	`	—	11	NT1IP<2:0>	`	4444
IPC6	00B0	—		T4IP<2:0>	>	—	(OC4IP<2:()>	—	OC3IP<2:0>		—	DMA2IP		>	4444	
IPC7	00B2	—	l	J2TXIP<2:(0>	—	ι	J2RXIP<2:	0>	—	INT2IP<2:0>		>	—		T5IP<2:0>		4444
IPC8	00B4	—		C1IP<2:0>	>	—	C	C1RXIP<2:	0>	—		SPI2IP<2:03	>	—	SI	PI2EIP<2:0	>	4444
IPC9	00B6	—		IC5IP<2:03	>	—		IC4IP<2:0	>	—		IC3IP<2:0>		—	D	MA3IP<2:0	>	4444
IPC10	00B8	—		OC7IP<2:0)>	—	(OC6IP<2:0)>	—		OC5IP<2:0	>	—		IC6IP<2:0>		4444
IPC11	00BA	—		T6IP<2:0>	>	—	D	MA4IP<2:	:0>	—	—	—	—	—	C)C8IP<2:0>	•	4404
IPC12	00BC	—		T8IP<2:0>	>	—	N	112C2IP<2	:0>	—		SI2C2IP<2:0	>	—		T7IP<2:0>		4444
IPC13	00BE	—	0	C2RXIP<2:	0>	—	I	INT4IP<2:0)>	—		INT3IP<2:0	>	—		T9IP<2:0>		4444
IPC14	00C0	_	I	DCIEIP<2:0)>	_	_	_	_	_	_	_	_	_		C2IP<2:0>		4004
IPC15	00C2	_	_	_	_	_	_	_	_	_		DMA5IP<2:0	>	_	[DCIIP<2:0>		0044
IPC16	00C4	—	—	—	_	_		U2EIP<2:0)>	_		U1EIP<2:0>	•	_		—	—	0440
IPC17	00C6	—	(C2TXIP<2:	0>	_	C	C1TXIP<2:	0>	_		DMA7IP<2:0	>	_	D	MA6IP<2:0	>	4444
INTTREG	00E0	—	—	—	—		ILR<3:0>			—	VECNUM<6:0>				0000			

© 2009-2012 Microchip Technology Inc.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 4-18	8: F	CAN1 H	REGIST	ER MAP	WHEN	CICIR	L1.WIN	= 0 OR	1 FOR	dsPIC331	JXXXC	3P506A	/51A0//	(06A/70	8A//10/	A DEVI	CESC	JNLY
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	—	R	EQOP<2:0	>	OPI	MODE<2:0	>	_	CANCAP	_	—	WIN	0480
C1CTRL2	0402	_	_	_	_	_	_	_	_	_	_	_		DN	ICNT<4:0>			0000
C1VEC	0404	_	—	_		F	FILHIT<4:0>			—	ICODE<6:0>					0000		
C1FCTRL	0406		DMABS<2:0	>	—	—	_	_	-	_	_	—		F	SA<4:0>			0000
C1FIFO	0408	_	_			FBP<	FBP<5:0>			_	_	FNRB<5:0>				0000		
C1INTF	040A	_	—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	—	_	—	_	_	—	—	IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRC	NT<7:0>							RERRCN	[<7:0>				0000
C1CFG1	0410	_	—	_	—	_	_	—	—	SJW<	1:0>			BRP<5	5:0>			0000
C1CFG2	0412	_	WAKFIL	_	—	_	SE	EG2PH<2:()>	SEG2PHTS	SAM	S	EG1PH<2	:0>	PF	RSEG<2:0	>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSI	K<1:0>	F6MSI	< <1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK	<1:0>	F2MSI	< <1:0>	F1MSk	<1:0>	FOMS	< <1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12M8	SK<1:0>	F11MSK	(<1:0>	F10MS	K<1:0>	F9MSk	<1:0>	F8MS	<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 FOR dsPIC33FJXXXGP506A/510A/706A/708A/710A DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C1RXD	0440		Received Data Word xxxx															
C1TXD	0442		Transmit Data Word xxxx															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-2: NVMKEY: NON-VOLATILE MEMORY KEY REGISTER U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 ____ ____ ___ ____ ____ _ — ____ bit 15 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 NVMKEY<7:0> bit 7 Legend: SO = Settable only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register (Write Only) bits

