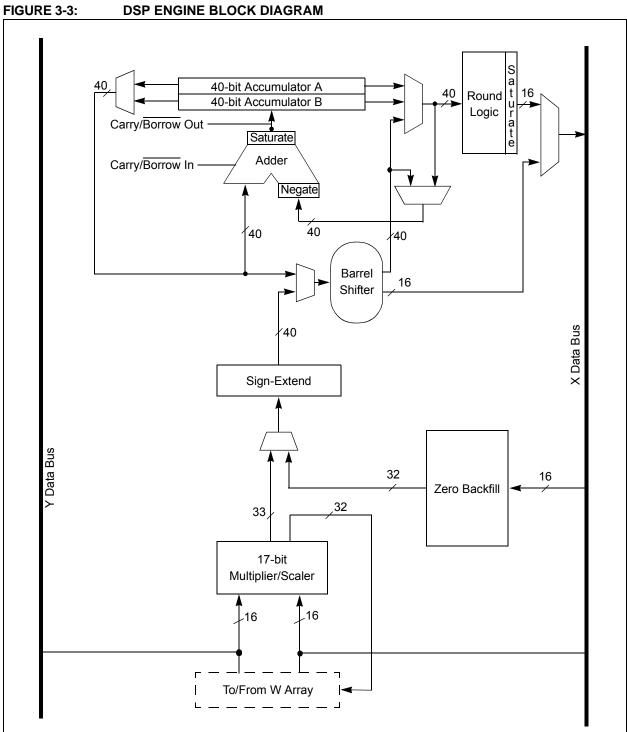


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp708at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and, thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic which typically uses both the accumulators.

The device supports three Saturation and Overflow modes:

• Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFF), or maximally negative 9.31 value (0x800000000), into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as 'super saturation' and provides protection against errone-ous data or unexpected algorithm problems (e.g., gain calculations).

 Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF), or maximally negative 1.31 value (0x008000000), into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set).

Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.2.2 Accumulator 'Write Back'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.2.3 Round Logic

The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined. If it is '1', ACCxH is incremented. If it is '0', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.2.4 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

ister or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The 3-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2 where:

Operand 1 is always a working register (i.e., the addressing mode can only be register direct) which is referred to as Wb.

Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- · Register Direct
- Register Indirect
- Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note:	Not all instructions support all the
	addressing modes given above.
	Individual instructions may support
	different subsets of these addressing
	modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the EA.
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-35: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the Addressing						
	mode specified in the instruction can differ						
	for the source and destination EA.						
	However, the 4-bit Wb (Register Offset)						
	field is shared between both source and						
	destination (but typically only used by						
	one).						

In summary, the following Addressing modes are supported by move and accumulator instructions:

- Register Direct
- · Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)

- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not all instructions support all the
	Addressing modes given above.
	Individual instructions may support different subsets of these Addressing
	modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the data pointers through register indirect tables.

The 2-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU and W10 and W11 will always be directed to the Y AGU. The effective addresses generated (before and

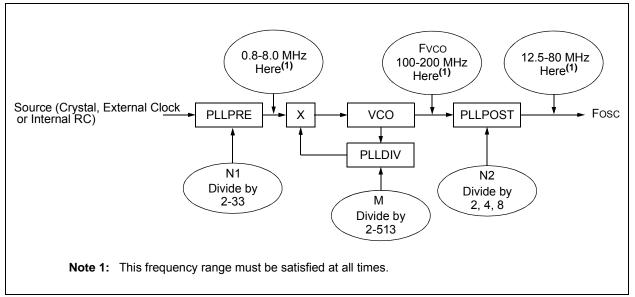
NOTES:

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		T6IP<2:0>		—		DMA4IP<2:0>	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_		_		OC8IP<2:0>	
bit 7				+	•		bit 0
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
pit 11	000 = Interru	upt is priority 1 upt source is disa n ted: Read as '0					
bit 10-8	111 = Interru • • 001 = Interru	DMA Channe upt is priority 7 (h upt is priority 1 upt source is disa	nighest priorit		Interrupt Prior	ity bits	
bit 7-3	Unimplemer	nted: Read as 'o)'				
bit 2-0		: Output Compa ıpt is priority 7 (h			ity bits		
		upt is priority 1 upt source is disa					

EQUATION 9-3:

XT WITH PLL MODE

= 40 MIPS


EXAMPLE

 $FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 \cdot 32}{2 \cdot 2} \right)$

For example, suppose a 10 MHz crystal is being used, with "XT with PLL" being the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz range needed.

