

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp708a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the documents listed below, browse to the documentation section of the dsPIC33FJ256GP710A product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 6. "Interrupts" (DS70184)
- Section 7. "Oscillator" (DS70186)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit[™] (I2C[™])" (DS70195)
- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Section 22. "Direct Memory Access (DMA)" (DS70182)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)

NOTES:

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Ca	pture Regist	er							xxxx
IC1CON	0142	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144								Input 2 Ca	pture Regist	er							xxxx
IC2CON	0146	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3BUF	0148								Input 3 Ca	pture Regist	er							xxxx
IC3CON	014A	_	_	ICSIDL	—	—	—	—	—	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC4BUF	014C								Input 4 Ca	pture Regist	er							xxxx
IC4CON	014E	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC5BUF	0150								Input 5 Ca	pture Regist	er							xxxx
IC5CON	0152			ICSIDL			_			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC6BUF	0154								Input 6 Ca	pture Regist	er							xxxx
IC6CON	0156			ICSIDL			_			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Ca	pture Regist	er							xxxx
IC7CON	015A			ICSIDL			_			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C								Input 8 Ca	pture Regist	er							xxxx
IC8CON	015E	_	_	ICSIDL	—	—	—	_	—	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
Legend:	x = unkno	wn value c	n Reset, -	– = unimple	emented, r	ead as '0'.	Reset valu	es are sho	wn in hexad	lecimal.								

TABLE 4-7: INPUT CAPTURE REGISTER MAP

TABLE 4-31: PORTG REGISTER MAP⁽¹⁾

Fil	le Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TF	RISG	02E4	TRISG15	TRISG14	TRISG13	TRISG12	_	-	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PC	ORTG	02E6	RG15	RG14	RG13	RG12	_	_	RG9	RG8	RG7	RG6	-	_	RG3	RG2	RG1	RG0	XXXX
LA	ΤG	02E8	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	-	_	LATG3	LATG2	LATG1	LATG0	XXXX
O	DCG	06E4	ODCG15	ODCG14	ODCG13	ODCG12	-		ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-32: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	—	—	_	—	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxxx(1)
OSCCON	0742	_	(COSC<2:0>	>	_	1	NOSC<2:0	>	CLKLOCK	_	LOCK	_	CF	_	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI	[DOZE<2:0>	>	DOZEN	F	RCDIV<2:0)>	PLLPOS	T<1:0>	_		F	PLLPRE<4	:0>		3040
PLLFBD	0746	_	_	_	_	_	_	_				F	PLLDIV<8:0)>				0030
OSCTUN	0748		-	_	_	_	_	_	_	—	—			TUN	l<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-33: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	-	—	_	-	_	-	ERASE	_	_		NVMO	P<3:0>		0000 (1)
NVMKEY	0766		_	_	_	—	_		_				NVMKE	Y<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-34: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	—	—	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	T9MD	T8MD	T7MD	T6MD	_	_	_	_	_	_	—	-	_	_	I2C2MD	AD2MD	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
 - **3:** For dsPIC33FJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed value.

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER 7	'-8: IFS3: I	INTERRUPT	FLAG STAT	US REGIST	ER 3		
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
_	—	DMA5IF	DCIIF	DCIEIF	_	—	C2IF
bit 15				•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at I		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	DMA5IF: DM	A Channel 5 D	ata Transfer (Complete Inter	rupt Flag Status	bit	
		request has oc request has no					
bit 12	DCIIF: DCI E	vent Interrupt I	-lag Status bit				
	1 = Interrupt	request has oc	curred				
	•	request has no					
bit 11		Error Interrupt	U	it			
		request has oc request has no					
bit 10-9	Unimplemen	ted: Read as '	0'				
bit 8	C2IF: ECAN2	2 Event Interrup	ot Flag Status	bit			
	•	request has oc request has no					
bit 7	C2RXIF: ECA	AN2 Receive D	ata Ready Int	errupt Flag Sta	atus bit		
		request has oc request has no					
bit 6	•	rnal Interrupt 4		it			
	1 = Interrupt i	request has oc request has no	curred				
bit 5	INT3IF: Exter	rnal Interrupt 3	Flag Status b	it			
	•	request has oc request has no					
bit 4	-	Interrupt Flag					
	1 = Interrupt i	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 3		Interrupt Flag					
		request has oc					
bit 2	-	request has no 2 Master Even		ag Status bit			
SIL Z		request has oc	•	ug oluluo bit			
		request has no					
bit 1	SI2C2IF: 12C	2 Slave Events	Interrupt Flag	g Status bit			
		request has oc					
	-	request has no					
bit 0		Interrupt Flag					
		request has oc request has no					
		iequest nas no					