bit 8

bit 0

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming operations		
	MOV	#0x4001, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poi	nter to the first program memory	loc	ation to be written
;	program memo:	ry selected, and writes enabled		
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the	IBLWT instructions to write the	latc	hes
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	#HIGH_BYTE_0, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BYTE_2, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•			
;	63rd_program	_word		
	MOV	#LOW_WORD_31, W2	;	
	MOV	#HIGH_BYTE_31, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0				
ALTIVT	DISI	—	_	—	—	—					
bit 15			·				bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	<u> </u>		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	ALTIVT: Enab	ble Alternate In	terrupt Vector	lable bit							
	\perp = Use altern	late vector tab	ector table								
bit 14	DISI: DIST Instruction Status bit										
	1 = DISI instruction is active										
	0 = DISI inst	ruction is not a	ctive								
bit 13-5	Unimplemen	ted: Read as '	0'								
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect	Polarity Selec	t bit						
	1 = Interrupt o	on negative ed	ge								
1.11.0	0 = Interrupt o	on positive edg	e								
bit 3	INI 3EP: Exte	ernal Interrupt 3	Edge Detect	Polarity Selec	t bit						
	1 = Interrupt 0	on positive edg	ye e								
bit 2	INT2EP: Exte	ernal Interrupt 2	2 Edae Detect	Polarity Selec	t bit						
	1 = Interrupt of	on negative ed	qe								
	0 = Interrupt o	on positive edg	e								
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect	Polarity Selec	t bit						
	1 = Interrupt of	on negative ed	ge								
	0 = Interrupt o	on positive edg	e								
bit 0	INTOEP: Exte	ernal Interrupt C	Edge Detect	Polarity Selec	t bit						
	1 = interrupt (0 = Interrupt (on negative edg	ye e								
		poolaro oug	-								

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7	-28: IPC1	3: INTERRUPT	PRIORITY		REGISTER 1	3	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		C2RXIP<2:0>				INT4IP<2:0>	
bit 15							bit
		DAMO	DAVO				D/// 0
0-0	R/W-1		R/W-0	0-0	R/W-1	R/VV-0	R/W-0
		INT3IP<2:0>		_		1912<2:0>	
							DIL
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as '0	,				
bit 14-12	C2RXIP<2:	0>: ECAN2 Recei	ive Data Re	ady Interrupt P	riority bits		
	111 = Interr	rupt is priority 7 (h	ighest priori	ty interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is disa	abled				
bit 11	Unimpleme	ented: Read as '0	,				
bit 10-8	INT4IP<2:0	>: External Interru	upt 4 Priority	/ bits			
	111 = Interr	rupt is priority 7 (h	ighest priori	ity interrupt)			
	•						
	•						
	• 001 = Interr	runt is priority 1					
	000 = Interr	rupt source is disa	abled				
bit 7	Unimpleme	ented: Read as '0	,				
bit 6-4	INT3IP<2:0	>: External Interru	upt 3 Priority	/ bits			
	111 = Interr	rupt is priority 7 (h	ighest priori	ity interrupt)			
	•		U	y			
	•						
	• 001 - Interr	runt is priority 1					
	001 = Interior	rupt source is disa	abled				
bit 3	Unimpleme	ented: Read as '0	,				
bit 2-0	T9IP<2:0>:	Timer9 Interrupt I	Priority bits				
	111 = Interr	rupt is priority 7 (h	iahest priori	ity interrupt)			
	•						
	•						
	•						
	001 = Interr	rupt is priority 1	abled				

REGISTER	7-31: IPC16	: INTERRUPT	PRIORITY		REGISTER 1	6	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_		—		—		U2EIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		U1EIP<2:0>		_	_		_
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-11 bit 10-8	Unimplemen U2EIP<2:0>: 111 = Interru •	t ed: Read as 'd UART2 Error In pt is priority 7 (I)' nterrupt Prio nighest prior	rity bits ity interrupt)			
	• 001 = Interru 000 = Interru	pt is priority 1 pt source is dis	abled				
bit 7	Unimplemen	ted: Read as ')'				
bit 6-4	U1EIP<2:0>: 111 = Interru	UART1 Error In pt is priority 7 (I	nterrupt Prio nighest prior	rity bits ity interrupt)			

bit 3-0 Unimplemented: Read as '0'

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PWCOL7 | PWCOL6 | PWCOL5 | PWCOL4 | PWCOL3 | PWCOL2 | PWCOL1 | PWCOL0 |
| bit 15 | • | | | | | | bit 8 |

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| XWCOL7 | XWCOL6 | XWCOL5 | XWCOL4 | XWCOL3 | XWCOL2 | XWCOL1 | XWCOL0 |
| bit 7 | | | | | | | bit 0 |

Legend:		C = Clear only bit		
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at I	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	PWCOL7: (Channel 7 Peripheral Write	e Collision Flag bit	
	1 = Write co	ollision detected		
hit 14		Channel 6 Perinheral Write	Collision Flag bit	
	1 = Write co	ollision detected		
	0 = No write	e collision detected		
bit 13	PWCOL5:	Channel 5 Peripheral Write	Collision Flag bit	
	1 = Write co	ollision detected		
h:+ 40	0 = No write	e collision detected		
dit 12	PWCOL4: $($	Unannel 4 Peripheral Write	Collision Flag bit	
	0 = No write	e collision detected		
bit 11	PWCOL3:	Channel 3 Peripheral Write	Collision Flag bit	
	1 = Write co	ollision detected		
	0 = No write	e collision detected	_	
bit 10		Channel 2 Peripheral Write	e Collision Flag bit	
	1 = Vrite Co 0 = No write	e collision detected		
bit 9	PWCOL1:	Channel 1 Peripheral Write	Collision Flag bit	
	1 = Write co	ollision detected		
	0 = No write	e collision detected		
bit 8		Channel 0 Peripheral Write	e Collision Flag bit	
	\perp = vvrite co 0 = No write	e collision detected		
bit 7	XWCOL7:	Channel 7 DMA RAM Write	e Collision Flag bit	
	1 = Write co	ollision detected	č	
	0 = No write	e collision detected		
bit 6	XWCOL6: (Channel 6 DMA RAM Write	e Collision Flag bit	
	1 = Write co	Dilision detected		
bit 5	XWCOL5: (Channel 5 DMA RAM Write	e Collision Flag bit	
	1 = Write co	ollision detected		
	0 = No write	e collision detected		
bit 4	XWCOL4:	Channel 4 DMA RAM Write	e Collision Flag bit	
	1 = Write co	ollision detected		
	$v = i \mathbf{N} \mathbf{O} \mathbf{W} \mathbf{r} \mathbf{i} \mathbf{t} \mathbf{e}$	e comsion delected		

10.0 POWER-SAVING FEATURES

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) in "dsPIC33F/PIC24H Familv the Reference Manual", which is available the site from Microchip web (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJXXXGPX06A/X08A/X10A devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

dsPIC33FJXXXGPX06A/X08A/X10A devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

dsPIC33FJXXXGPX06A/X08A/X10A devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE_MODE; Put the device into IDLE mode

NOTES:

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 20-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RSE7 | RSE6 | RSE5 | RSE4 | RSE3 | RSE2 | RSE1 | RSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 RSE<15:0>: Receive Slot Enable bits

1 = CSDI data is received during the individual time slot n

0 = CSDI data is ignored during the individual time slot n

REGISTER 20-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TSE7 | TSE6 | TSE5 | TSE4 | TSE3 | TSE2 | TSE1 | TSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0

TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0', during the individual time slot, depending on the state of the CSDOM bit

Base Instr	Assembly		Assembly Syntax	Description	# of Words	# of	Status Flags
#	wittentionic		C 10 1 4		worus	Cycles	Allecteu
10	BISC	BISC	I,#DIC4			(2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = Ī	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C.DC.N.OV.Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C.DC.N.OV.Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C.DC.N.OV.Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C.DC.N.OV.Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C,DC,N,OV,Z
21	CPSEO	CPSEO	Wb, Wn	(Wb - Ws - C) Compare Wb with Wn, skip if =	1	1	None
	~ ~	~				(2 or 3)	
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

24.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

24.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

24.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

DC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $							
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	s Conditions						
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽¹⁾										
DC40d	3	25	mA	-40°C						
DC40a	3	25	mA	+25°C						
DC40b	3	25	mA	+85°C	3.3V					
DC40c	3	25	mA	+125°C						
DC41d	4	25	mA	-40°C		16 MIPS				
DC41a	5	25	mA	+25°C	2 2\/					
DC41b	6	25	mA	+85°C	5.50					
DC41c	6	25	mA	+125°C						
DC42d	8	25	mA	-40°C						
DC42a	9	25	mA	+25°C	2 2)/	20 MIPS				
DC42b	10	25	mA	+85°C	3.3V					
DC42c	10	25	mA	+125°C						
DC43a	15	25	mA	+25°C						
DC43d	15	25	mA	-40°C	2 2)/	20 MIDS				
DC43b	15	25	mA	+85°C	5.50	30 MIF 3				
DC43c	15	25	mA	+125°C						
DC44d	16	25	mA	-40°C						
DC44a	16	25	mA	+25°C	2 2\/					
DC44b	16	25	mA	+85°C	3.3 V	40 IVIIES				
DC44c	16	25	mA	+125°C]					

TABLE 25-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled

• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)

- JTAG is disabled
- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

FIGURE 25-8: OC/PWM MODULE TIMING CHARACTERISTICS

TABLE 25-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	_	_	Tcy+20	ns	_
OC20	TFLT	Fault Input Pulse-Width	Tcy+20		_	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 25-14: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

VOL (V)

VOL – 8x DRIVER PINS

DS70593D-page 332

APPENDIX A: MIGRATING FROM dsPIC33FJXXXGPX06/X08/X10 DEVICES TO dsPIC33FJXXXGPX06A/X08A/X10A DEVICES

dsPIC33FJXXXGPX06A/X08A/X10A devices were designed to enhance the dsPIC33FJXXXGPX06/X08/ X10 families of devices.

In general, the dsPIC33FJXXXGPX06A/X08A/X10A devices backward-compatible are with dsPIC33FJXXXGPX06/X08/X10 devices; however, manufacturing differences may cause dsPIC33FJXXXGPX06A/X08A/X10A devices to behave differently from dsPIC33FJXXXGPX06/X08/ X10 devices. Therefore, complete system test and recommended characterization is if dsPIC33FJXXXGPX06A/X08A/X10A devices are used to replace dsPIC33FJXXXGPX06/X08/X10 devices.

The following enhancements were introduced:

- Extended temperature support of up to +125°C
- Enhanced Flash module with higher endurance and retention
- New PLL Lock Enable configuration bit
- Added Timer5 trigger for ADC1 and Timer3 trigger for ADC2