If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

FIGURE 9-2: dsPIC33FJXXXGPX06A/X08A/X10A PLL BLOCK DIAGRAM

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Secondary (Timer1) Oscillator (Sosc)	Secondary	XX	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	-
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	-
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator

bit 0 OSWEN: Oscillator Switch Enable bit

bit 1

- 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual" for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: This is register is reset only on a Power-on Reset (POR).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
T5MD	T4MD	T3MD	T2MD	T1MD		_	DCIMD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD ⁽¹⁾
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown
bit 15	T5MD: Timer	5 Module Disat	ole bit				
		nodule is disable nodule is enable					
bit 14	T4MD: Timer	4 Module Disat	ole bit				
	-	nodule is disable nodule is enable					
bit 13		3 Module Disat					
	1 = Timer3 m	nodule is disable	ed				
	0 = Timer3 m	nodule is enable	d				
bit 12	-	2 Module Disat					
	-	nodule is disable nodule is enable					
bit 11	T1MD: Timer	1 Module Disat	ole bit				
		nodule is disable nodule is enable					
bit 10-9	Unimplemer	ted: Read as '	כ'				
bit 8	DCIMD: DCI Module Disable bit						
		ule is disabled ule is enabled					
bit 7	I2C1MD: I ² C	1 Module Disab	le bit				
		dule is disabled dule is enabled					
bit 6		T2 Module Disa	ble bit				
	1 = UART2 module bisable bit 0 = UART2 module is disabled 0 = UART2 module is enabled						
bit 5	0 = OART2 module is enabled U1MD: UART1 Module Disable bit						
	1 = UART1 module is disabled						
	0 = UART1 n	nodule is enable	ed				
bit 4	SPI2MD: SP	I2 Module Disal	ole bit				
		dule is disabled					
		dule is enabled					
bit 3		11 Module Disal	ole bit				
		dule is disabled dule is enabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

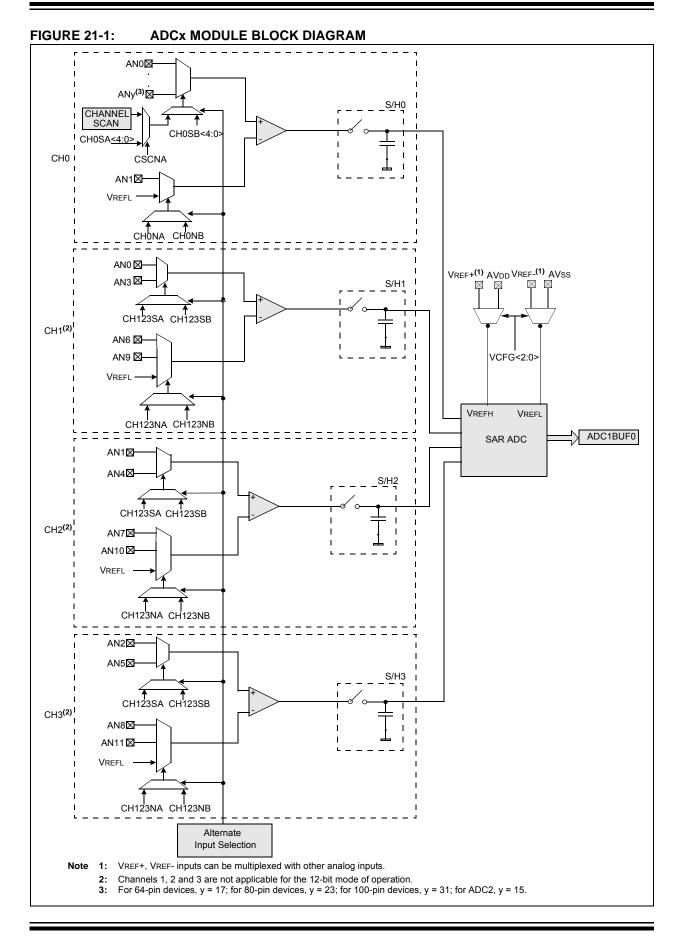
Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.


19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

REGISTER 19-13: CIBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7BP<3:0>				F6B	P<3:0>		
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F5BP	<3:0>			F4B	P<3:0>	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkı	nown
bit 15-12		RX Buffer Writt					
		hits received ir hits received ir		-			
	•						
	•						
		hits received ir hits received ir					
bit 11-8	1111 = Filte r	RX Buffer Writt hits received ir hits received ir	RX FIFO bu	uffer			
	•						
	•						
	•						
		hits received ir hits received ir					
bit 7-4	1111 = Filter 1110 = Filter	RX Buffer Writt hits received in hits received in	RX FIFO bu	uffer			
	•						
	•						
		hits received ir hits received ir					
bit 3-0	F4BP<3:0>: 1111 = Filter	RX Buffer Writt hits received ir hits received ir	en when Filte n RX FIFO bu	er 4 Hits bits uffer			
	•						
	•						
	•						
	0001 = Filter 0000 = Filter	hits received ir	n RX Buffer 1				