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		T1IP<2:0>				OC1IP<2:0>	
bit 15							bi
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC1IP<2:0>				INT0IP<2:0>	
bit 7							bi
Legend:							
R = Readabl	e bit	W = Writable I	bit	U = Unimple	mented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as 'o)'				
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits				
	111 = Interr	rupt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis	abled				
bit 11		ented: Read as '					
bit 10-8	-	>: Output Compa		1 Interrupt Prior	ritv bits		
		upt is priority 7 (I					
	•						
	•						
	001 = Interr	upt is priority 1					
		upt source is dis	abled				
bit 7	Unimpleme	ented: Read as 'o)'				
bit 6-4		: Input Capture C			oits		
	111 = Interr	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1	ablad				
bit 3		upt source is disa ented: Read as 'o					
bit 2-0	-			, bite			
DIL 2-0		External Interr upt is priority 7 (I)					
	•		gricot priori	, monuply			
	•						
	• 001 - Interr	upt is priority 1					

REGISTER 7-20: IP	PC5: INTERRUPT PRIORITY CONTROL REGISTER 5
-------------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC8IP<2:0>		—		IC7IP<2:0>	
bit 15					·		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		AD2IP<2:0>		—		INT1IP<2:0>	
bit 7							bit
Legend:							
R = Readable	bit	W = Writable t	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as '0)'				
bit 14-12	-	Input Capture C		rrunt Priority h	nite		
		upt is priority 7 (h					
	•			,			
	•						
	• 001 - Interr	upt is priority 1					
		upt source is disa	abled				
bit 11		nted: Read as '0					
bit 10-8	-	Input Capture C		rrupt Priority b	oits		
		upt is priority 7 (h					
	•						
	•						
	• 001 = Interru	upt is priority 1					
		upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '0)'				
bit 6-4	AD2IP<2:0>	: ADC2 Convers	ion Complete	e Interrupt Pric	rity bits		
	111 = Interru	upt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
		upt is priority 1 upt source is disa	abled				
bit 3		nted: Read as '0					
bit 2-0	-	: External Interr		hits			
		upt is priority 7 (h					
	•			,			
	•						
	• 001 - Intern	int is priority 1					
	001 = merrl	upt is priority 1					

REGISTER 8-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
			5444	54446		B 111 A	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAI	0<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

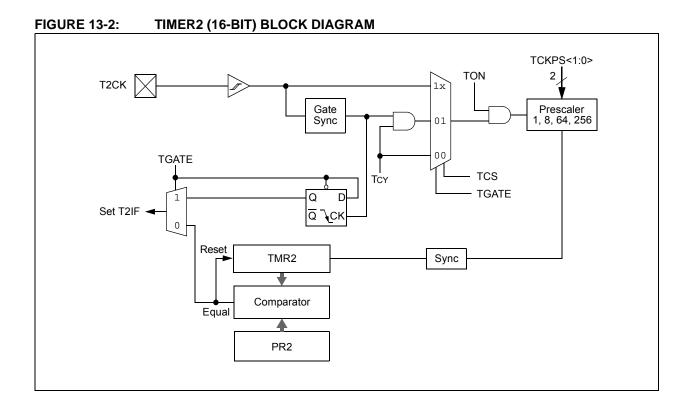
bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	—	—	—	CNT<	9:8> ⁽²⁾
bit 15							bit 8

