

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp706at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

IABLE 4-	·8: (JUIPU		PAREF	EGISI	ER MA	P											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Ou	tput Compa	re 1 Second	ary Register							xxxx
OC1R	0182								Output C	ompare 1 R	egister							xxxx
OC1CON	0184	—	_	OCSIDL	—	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186							Ou	tput Compa	re 2 Second	ary Register							xxxx
OC2R	0188								Output C	ompare 2 R	egister							xxxx
OC2CON	018A	—	_	OCSIDL	—	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							Ou	tput Compa	re 3 Second	ary Register							xxxx
OC3R	018E		Output Compare 3 Register								xxxx							
OC3CON	0190	_	_	OCSIDL	—	—	_	—	—	—	_	—	OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192		Output Compare 4 Secondary Register								xxxx							
OC4R	0194								Output C	ompare 4 Re	egister							xxxx
OC4CON	0196	—		OCSIDL	—	—	_	—	—	—	_		OCFLT	OCTSEL		OCM<2:0>		0000
OC5RS	0198							Ou	tput Compa	re 5 Second	ary Register							xxxx
OC5R	019A								Output C	ompare 5 Re	egister							xxxx
OC5CON	019C			OCSIDL	—	—	_	—	—	—	—	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC6RS	019E							Ou	tput Compa	re 6 Second	ary Register							xxxx
OC6R	01A0								Output C	ompare 6 Re	egister							xxxx
OC6CON	01A2			OCSIDL	—	—	_	—	—	—	—	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC7RS	01A4							Ou	tput Compa	re 7 Second	ary Register							xxxx
OC7R	01A6								Output C	ompare 7 Re	egister							xxxx
OC7CON	01A8	—	_	OCSIDL	—	—	—	—	—	—	—	—	OCFLT	OCTSEL		OCM<2:0>		0000
OC8RS	01AA							Ou	tput Compa	re 8 Second	ary Register							xxxx
OC8R	01AC								Output C	ompare 8 R	egister							xxxx
OC8CON	01AE	—	—	OCSIDL	—	—	_	—	-	_	—	_	OCFLT	OCTSEL		OCM<2:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

AUTOUT AANDA DE DEALATED MAD

4 0

dsPIC33FJXXXGPX06A/X08A/X10A

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—	_	_	_	—					
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	—				
bit 7							bit C				
Levende											
Legena: D - Doodobl	a hit	\// = \//ritable	hit		monted bit read						
			DIL		nented bit, read						
-n = value at	POR	T = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unkno	own				
bit 15 9	Unimplomon	tod: Dood oo '	0'								
bit 7		N2 Tranamit F	∪ Nata Request I	ntorrunt Engbl	o hit						
			ala Requesi i a								
	0 = Interrupt request not enabled										
bit 6	C1TXIE: ECA	N1 Transmit D	ata Request I	nterrupt Enabl	e bit						
	1 = Interrupt ı	request enable	d								
	0 = Interrupt i	request not ena	abled								
bit 5	DMA7IE: DM	A Channel 7 D	ata Transfer C	Complete Enab	le Status bit						
	1 = Interrupt	request enable	d								
	0 = Interrupt i	request not ena	abled								
bit 4	DMA6IE: DM	A Channel 6 D	ata Transfer C	Complete Enab	ole Status bit						
	1 = Interrupt i	request enable	d								
hit 3		tequest not end	0'								
bit 2		2 Error Interru	o nt Enable bit								
	1 = Interrunt i	request enable	d								
	0 = Interrupt i	request on able	abled								
bit 1	U1EIE: UART	1 Error Interru	pt Enable bit								
	1 = Interrupt i	request enable	d								
	0 = Interrupt i	request not ena	abled								

bit 0 Unimplemented: Read as '0'