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPF	RI<1:0>	
bit 15							bit 8	
					D # 44 A			
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF		
bit 7							bit	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-8	See Definition	on for Bits 7-0,	Controls Buf	fer n				
bit 7		/RX Buffer Sele						
		Bn is a transm						
L H 0		RBn is a receive						
bit 6		essage Aborted						
	1 = Message 0 = Message	completed trar	smission succ	essfully				
bit 5	TXLARBm:	Message Lost	Arbitration bit ⁽¹)				
		lost arbitration did not lose ar						
bit 4	TXERRm: E	TXERRm: Error Detected During Transmission bit ⁽¹⁾						
		or occurred wh or did not occu	•	•				
bit 3	TXREQm: N	lessage Send F	Request bit					
		Setting this bit to '1' requests sending a message. The bit will automatically clear when the message is successfully sent. Clearing the bit to '0' while set will request a message abort.						
bit 2	RTRENm: Au	uto-Remote Tra	Insmit Enable	oit				
		 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected 						
bit 1-0	TXmPRI<1:0	TXmPRI<1:0>: Message Transmission Priority bits						
		message prior						
			oggo priority					
	10 = High integration	ermediate mes						

25.1 DC Characteristics

TABLE 25-1:	OPERATING MIPS VS. VOLTAGE

Characteristic VDD Range (in Volts)		Temp Range	Max MIPS
		(in °C)	dsPIC33FJXXXGPX06A/X08A/X10A
	VBOR-3.6V ⁽¹⁾	-40°C to +85°C	40
	VBOR-3.6V ⁽¹⁾	-40°C to +125°C	40

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 25-11 for the minimum and maximum BOR values.

TABLE 25-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit	
dsPIC33FJXXXGPX06A/X08A/X10A						
Operating Junction Temperature Range	TJ	-40	—	+125	°C	
Operating Ambient Temperature Range	TA	TA -40 — +85				
Extended Temperature Devices						
Operating Junction Temperature Range	TJ	-40	—	+150	°C	
Operating Ambient Temperature Range	TA	-40	°C			
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/O			W	
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)						
Maximum Allowed Power Dissipation	Pdmax	(TJ - TA)/θJ	A	W	

TABLE 25-3: THERMAL PACKAGING CHARACTERISTICS

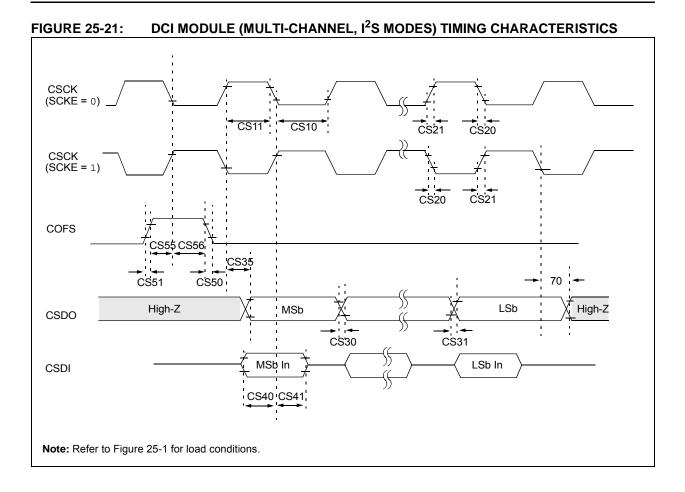
Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θja	40	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θja	40	—	°C/W	1
Package Thermal Resistance, 80-pin TQFP (12x12x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θja	28	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHA	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DI60a	licl	Input Low Injection Current	0		₋₅ (5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and RB11
DI60b	ІІСН	Input High Injection Current	0	_	+5(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB11, and all 5V tolerant pins ⁽⁷⁾
DI60c	Σ ΙΙΟΤ	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (VSS 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

