

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp706a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to \leq 8 MHz for start-up with PLL enabled to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG and ADPCFG2 registers.

The bits in the registers that correspond to the A/D pins that are initialized by ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG and ADPCFG2 registers during initialization of the ADC module.

When ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG and ADPCFG2 registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and the unused pins.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJXXXGPX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJXXXGPX06A/X08A/X10A devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

	TABLE 4-5:	INTERRUPT	CONTROLLER	REGISTER	MAP
--	------------	-----------	------------	----------	-----

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	—	_	—	_	—	_	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	—	MI2C1IF	SI2C1IF	0000
IFS2	0088	T6IF	DMA4IF	—	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	008A	—	—	DMA5IF	DCIIF	DCIEIF	—	—	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	008C	—	—	—	—	—	—	—	—	C2TXIF	C1TXIF	DMA7IF	DMA6IF	—	U2EIF	U1EIF	—	0000
IEC0	0094	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE		MI2C1IE	SI2C1IE	0000
IEC2	0098	T6IE	DMA4IE	_	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	009A	—	—	DMA5IE	DCIIE	DCIEIE			C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	009C		_	—	—	_		—	—	C2TXIE	C1TXIE	DMA7IE	DMA6IE	_	U2EIE	U1EIE	—	0000
IPC0	00A4	—		T1IP<2:0>	>	_	(OC1IP<2:()>	_		IC1IP<2:0>		_	11	NT0IP<2:0>	>	4444
IPC1	00A6	—		T2IP<2:0>	>	—	(OC2IP<2:()>	—		IC2IP<2:0>		—	D	MA0IP<2:0	>	4444
IPC2	00A8		ι	J1RXIP<2:	0>	_	5	SPI1IP<2:0)>	—		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	00AA		_	—	—	_	D	MA1IP<2:	:0>	—		AD1IP<2:0>	•	_	U	1TXIP<2:0	>	0444
IPC4	00AC			CNIP<2:0	>	_		—	—	_		MI2C1IP<2:0	>	_	S	I2C1IP<2:0	>	4044
IPC5	00AE	—		IC8IP<2:0	>	—		IC7IP<2:0	>	—		AD2IP<2:0>	`	—	11	NT1IP<2:0>	`	4444
IPC6	00B0	—		T4IP<2:0>	>	—	(OC4IP<2:()>	—		OC3IP<2:0	>	—	D	MA2IP<2:0	>	4444
IPC7	00B2	—	l	J2TXIP<2:(0>	—	ι	J2RXIP<2:	0>	—		INT2IP<2:03	>	—		T5IP<2:0>		4444
IPC8	00B4	—		C1IP<2:0>	>	—	C	C1RXIP<2:	0>	—		SPI2IP<2:03	>	—	SI	PI2EIP<2:0	>	4444
IPC9	00B6	—		IC5IP<2:03	>	—		IC4IP<2:0	>	—		IC3IP<2:0>		—	D	MA3IP<2:0	>	4444
IPC10	00B8	—		OC7IP<2:0)>	—	(OC6IP<2:0)>	—		OC5IP<2:0	>	—		IC6IP<2:0>		4444
IPC11	00BA	—		T6IP<2:0>	>	—	D	MA4IP<2:	:0>	—	—	-	—	—	C)C8IP<2:0>	•	4404
IPC12	00BC	—		T8IP<2:0>	>	—	N	112C2IP<2	:0>	—		SI2C2IP<2:0	>	—		T7IP<2:0>		4444
IPC13	00BE	—	0	C2RXIP<2:	0>	—	I	INT4IP<2:0)>	—		INT3IP<2:0	>	—		T9IP<2:0>		4444
IPC14	00C0	_	I	DCIEIP<2:0)>	_	_	_	_	_	_	_	_	_		C2IP<2:0>		4004
IPC15	00C2	_	_	_	_	_	_	_	_	_		DMA5IP<2:0	>	_	[DCIIP<2:0>		0044
IPC16	00C4	—	—	—	_	_		U2EIP<2:0)>	_		U1EIP<2:0>	•	_		—	—	0440
IPC17	00C6	—	(C2TXIP<2:	0>	_	C	C1TXIP<2:	0>	_		DMA7IP<2:0	>	_	D	MA6IP<2:0	>	4444
INTTREG	00E0	—	—	—	—		ILR<	3:0>		—			VE	CNUM<6:0>				0000