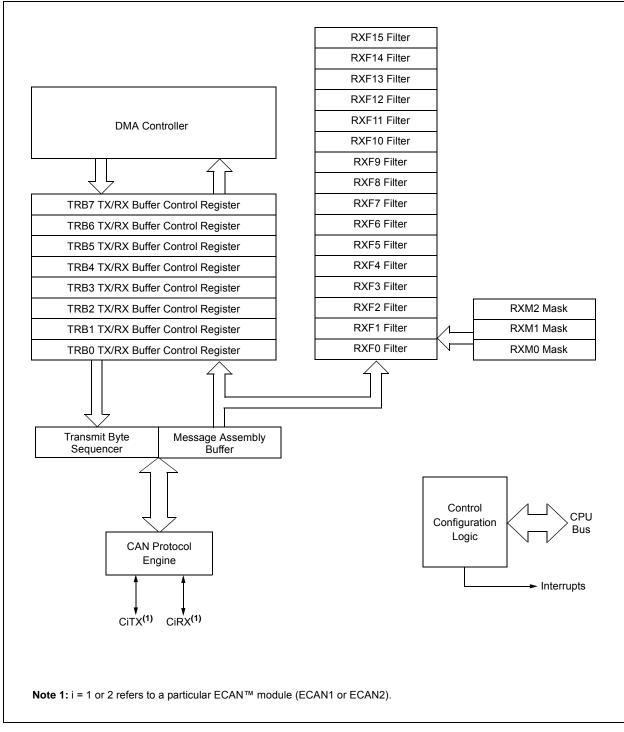
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CNT<7:0> ⁽²⁾								
bit 7								


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.


2: Number of DMA transfers = CNT<9:0> + 1.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—			DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0>(2	-)	PPRE<	<1:0> ⁽²⁾		
bit 7							bit		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'			
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-13	Unimplemen	nted: Read as '	0'						
bit 12		able SCKx pin	-						
		SPI clock is disa SPI clock is ena		ctions as I/O					
bit 11									
	DISSDO: Disable SDOx pin bit 1 = SDOx pin is not used by module; pin functions as I/O								
		is controlled b			,				
bit 10	MODE16: Wo	ord/Byte Comm	nunication Sel	ect bit					
		ication is word- ication is byte-							
bit 9		ata Input Sam							
	Master mode								
		a sampled at e							
	Slave mode:	a sampled at m		Sulput lime					
		e cleared when	SPIx is used	in Slave mode.					
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽¹⁾						
					clock state to Id				
bit 7		Select Enable			ock state to activ	e clock state (see bit 0)		
		used for Slave		ue).					
				rolled by port fu	unction				
bit 6	CKP: Clock F	Polarity Select	oit						
			•	ve state is a lov e state is a higł					
bit 5	MSTEN: Mas	ster Mode Enat	ole bit						
	1 = Master m 0 = Slave mo								
	The CKE bit is not		amed SPI mo	des. The user s	should program	this bit to '0' fo	or the Frame		
	SPI modes (FRME	$\pm in = \pm j.$							