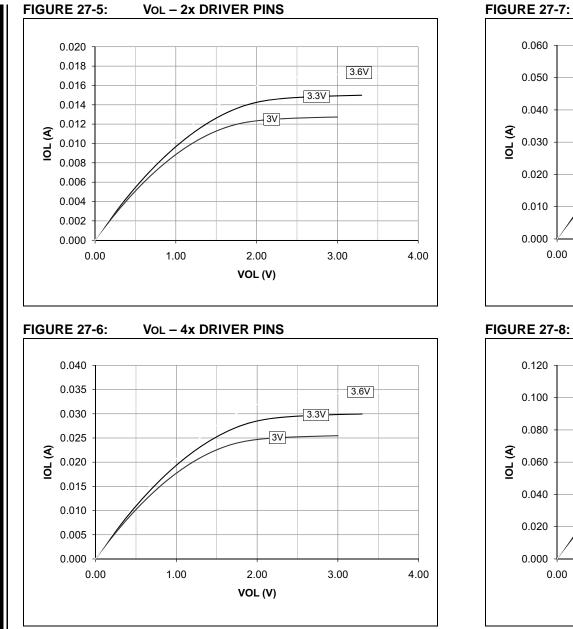
АС СНА	RACTERI	STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Charact	eristic	Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	—	μS	—	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	_	μS		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾		300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns		
	Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0		μS		
		Hold Time	400 kHz mode	0	0.9	μS	-	
			1 MHz mode ⁽¹⁾	0	0.3	μS		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6		μS	Start condition	
			1 MHz mode ⁽¹⁾	0.25		μS		
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first	
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25		μS	-	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μS		
		Setup Time	400 kHz mode	0.6	_	μS		
			1 MHz mode ⁽¹⁾	0.6		μS	-	
IS34	THD:STO	Stop Condition	100 kHz mode	4000		ns		
		Hold Time	400 kHz mode	600		ns		
			1 MHz mode ⁽¹⁾	250		ns	-	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	_	
		From Clock	400 kHz mode	0	1000	ns	1	
			1 MHz mode ⁽¹⁾	0	350	ns	1	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free	
			400 kHz mode	1.3		μS	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5		μS	can start	
IS50	Св	Bus Capacitive Lo			400	pF		

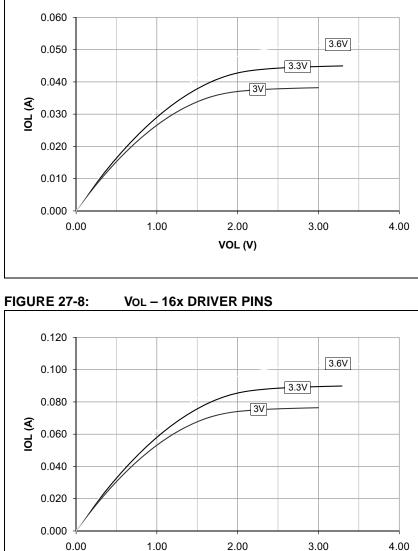
TABLE 25-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

CHARAG	AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic	Characteristic Min Typ Max Units Conditions						
	Clock Parameters								
	-								
HAD50	TAD	ADC Clock Period ⁽¹⁾	147		—	ns	—		
HAD50	IAD		147 version R	 ate		ns			

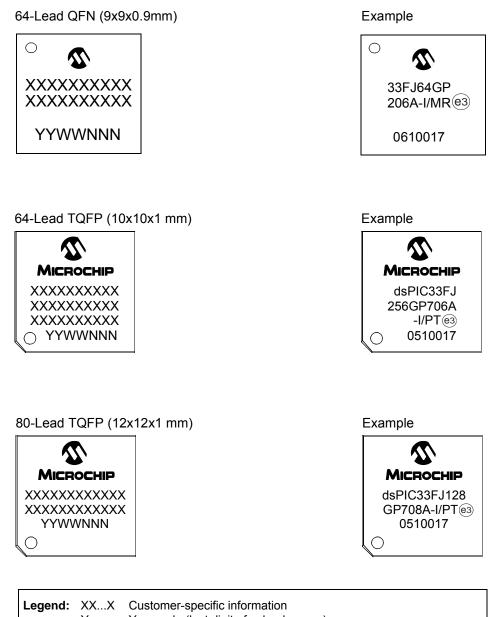
TABLE 26-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS


Note 1: These parameters are characterized but not tested in manufacturing.


TABLE 26-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							ed)	
Param No.	Symbol	Characteristic	Characteristic Min Typ Max Units Conditions					
Clock Parameters								
HAD50	TAD	ADC Clock Period ⁽¹⁾	104			ns	_	
Conversion Rate								
HAD56	FCNV	Throughput Rate ⁽¹⁾			800	Ksps		
N	at 4. These preparators are characterized but not tested in manufacturing							

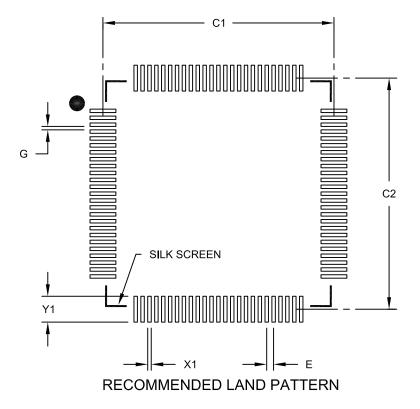
Note 1: These parameters are characterized but not tested in manufacturing.


VOL (V)

VOL – 8x DRIVER PINS

DS70593D-page 332

28.0 PACKAGING INFORMATION


28.1 Package Marking Information

Legend	I: XXX Y YY WW	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01')
	NNN (e3) *	Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.40 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing			13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B