© 2009-2012 Microchip Technology Inc.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER	7-26: IPC1	1: INTERRUPT	PRIORITY	CONTROL F	REGISTER 1	1	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		T6IP<2:0>		—		DMA4IP<2:0>	
bit 15							bit
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	_	_		_		OC8IP<2:0>	
bit 7	ł						bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	T6IP<2:0>:	Timer6 Interrupt	Priority bits				
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	• 001 – Inter r	runt is priority 1					
	000 = Interr	upt is priority i rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10_8			° ol 4 Data Tra	nsfer Complete	Interrunt Prio	rity hite	
	111 = Interr	unt is priority 7 (hiahost priori	ty interrunt)	, interrupt i no	inty bits	
	•	upt is priority 7 (nightest phon	ty interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is dis	abled				
bit 7-3	Unimpleme	ented: Read as '	0'				
bit 2-0	OC8IP<2:0	>: Output Compa	are Channel 8	3 Interrupt Prior	ity bits		
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	- 001 = Interr	unt is priority 1					
	000 = Interr	rupt source is dis	abled				

8.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address Offset register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address Offset register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels.

REGISTER 8	-8: DMAC	S1: DMA CO	NTROLLER	STATUS RE	GISTER 1		
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
_	—	_			LSTC	H<3:0>	
bit 15							bit 8
DA	DA	D 0	DA	DA	DA	D 0	DA
	R-U DDST6	R-U DDST5	R-U	R-U DDST2	R-U DDST2		
hit 7	FF310	FF315	FF314	FF313	FF312	FF311	hit 0
Sit 1							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-12	Unimplemen	ted: Read as '(ז'				
bit 11-8	LSTCH<3:0>	: Last DMA Ch	annel Active I	oits			
	1111 = No DI	MA transfer has	s occurred sir	ice system Res	set		
	1110-1000 =	Reserved					
	0111 = Last 0	data transfer wa data transfer wa	as by DMA Cr as by DMA Cr	nannel 7 nannel 6			
	0101 = Last o	data transfer wa	as by DMA Ch	nannel 5			
	0100 = Last o	data transfer wa	as by DMA Ch	nannel 4			
	0011 = Last c	data transfer wa data transfer wa	as by DMA Cl as by DMA Cl	nannel 3 nannel 2			
	0001 = Last o	data transfer wa	as by DMA Ch	nannel 1			
	0000 = Last c	data transfer wa	as by DMA Ch	nannel 0			
bit 7	PPST7: Char	nnel 7 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA7STI 0 = DMA7STA	B register selec A register selec	ted ted				
bit 6	PPST6: Char	nnel 6 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA6STI 0 = DMA6STA	B register selec A register selec	ted ted				
bit 5	PPST5: Char	nnel 5 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA5STI	B register selec	ted				
bit 4	0 = DIMA5517	A register selec	ieu na Mode Stati	ıs Elaq bit			
bit 4	1 = DMA4STI	R register selec	ted	is riag bit			
	0 = DMA4STA	A register selec	ted				
bit 3	PPST3: Char	nnel 3 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA3STI 0 = DMA3STA	B register selec A register selec	ted ted				
bit 2	PPST2: Char	nnel 2 Ping-Por	g Mode Statu	is Flag bit			
	1 = DMA2STI 0 = DMA2STA	B register select A register select	ted ted				
bit 1	PPST1: Char	nnel 1 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA1STI	B register selec	ted				
	0 = DMA1STA	A register selec	ted				
bit 0	PPST0: Char	nel 0 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA0STI 0 = DMA0STA	B register selec A register selec	ted ted				