- 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

FIGURE 19-1: ECAN™ MODULE BLOCK DIAGRAM

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
		ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN				
bit 15							bit 8				
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0				
IVRIF	WAKIF	ERRIF	0-0	FIFOIF	RBOVIF	RBIF	TBIF				
bit 7	WAKIF	ERRIF		FIFUIF	RBOVIE	RBIF	bit				
							DIL				
Legend:		C = Clear on	y bit								
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-14	Unimplemen	nted: Read as '	0'								
bit 13	-	smitter in Error		bit							
		ter is in Bus Of									
	0 = Transmitt	ter is not in Bus	Off state								
bit 12	TXBP: Trans	mitter in Error	State Bus Pas	sive bit							
		ter is in Bus Pa ter is not in Bus		-							
bit 11		iver in Error Sta									
		is in Bus Pass		vebil							
		is not in Bus P									
bit 10	TXWAR: Trai	nsmitter in Erro	r State Warni	ng bit							
	1 = Transmitter is in Error Warning state										
	0 = Transmitt	ter is not in Erro	or Warning sta	ate							
bit 9		ceiver in Error	•	bit							
		 1 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state 									
L:1 0					L:4						
bit 8		nsmitter or Rec ter or receiver i			DIT						
		ter or receiver i		•							
bit 7		d Message Rec		•							
		request has oc		5							
	0 = Interrupt	request has no	t occurred								
bit 6		Wake-up Activ		ag bit							
		request has oc									
6:4 <i>5</i>	-	request has no									
bit 5				ources in Clin	F<13:8> regist	er)					
		request has oc request has no									
bit 4	-	nted: Read as '									
bit 3	-) Almost Full In		it							
		request has oc									
	•	request has no									
bit 2	RBOVIF: RX	Buffer Overflo	w Interrupt Fla	ag bit							
		request has oc									
		request has no									
bit 1		Iffer Interrupt Fl	-								
	•	request has oc request has no									
		i oquest nas nu									
hit ()	TRIF. TY Duf	ffor Interrupt El	aa hit								
bit 0		ffer Interrupt Fla request has oc	-								

REGISTER 19-6: CIINTF: ECAN™ INTERRUPT FLAG REGISTER

REGISTER 19-8: CiEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0
		TERRO	CNT<7:0>			
						bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0
		RERRO	CNT<7:0>			
						bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
OR	'1' = Bit is set		'0' = Bit is cleared	t	x = Bit is unkr	nown
	R-0	R-0 R-0 bit W = Writable b	R-0 R-0 R-0 RERRO bit W = Writable bit	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> bit W = Writable bit U = Unimplement	TERRCNT<7:0> R-0 R-0 R-0 R-0 RERRCNT<7:0> E U = Unimplemented bit, real	R-0 R-0 R-0 R-0 R-0 R-0 k <

bit 15-8 **TERRCNT<7:0>:** Transmit Error Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

21.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning.
 - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

21.5 ADC Resources

Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browner:
	this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en546064

21.5.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 21-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_			—		CH123	NB<1:0>	CH123SB				
bit 15	·						bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
—	—	_			CH123	VA<1:0>	CH123SA				
bit 7							bit C				
Legend:			.,								
R = Readable		W = Writable b	it	U = Unimplen							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown				
bit 15-11	•	ted: Read as '0									
bit 10-9		CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits									
	When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0'										
	11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11										
	10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF-										
		•	•								
bit 8	CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit										
	When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0'										
	1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5										
	0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2										
hit 7-3	•	•	, CH2 positive								
bit 7-3 bit 2-1	Unimplemen	ted: Read as '0	, CH2 positive	e input is AN1,	CH3 positive	nput is AN2					
bit 7-3 bit 2-1	Unimplemen CH123NA<1:	ted: Read as '0 0>: Channel 1,	, CH2 positive 2, 3 Negative	e input is AN1, Input Select fo	CH3 positive	nput is AN2					
	Unimplemen CH123NA<1: When AD12E	ted: Read as '0 0>: Channel 1, 5 = 1, CHxNA is	, CH2 positive 2, 3 Negative :: U-0, Unimp	e input is AN1, Input Select fo Iemented, Rea	CH3 positive r Sample A bi ad as '0'	nput is AN2	N11				
	Unimplemen CH123NA<1: When AD12E 11 = CH1 neg	ted: Read as '0 0>: Channel 1, 3 = 1, CHxNA is jative input is Al	, CH2 positive 2, 3 Negative :: U-0, Unimp N9, CH2 nega	e input is AN1, Input Select fo Ilemented, Rea ative input is AN	CH3 positive r Sample A bi ad as '0' N10, CH3 nega	nput is AN2 is ative input is A					
	Unimplemen CH123NA<1: When AD12E 11 = CH1 neg 10 = CH1 neg	ted: Read as '0 0>: Channel 1, 5 = 1, CHxNA is	, CH2 positive 2, 3 Negative :: U-0, Unimp N9, CH2 nega N6, CH2 nega	e input is AN1, Input Select fo Iemented, Rea ative input is AN ative input is AN	CH3 positive r Sample A bi ad as '0' N10, CH3 nega	nput is AN2 is ative input is A					
	Unimplemen CH123NA<1: When AD12E 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH	ted: Read as '0 0>: Channel 1, b = 1, CHxNA is pative input is Al pative input is Al	, CH2 positive 2, 3 Negative :: U-0, Unimp N9, CH2 nega N6, CH2 nega e input is VRE	e input is AN1, Input Select fo Ilemented, Rea ative input is AN ative input is AN F-	CH3 positive r Sample A bi ad as '0' N10, CH3 nega N7, CH3 negat	nput is AN2 is ative input is A					
bit 2-1	Unimplemen CH123NA<1: When AD12E 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SA: Ch	ted: Read as '0 0>: Channel 1, B = 1, CHxNA is pative input is Al pative input is Al 12, CH3 negativ	, CH2 positive 2, 3 Negative :: U-0, Unimp N9, CH2 nega N6, CH2 nega e input is VRE psitive Input S	e input is AN1, Input Select fo Ilemented, Rea ative input is AN ative input is AN F- Select for Samp	CH3 positive r Sample A bi ad as '0' N10, CH3 nega N7, CH3 negat	nput is AN2 is ative input is A					
bit 2-1	Unimplemen CH123NA<1: When AD12E 11 = CH1 neg 0x = CH1 neg 0x = CH1, CH CH123SA: CH	ted: Read as '0 0>: Channel 1, 3 = 1, CHxNA is pative input is Al pative input is Al 12, CH3 negativ nannel 1, 2, 3 P	, CH2 positive 2, 3 Negative :: U-0, Unimp N9, CH2 nega N6, CH2 nega e input is VRE psitive Input S :: U-0, Unimp	e input is AN1, Input Select fo Ilemented, Rea ative input is AN ative input is AN F- Select for Samp Ilemented, Rea	CH3 positive r Sample A bi ad as '0' N10, CH3 nega N7, CH3 negat ble A bit ad as '0'	nput is AN2 is ative input is A ive input is AN					

24.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

24.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

24.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

24.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

24.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units		Conditions				
Operating Cur	rent (IDD) ⁽¹⁾								
DC20d	27	30	mA	-40°C					
DC20a	27	30	mA	+25°C	3.3V	10 MIPS			
DC20b	27	30	mA	+85°C	3.3V	10 10195			
DC20c	27	35	mA	+125°C					
DC21d	36	40	mA	-40°C					
DC21a	37	40	mA	+25°C	3.3V				
DC21b	38	45	mA	+85°C	3.3V	16 MIPS			
DC21c	39	45	mA	+125°C					
DC22d	43	50	mA	-40°C		20 MIPS			
DC22a	46	50	mA	+25°C	2.21/				
DC22b	46	55	mA	+85°C	- 3.3V				
DC22c	47	55	mA	+125°C					
DC23d	65	70	mA	-40°C					
DC23a	65	70	mA	+25°C	2.21/				
DC23b	65	70	mA	+85°C	- 3.3V	30 MIPS			
DC23c	65	70	mA	+125°C	7				
DC24d	84	90	mA	-40°C					
DC24a	84	90	mA	+25°C	2.21/				
DC24b	84	90	mA	+85°C	- 3.3V	40 MIPS			
DC24c	84	90	mA	+125°C	7				

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- · JTAG is disabled
- **2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

TABLE 26-9: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature								
Param No.	Characteristic Min Typ Max Units Conditions								
	LPRC @ 32.768 kHz ⁽¹⁾								
HF21	LPRC $-70^{(2)}$ — $+70^{(2)}$ % $-40^{\circ}C \le TA \le +150^{\circ}C$								

Note 1: Change of LPRC frequency as VDD changes.

2: Characterized but not tested.

TABLE 26-10: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_		ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35			ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 26-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	10	25	ns	_		
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	—	—	ns	—		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns			

Note 1: These parameters are characterized but not tested in manufacturing.