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
		T1IP<2:0>		_		OC1IP<2:0>							
bit 15							bit 8						
		DAMA	DAALO			DAMO	DAMA						
0-0	R/W-1	R/W-U	R/W-0	0-0	R/W-1		R/VV-0						
— bit 7		ICTIF \2.0>		_		INTOF \$2.02	bit 0						
Legend:													
R = Readabl	le bit	W = Writable I	oit	U = Unimple	mented bit, re	ad as '0'							
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own						
bit 15	Unimplom	ntod. Dood oo '	,										
bit 14 12		Timor1 Interrupt) Driority bite										
DIL 14-12	111 = Inter	rupt is priority 7 (h	nighest priori	tv interrupt)									
	•			()									
	•												
	001 = Inter	rupt is priority 1											
	000 = Inter	rupt source is disa	abled										
bit 11	Unimplem	Unimplemented: Read as '0'											
bit 10-8	OC1IP<2:0	>: Output Compa	re Channel	1 Interrupt Prior	ity bits								
	111 = Inter •	rupt is priority 7 (f	nighest priori	ty interrupt)									
	•												
	• 001 - Intor	runt in priority 1											
	001 = Inter 000 = Inter	rupt source is disa	abled										
bit 7	Unimplem	ented: Read as 'o)'										
bit 6-4	IC1IP<2:0>	: Input Capture C	hannel 1 Int	errupt Priority b	oits								
	111 = Inter	rupt is priority 7 (ł	nighest priori	ty interrupt)									
	•												
	•												
	001 = Inter	rupt is priority 1	ablad										
hit 3		nted: Read as '	ableu										
bit 2-0	INT0IP<2:0	>: External Interr	, upt 0 Prioritv	, bits									
Sit 2 0	111 = Inter	rupt is priority 7 (h	nighest priori	ty interrupt)									
	•			- • *									
	•												
	001 = Inter	rupt is priority 1											
	000 = Inter	rupt source is disa	abled										

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	—	_	_		DMA1IP<2:0>	
bit 15	·			·			bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		AD1IP<2:0>				U1TXIP<2:0>	
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bi						x = Bit is unkr	nown
bit 15-11	Unimpleme	nted: Read as '	0'				
bit 10-8	DMA1IP<2:	0>: DMA Chann	el 1 Data Tra	insfer Complete	e Interrupt Priori	ty bits	
	111 = Interr	upt is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-4	AD1IP<2:0>	ADC1 Convers	sion Complet	e Interrupt Prio	ority bits		
	111 = Interr	upt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 3	Unimpleme	nted: Read as '	0'				
bit 2-0	U1TXIP<2:0	>: UART1 Trans	smitter Interru	upt Priority bits			
	111 = Interr	upt is priority 7 (l	highest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is dis	abled				

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are									
	initialized, such that all user interrup	ot								
	sources are assigned to priority level 4.									

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

11.6 I/O Helpful Tips

- 1. In some cases, certain pins as defined in TABLE 25-9: "DC Characteristics: I/O Pin Input Specifications" under "Injection Current", have internal protection diodes to VDD and Vss. The term "Injection Current" is also referred to as "Clamp Current". On designated pins, with sufficient external current limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with nominal VDD with respect to the VSS and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- I/O pins that are shared with any analog input pin, 2. (i.e., ANx), are always analog pins by default after any reset. Consequently, any pin(s) configured as an analog input pin, automatically disables the digital input pin buffer. As such, any attempt to read a digital input pin will always return a '0' regardless of the digital logic level on the pin if the analog pin is configured. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the analog pin configuration registers in the ADC module, (i.e., ADxPCFGL, AD1PCFGH), by setting the appropriate bit that corresponds to that I/O port pin to a '1'. On devices with more than one ADC, both analog pin configurations for both ADC modules must be configured as a digital I/O pin for that pin to function as a digital I/O pin.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.

- 4. Each CN pin has a configurable internal weak pull-up resistor. The pull-ups act as a current source connected to the pin, and eliminates the need for external resistors in certain applications. The internal pull-up is to ~(VDD-0.8) not VDD. This is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of the data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 25.0 "Electrical Characteristics" for additional information.