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-v	R/W-v				
_		COSC<2:0>	-	_	,	NOSC<2:0> ⁽²⁾	,				
bit 15							bit 8				
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0				
CLKLOC	к —	LOCK	_	CF	<u> </u>	LPOSCEN	OSWEN				
bit 7							bit 0				
Levende			fram Canfigur	ration hita an D			and thit				
D - Doode	bla bit	y = value set	hit		'UR montod hit, road		only bit				
		41' = Rit is set	DIL	$0^{\circ} = 0$	mented bit, read	uas u v - Ritis unkno	WD				
		I - DILIS SEL			aleu		VVII				
bit 15	Unimplemen	ted: Read as '	D '								
bit 14-12	COSC<2:0>:	Current Oscilla	tor Selection	bits (read-only	()						
	111 = Fast R	C oscillator (FF	RC) with Divid	le-bv-N							
	110 = Fast R	C oscillator (FF	RC) with Divid	le-by-16							
	101 = Low-Po	ower RC oscilla	tor (LPRC)	, -							
	100 = Second	dary oscillator (Sosc)								
	011 = Primary	y oscillator (XT	HS, EC) with	h PLL							
	010 = Primary	y oscillator (XT	HS, EC)								
	001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCDIVN + PLL) 000 = Fast RC oscillator (FRC)										
hit 11	 11 Unimplemented: Read as '0' 										
	1 Unimplemented: Read as '0'										
DIL IU-O	111 = Fast P(Selection bit	s, ,							
	111 - Fast R(C oscillator (FF	C) with Divid	le-by-in le-by-16							
	101 = 1 ow-Pc	ower RC oscilla	tor (I PRC)								
	100 = Second	dary oscillator (Sosc)								
	011 = Primary	y oscillator (XT	HS, EC) with	h PLL							
	010 = Primary	y oscillator (XT	HS, EC)								
	001 = Fast R	C Oscillator (FI	RC) with Divid	de-by-N and Pl	_L (FRCDIVN +	PLL)					
hit 7		C OSCIIIAIOI (FF	(C) bla hit								
	1 = If (FCKS)	M0 = 1) then c	lock and PLI	configurations	are locked						
	If (FCKS	M0 = 1), then a $M0 = 0$). then a	lock and PLL	. configurations	s may be modifi	ed					
	0 = Clock and	d PLL selectior	is are not loc	ked, configurat	ions may be mo	odified					
bit 6	Unimplemen	ted: Read as '	כ'								
bit 5	LOCK: PLL L	ock Status bit (read-only)								
	1 = Indicates	that PLL is in I	ock, or PLL s	start-up timer is	satisfied	is disabled					
hit 4		ted: Read as '	י טו וטכא, אנמו נ ז'								
hit 3	CF: Clock Fai	il Detect hit (re:	, ad/clear by ar	onlication)							
bit 0	1 = FSCM ha	as detected clo	nk failura	oplication)							
	0 = FSCM ha	as not detected	clock failure								
bit 2	Unimplemen	ted: Read as '	כי								
Note 1:	Writes to this regis	ter require an ι Η Family Refor	Inlock sequel	nce. Refer to S "for details	ection 7. "Osc	illator" (DS7018	6) in the				
2.	Direct clock switch	es between an	v primary oso	illator mode wit	th PLL and FRC	PII mode are no	t permitted				
۷.	This applies to cloc	ck switches in e	either directio	n. In these inst	ances, the appl	ication must swite	ch to FRC				
	mode as a transitio	on clock source	between the	two PLL mode	es.		-				

3: This is register is reset only on a Power-on Reset (POR).

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33FJXXXGPX06A/X08A/X10A devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 22.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the status bits, LOCK (OSCCON<5>) and CF (OSCCON<3>) are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRC-PLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** Refer to **Section 7. "Oscillator"** (DS70186) in the *"dsPIC33F/PIC24H Family Reference Manual"* for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2009-2012} Microchip Technology Inc.

REGISTER	10-3: PMD	3: PERIPHER	AL MODUL	E DISABLE C	ONTROL R	EGISTER 3		
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
T9MD	T8MD	T7MD	T6MD	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
	—			—		I2C2MD	AD2MD ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15 bit 14 bit 13 bit 12 bit 11-2	T9MD: Timer9 Module Disable bit 1 = Timer9 module is disabled 0 = Timer9 module is enabled T8MD: Timer8 Module Disable bit 1 = Timer8 module is disabled 0 = Timer8 module is enabled T7MD: Timer7 Module Disable bit 1 = Timer7 module is disabled 0 = Timer7 module is enabled T6MD: Timer6 Module Disable bit 1 = Timer6 module is disabled 0 = Timer6 module is disabled 0 = Timer6 module is disabled							
bit 1 bit 0	12C2MD: 12C 1 = 12C2 mo 0 = 12C2 mo AD2MD: AD 1 = AD2 mod 0 = AD2 mod	C2 Module Disab dule is disabled dule is enabled 2 Module Disab dule is disabled dule is enabled	ble bit le bit ⁽¹⁾					

Note 1: PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	—	OCSIDL	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7	•		•	•			bit 0
Legend:		HC = Hardware	Clearable bit				
R = Readable	e bit	W = Writable bit		U = Unimple	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15-14	Unimpleme	nted: Read as '0'					
bit 13	OCSIDL: St	op Output Compa	re in Idle Mode	Control bit			
	1 = Output (Compare x halts in	CPU Idle mode	;			
	0 = Output (Compare x continu	les to operate in	CPU Idle mo	de		

- bit 12-5 Unimplemented: Read as '0'
- bit 4 OCFLT: PWM Fault Condition Status bit
 - 1 = PWM Fault condition has occurred (cleared in hardware only)
 - 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
- bit 3 OCTSEL: Output Compare Timer Select bit
 - 1 = Timer3 is the clock source for Compare x
 - 0 = Timer2 is the clock source for Compare x

bit 2-0 OCM<2:0>: Output Compare Mode Select bits

- 111 = PWM mode on OCx, Fault pin enabled
 - 110 = PWM mode on OCx, Fault pin disabled
 - 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low, generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high, compare event forces OCx pin low
 - 001 = Initialize OCx pin low, compare event forces OCx pin high
 - 000 = Output compare channel is disabled

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0		
_	—	CSIDL	ABAT	—		REQOP<2:0>			
bit 15							bit 8		
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0		
(OPMODE<2:0>		—	CANCAP	—	—	WIN		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	r = Bit is Rese	rved		
bit 15-14	Unimplement	ted: Read as '	0'						
bit 13	CSIDL: Stop	in Idle Mode b	it						
	1 = Discontinu 0 = Continue	ue module ope module operati	ration when d ion in Idle mo	evice enters Id de	lle mode				
bit 12	ABAT: Abort A	All Pending Tra	nsmissions b	it					
 1 = Signal all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted 									
bit 11 Reserved: Do not use									
bit 10-8	REQOP<2:0>	Request Op	eration Mode	bits					
bit 10-8 REQOP<2:0>: Request Operation Mode bits 111 = Set Listen All Messages mode 110 = Reserved - do not use 101 = Reserved - do not use 100 = Set Configuration mode 011 = Set Listen Only Mode 010 = Set Loopback mode 001 = Set Disable mode 001 = Set Disable mode									
bit 7-5	OPMODE<2:0	0>: Operation I	Mode bits						
bit 7-5 OPMODE<2:0>: Operation Mode bits 111 = Module is in Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Loopback mode 001 = Module is in Disable mode 000 = Module is in Normal Operation mode									
bit 4	Unimplement	ted: Read as '	0'						
bit 3	CANCAP: CA	AN Message R	eceive Timer	Capture Event	t Enable bit				
	1 = Enable inp 0 = Disable C	out capture bas AN capture	sed on CAN m	nessage receiv	/e				
bit 2-1	Unimplement	ted: Read as '	0'						
bit 0	WIN: SFR Ma	ap Window Sel	lect bit						
	1 = Use filter v 0 = Use buffer	window r window							

REGISTER 19-1: CiCTRL1: ECAN™ CONTROL REGISTER 1

REGISTER 19-13: CIBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

rt/VV-U	K/W-U	K/W-U	K/W-U	K/VV-U		K/VV-U	K/VV-U
bit 15	F/BP	S.U>			F0B	FN0.U2	h:+ 0
DIL 15							DILO
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F5BP	<3:0>			F4B	P<3:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	-						-
bit 15-12	F7BP<3:0>: 1111 = Filter 1110 = Filter	RX Buffer Writt hits received ir hits received ir	en when Filte א RX FIFO bu א RX Buffer 1	er 7 Hits bits ffer 4			
	•						
	•						
	0001 = Filter 0000 = Filter	hits received in hits received in	n RX Buffer 1 n RX Buffer 0				
bit 11-8	F6BP<3:0>: 1111 = Filter 1110 = Filter	RX Buffer Writt hits received ir hits received ir	en when Filte ה RX FIFO bu ה RX Buffer 1	er 6 Hits bits ffer 4			
	•						
	•						
	0001 = Filter 0000 = Filter	hits received in hits received in	n RX Buffer 1 n RX Buffer 0				
bit 7-4	F5BP<3:0>: 1111 = Filter 1110 = Filter	RX Buffer Writt hits received in hits received in	en when Filte n RX FIFO bu n RX Buffer 1	er 5 Hits bits ffer 4			
	•						
	•						
	• 0001 = Filter 0000 = Filter	hits received ir hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 3-0	F4BP<3:0>:	RX Buffer Writt	en when Filte	er 4 Hits bits			
	1111 = Filter 1110 = Filter •	hits received in hits received in	ו RX FIFO bu ו RX Buffer 1	ffer 4			
	•						
	• 0001 = Filter	hits received ir	n RX Buffer 1				
	0000 = Filter	hits received in	n RX Buffer 0				

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	 Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0007FEh 010 = High security; boot program Flash segment starts at End of VS, ends at 0007FEh Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at End of VS, ends at 001FFEh Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 001FFEh Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at End of VS, ends at 003FFEh
RBS<1:0>	FBS	Immediate	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes
SWRP	FSS	Immediate	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 22-2: CONFIGURATION BITS DESCRIPTION

AC CHA	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Characteristic Min Typ ⁽¹⁾ Max				Conditions			
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	40	MHz	EC			
		Oscillator Crystal Frequency	3.5 10 —		10 40 33	MHz MHz kHz	XT HS SOSC			
OS20	Tosc	Tosc = 1/Fosc	12.5	—	DC	ns				
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25		DC	ns	—			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	_	20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2	_	ns	—			
OS41	TckF	CLKO Fall Time ⁽³⁾	_	5.2		ns	—			
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C			

TABLE 25-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

FIGURE 25-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

FIGURE 25-25: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)

NOTES:

Revision C (March 2011)

This revision includes typographical and formatting changes throughout the data sheet text. In addition, all instances of VDDCORE have been removed.

All other major changes are referenced by their respective section in the following table.

TABLE B-2:	MAJOR	SECTION	UPDATES
		02011011	0. 5/1150

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal Controllers"	Updated the title of Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)".
	The frequency limitation for device PLL start-up conditions was updated in Section 2.7 "Oscillator Value Conditions on Device Start-up ".
	The second paragraph in Section 2.9 "Unused I/Os" was updated.
Section 4.0 "Memory Organization"	The All Resets values for the following SFRs in the Timer Register Map were changed (see Table 4-6): • TMR1 • TMR2 • TMR3 • TMR4 • TMR5 • TMR6 • TMR7 • TMR8 • TMR9
Section 9.0 "Oscillator Configuration"	Added Note 3 to the OSCCON: Oscillator Control Register (see Register 9-1).
	Added Note 2 to the CLKDIV: Clock Divisor Register (see Register 9-2).
	Added Note 1 to the PLLFBD: PLL Feedback Divisor Register (see Register 9-3).
	Added Note 2 to the OSCTUN: FRC Oscillator Tuning Register (see Register 9-4).
Section 21.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Updated the VREFL references in the ADC1 module block diagram (see Figure 21-1).
Section 22.0 "Special Features"	Added a new paragraph and removed the third paragraph in Section 22.1 "Configuration Bits" .
	Added the column "RTSP Effects" to the Configuration Bits Descriptions (see Table 22-2).