11.7 I/O Resources

Many useful resources related to I/O are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546064

11.7.1 KEY RESOURCES

- Section 10. "I/O Ports" (DS70193)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER												
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON ⁽¹⁾	—	TSIDL ⁽²⁾	—	—	—	—						
bit 15							bit 8					
												
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0					
	TGATE	TCKPS	<1:0>(1)			TCS ^(1,3)	_					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit rea	ad as '0'						
-n = Value at I	POR	(1) = Bit is set	bit	0' = Bit is cle	eared	x = Bit is unkn	own					
	ÖR						own					
bit 15	TON: Timerv	On bit ⁽¹⁾										
	1 = Starts 16-	bit Timery										
	0 = Stops 16-	bit Timery										
bit 14	Unimplemen	ted: Read as '	0'									
bit 13	TSIDL: Stop i	TSIDL: Stop in Idle Mode bit ⁽²⁾										
	1 = Discontin	ue module ope	ration when o	device enters lo	lle mode							
	0 = Continue	module operat	ion in Idle mo	ode								
bit 12-7	Unimplemen	ted: Read as '	0'									
bit 6	TGATE: Time	ery Gated Time	Accumulatio	n Enable bit ⁽¹⁾								
	When TCS =	<u>1:</u>										
	This bit is ign	ored.										
	<u>When $ICS = 1$</u>	<u>0:</u> ne accumulation	anabled									
	0 = Gated tim	ne accumulation	n disabled									
bit 5-4	TCKPS<1:0>	: Timer3 Input	Clock Presca	le Select bits ⁽¹)							
	11 = 1:256											
	10 = 1:64											
	01 = 1:8											
	00 = 1:1											
bit 3-2	Unimplemen	ted: Read as '	0'									
bit 1	TCS: Timery	Clock Source S	Select bit ^(1,3)									
	1 = External o 0 = Internal c	clock from pin ٦ lock (Fcy)	yCK (on the	rising edge)								
bit 0	Unimplemen	ted: Read as '	0'									
Note 1: Wh	nen 32-bit opera	tion is enabled	(T2CON<3>	= 1), these bits	have no effect	t on Timery opera	tion; all timer					
fun	ictions are set th	hrough T2CON	•	,.								

2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active-low slave select).

In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

16.3 SPI Control Registers

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
SPIEN	—	SPISIDL	_	_	—	—	—					
bit 15							bit 8					
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0					
—	SPIROV	—	—	—	—	SPITBF	SPIRBF					
bit 7							bit 0					
Legend:		C = Clearable	bit									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'												
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown												
bit 15	SPIEN: SPIx	Enable bit										
	1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins											
	0 = Disables module											
Dit 14	Unimplemented: Read as '0'											
DIT 13	SPISIDL: Stop in Idle Mode bit											
	1 = Discontinue 0 = Continue	module operati	ion in Idle mod	de	lie mode							
bit 12-7	Unimplemen	ted: Read as '	ריייג גער גער גער גער גער גער גער גער גער גער									
bit 6	SPIROV: Rec	eive Overflow	- Flag bit									
	1 = A new by	te/word is com	pletely receive	ed and discard	led. The user so	oftware has not	read the					
	previous	data in the SPI	xBUF register	r								
	0 = No overfl	ow has occurre	ed									
bit 5-2	Unimplemen	ted: Read as '),									
bit 1	SPITBF: SPI	<pre>< Transmit Buff</pre>	er Full Status	bit								
	1 = Iransmit	not yet started,	SPIXIXB IS ft	ull								
	Automatically	set in hardwar	e when CPU v	writes SPIxBU	F location. loadi	na SPIxTXB.						
	Automatically	cleared in hard	dware when S	Plx module tra	ansfers data from	n SPIxTXB to S	SPIxSR.					
bit 0	SPIRBF: SPI	x Receive Buffe	er Full Status I	bit								
	1 = Receive c	complete, SPIx	RXB is full									
	0 = Receive is	s not complete,	SPIxRXB is e	empty								
	Automatically	set in hardwar	e when SPIx t	transters data	trom SPIxSR to	SPIXRXB.	'n					
	Automatically	cieareo in naro	aware when co	ore reads SPD	COUL IOCATION, L	eauing SPIXRX	D.					

FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (X = 1 OR 2)

REGISTER 19-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F15BF	P<3:0>			F14B	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F13BF	><3:0>			F12B	P<3:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		·0' = Bit is cle	ared	x = Bit is unkr	nwn
n value at					area		
bit 15-12	F15BP<3:0> 1111 = Filter 1110 = Filter •	: RX Buffer Wri r hits received in r hits received in	tten when Fil າ RX FIFO bu າ RX Buffer 1	ter 15 Hits bits ıffer 4			
	0001 = Filte r 0000 = Filte r	r hits received in r hits received in	n RX Buffer 1 n RX Buffer 0				
bit 11-8	F14BP<3:0> 1111 = Filter 1110 = Filter	RX Buffer Wri hits received in hits received in	tten when Fil າ RX FIFO bu າ RX Buffer 1	ter 14 Hits bits ıffer 4			
	•						
	0001 = Filte r 0000 = Filte r	r hits received in r hits received in	n RX Buffer 1 n RX Buffer 0				
bit 7-4	F13BP<3:0> 1111 = Filter 1110 = Filter •	: RX Buffer Wri r hits received in r hits received in	tten when Fil າ RX FIFO bu າ RX Buffer 1	ter 13 Hits bits ıffer 4			
	• 0001 = Filter 0000 = Filter	r hits received in r hits received in	n RX Buffer 1 n RX Buffer 0				
bit 3-0	F12BP<3:0> 1111 = Filter 1110 = Filter •	: RX Buffer Wri r hits received in r hits received in	tten when Fil າ RX FIFO bu າ RX Buffer 1	ter 12 Hits bits ıffer 4			
	• 0001 = Filter 0000 = Filter	r hits received in r hits received in	n RX Buffer 1 n RX Buffer 0				

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
_	—	—	_		SLOT	<3:0>		
bit 15	•						bit 8	
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
—	—	—	—	ROV	RFUL	TUNF	TMPTY	
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-12	Unimplement	ted: Read as 'd)'					
bit 11-8	SLOT<3:0>: [DCI Slot Status	bits					
	1111 = Slot #	15 is currently	active					
	•							
	•							
	0010 = Slot #	2 is currently a	ctive					
	0001 = Slot #	1 is currently a	ctive					
	0000 = Slot #	0 is currently a	ctive					
bit 7-4	Unimplement	ted: Read as ')'					
bit 3	ROV: Receive	e Overflow Stat	us bit					
	1 = A receive	overflow has o	ccurred for at	least one rece	eive register			
hit 2	0 - A leceive		totuo bit					
DIL Z	1 = New data	is available in :	the receive re	aistore				
	0 = The receiv	ve registers ha	ve old data	gisters				
bit 1	TUNF: Transr	nit Buffer Unde	rflow Status b	oit				
	1 = A transmit	t underflow has	occurred for	at least one tra	ansmit register			
	0 = A transmit	t underflow has	not occurred		·			
bit 0	TMPTY: Trans	smit Buffer Em	pty Status bit					
	1 = The transi 0 = The transi	mit registers ar mit registers ar	e empty e not empty					

REGISTER 20-4: DCISTAT: DCI STATUS REGISTER

AC CHAR	ACTERISTI	CS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Character	Min	Typ ⁽¹⁾	Max	Units	Conditions		
DO31	TIOR	Port Output Rise Tim	e	_	10	25	ns		
DO32	TIOF	Port Output Fall Time	9	_	10	25	ns	—	
DI35	TINP	INTx Pin High or Low	20	—	_	ns	—		
DI40	Trbp	CNx High or Low Tim	ne (input)	2	_	_	TCY	_	

	TABLE 25-20:	I/O TIMING	REQUIREMENTS
--	--------------	------------	--------------

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 25-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	_		11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns	_	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120		—	ns	_	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_	_	ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 25-24: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS