

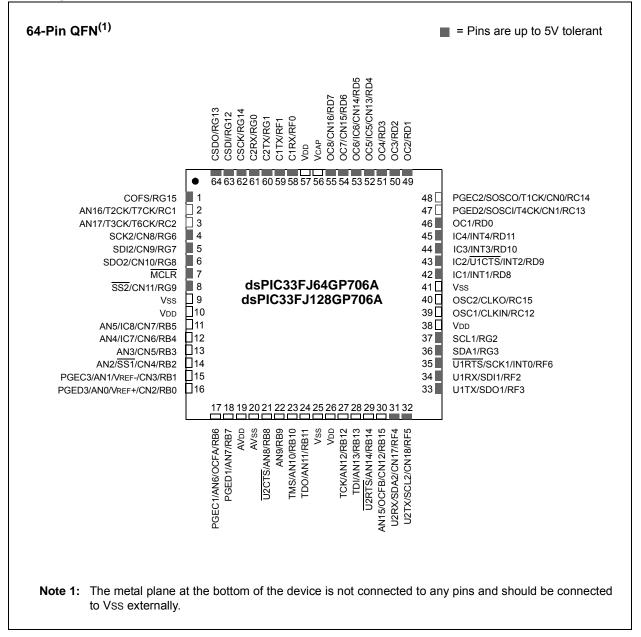
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

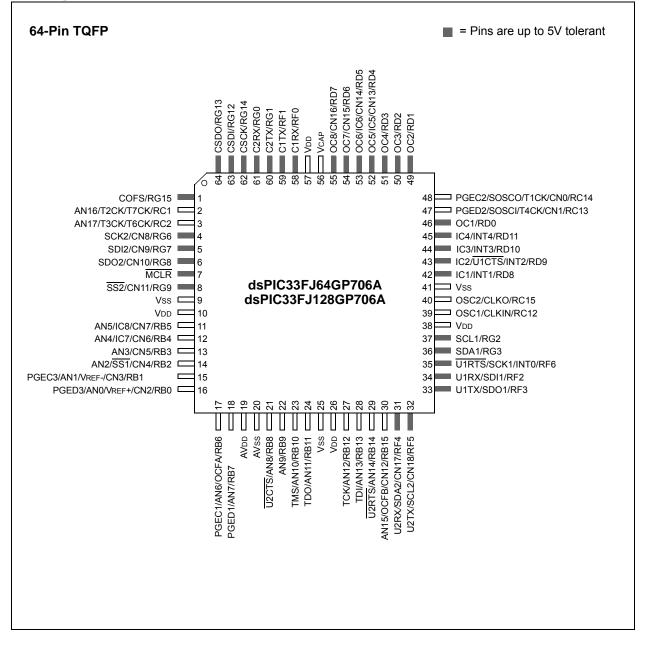
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp710a-i-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/ PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJXXXGPX06A/ X08A/X10A family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

REGISTER 3-1: SR: CPU STATUS REGISTER

bit 8		DC: MCU ALU Half Carry/Borrow bit
		 1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred
		 0 = No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred
bit 7-	5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
		<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4		RA: REPEAT Loop Active bit
		1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3		N: MCU ALU Negative bit
		1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2		OV: MCU ALU Overflow bit
		This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude which causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1		Z: MCU ALU Zero bit
		 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result)
bit 0		C: MCU ALU Carry/Borrow bit
		 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note	1:	This bit may be read or cleared (not set).
	2:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority

- Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and, thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic which typically uses both the accumulators.

The device supports three Saturation and Overflow modes:

• Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFF), or maximally negative 9.31 value (0x800000000), into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as 'super saturation' and provides protection against errone-ous data or unexpected algorithm problems (e.g., gain calculations).

 Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF), or maximally negative 1.31 value (0x008000000), into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set).

Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.2.2 Accumulator 'Write Back'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.2.3 Round Logic

The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined. If it is '1', ACCxH is incremented. If it is '0', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.2.4 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0			
WR	WREN	WRERR	—				_			
bit 15							bit			
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾			
0-0	ERASE	0-0	0-0	N/W-0.7	-	><3:0>(2)	N/ VV-U * 7			
 bit 7	LINAGE	_				<3.0×7	bit (
Legend:		SO = Settable	e only bit							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	WR: Write Co	ntral hit								
DIL 15			w program o	r erase operatio	n The operation	on is self-timed	and the hit i			
		by hardware on								
				lete and inactive	9					
bit 14	•	-	·							
	WREN: Write Enable bit 1 = Enable Flash program/erase operations									
		ash program/er								
bit 13	WRERR: Wri	te Sequence E	rror Flag bit							
	1 = An improper program or erase sequence attempt or termination has occurred (bit is set									
	automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally									
			-	npleted normally	1					
bit 12-7	Unimplemen	ted: Read as '	0'							
bit 6	ERASE: Erase/Program Enable bit									
				ed by NVMOP<3 ified by NVMOF						
bit 5-4		ited: Read as '	-							
bit 3-0	-			ts(2)						
	NVMOP<3:0>: NVM Operation Select bits ⁽²⁾ If ERASE = 1:									
	1111 = Memory bulk erase operation									
	1110 = Reserved									
	1101 = Erase General Segment									
	1100 = Erase Secure Segment									
	1011 = Reserved 0011 = No operation									
	0011 = No operation 0010 = Memory page erase operation									
	0001 = No operation									
	0000 = Erase a single Configuration register byte									
	If ERASE = 0:									
	1111 = No operation									
	1110 = Reserved									
	1101 = No operation 1100 = No operation									
	1100 = No operation 1011 = Reserved									
	0011 = Memo	ory word progra	am operation							
	0010 = No op									
	0001 = Memory row program operation									
		ory row prograr ram a single Cc								

REGISTE	R 6-1: RCON	I: RESET COI	NTROL REC	GISTER ⁽¹⁾			
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAPR	IOPUWR		_			_	VREGS ⁽³⁾
bit 15						• •	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit (
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	1 = A Trap C	o Reset Flag bit onflict Reset ha	s occurred	d			
bit 14	IOPUWR: Ille 1 = An illega Address	onflict Reset ha gal Opcode or al opcode deter Pointer caused I opcode or unit	Uninitialized ction, an illeç a Reset	W Access Res gal address m	ode or uninitial	ized W regist	er used as a
bit 13-9	•	ted: Read as '					
bit 8	VREGS: Volt 1 = Voltage F	age Regulator S Regulator is acti Regulator goes i	Standby Durir ve during Sle	ep mode	еер		
bit 7	EXTR: Extern 1 = A Master	nal Reset (MCL Clear (pin) Res Clear (pin) Res	R) Pin bit set has occur	red			
bit 6	1 = A reset	are Reset (Instru instruction has instruction has	been execute	ed			
bit 5	SWDTEN: So 1 = WDT is e 0 = WDT is d		Disable of W	DT bit ⁽²⁾			
bit 4	1 = WDT time	hdog Timer Tim e-out has occur e-out has not oc	red	t			
bit 3	SLEEP: Wak 1 = Device ha	e-up from Slee as been in Slee as not been in S	o Flag bit p mode				
bit 2	IDLE: Wake- 1 = Device w	up from Idle Fla as in Idle mode as not in Idle m	g bit				
bit 1	BOR: Brown- 1 = A Brown-	-out Reset Flag out Reset has o out Reset has r	bit occurred				
	All of the Reset sta cause a device Re		set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does not
2:	If the FWDTEN Co	onfiguration bit i	s '1' (unprog	rammed), the V	VDT is always e	nabled, regard	dless of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

SWDTEN bit setting.
3: For dsPIC33FJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed value.

Vector Number	Interrupt Request (IRQ) Number	Request (IRQ) IVT Address AIVT Address		Interrupt Source
54	46	0x000070	0x000170	DMA4 – DMA Channel 4
55	47	0x000072	0x000172	T6 – Timer6
56	48	0x000074	0x000174	T7 – Timer7
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59	51	0x00007A	0x00017A	T8 – Timer8
60	52	0x00007C	0x00017C	T9 – Timer9
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready
64	56	0x000084	0x000184	C2 – ECAN2 Event
65	57	0x000086	0x000186	Reserved
66	58	0x000088	0x000188	Reserved
67	59	0x00008A	0x00018A	DCIE – DCI Error
68	60	0x00008C	0x00018C	DCID – DCI Transfer Done
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	62	0x000090	0x000190	Reserved
71	63	0x000092	0x000192	Reserved
72	64	0x000094	0x000194	Reserved
73	65	0x000096	0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	U2E – UART2 Error
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request
80-125	72-117	0x0000A4-0x0000FE	0x0001A4-0x0001FE	Reserved

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0 0x000004		Reserved
1	1 0x000006		Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	7 0x000012		Reserved

REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		IC5IP<2:0>		—		IC4IP<2:0>					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		IC3IP<2:0>		—		DMA3IP<2:0>					
bit 7							bit (
Legend:											
R = Readable	e bit	W = Writable b	oit	U = Unimpler	nented bit, re	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	Unimpleme	nted: Read as 'o)'								
bit 14-12	-			rrupt Prioritv b	its						
		IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	001 = Interrupt is priority 1										
		upt source is disa	abled								
bit 11	Unimpleme	nted: Read as 'o)'								
bit 10-8	IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 7		nted: Read as '0									
bit 6-4	-			rrunt Priority b	its						
	IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	•		5	,,							
	•										
	• 001 = Interrupt is priority 1										
	000 = Interrupt source is disabled										
bit 3	Unimpleme	nted: Read as '0)'								
bit 2-0	DMA3IP<2:0	D>: DMA Channe	el 3 Data Trar	sfer Complete	Interrupt Pric	rity bits					
	111 = Interru	DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	001 = Interru	int is priority 1									

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0										
CHEN	SIZE	DIR	HALF	NULLW	_	—											
bit 15							bit										
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0										
		AMOD	-	_		MODE											
bit 7							bit										
Legend:																	
R = Readab	la hit	W = Writable	hit	II – Unimplon	contod hit roa	d aa '0'											
-n = Value a		'1' = Bit is set		U = Unimplen '0' = Bit is clea		x = Bit is unkr	0.000										
	IPOR	I = DILIS SEL			areu	X - BILIS UTKI	IOWII										
bit 15	CHEN: Chan	nel Enable bit															
	1 = Channel e	1 = Channel enabled															
	0 = Channel disabled																
bit 14	SIZE: Data Transfer Size bit																
	1 = Byte 0 = Word																
bit 13	DIR: Transfer Direction bit (source/destination bus select)																
				to peripheral ad o DMA RAM ad													
bit 12	HALF: Early Block Transfer Complete Interrupt Select bit																
	 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved 																
bit 11	NULLW: Null	NULLW: Null Data Peripheral Write Mode Select bit															
	 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation 																
bit 10-6	Unimplemen	ted: Read as '	0'														
bit 5-4	AMODE<1:0	>: DMA Chann	el Operating I	Mode Select bit	S												
	11 = Reserved																
	10 = Peripheral Indirect Addressing mode																
	01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode																
bit 3-2	-	ted: Read as '		it mode													
bit 0 2	-			ode Select bits													
					ansfer from/to	each DMA RAM	buffer)										
		ous, Ping-Pong					201101/										
	01 = One-Sh	ot, Ping-Pong r	nodes disable	ed													
	an Oration						01 = One-Shot, Ping-Pong modes disabled 00 = Continuous, Ping-Pong modes disabled										

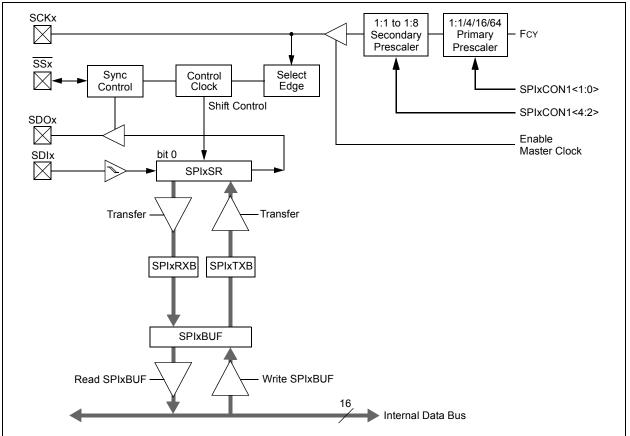
REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y				
_		COSC<2:0>				NOSC<2:0>(2)					
bit 15							bit 8				
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0				
CLKLOC	СК —	LOCK	_	CF		LPOSCEN	OSWEN				
bit 7							bit 0				
Legend:		y = Value set	from Configur	ation bits on P	POR	C = Clea	r only bit				
R = Reada	able bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15	Unimplemer	nted: Read as ')'								
bit 14-12	COSC<2:0>:	Current Oscilla	tor Selection	bits (read-only	()						
		C oscillator (FF									
		C oscillator (FF									
		ower RC oscilla	,	5							
	100 = Secon	dary oscillator (Sosc)								
		ry oscillator (XT,		I PLL							
		y oscillator (XT,									
		001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCDIVN + PLL) 000 = Fast RC oscillator (FRC)									
.:. 11		•	•								
oit 11	-	Unimplemented: Read as '0'									
oit 10-8		NOSC<2:0>: New Oscillator Selection bits ⁽²⁾									
		111 = Fast RC oscillator (FRC) with Divide-by-N									
		110 = Fast RC oscillator (FRC) with Divide-by-16									
		101 = Low-Power RC oscillator (LPRC) 100 = Secondary oscillator (Sosc)									
		011 = Primary oscillator (XT, HS, EC) with PLL									
		y oscillator (XT,									
	001 = Fast R	C Oscillator (FF	RC) with Divid	e-by-N and PL	L (FRCDIVN +	⊦ PLL)					
		C oscillator (FF	,								
bit 7		CLKLOCK: Clock Lock Enable bit									
		1 = If (FCKSM0 = 1), then clock and PLL configurations are locked									
		If (FCKSM0 = 0), then clock and PLL configurations may be modified 0 = Clock and PLL selections are not locked, configurations may be modified									
				ked, configurat	ions may be m	odified					
bit 6	-	nted: Read as '									
bit 5		_ock Status bit (s that PLL is in I	3,	lart un timor in	eatiefied						
		s that PLL is in i				l is disabled					
bit 4		nted: Read as '									
bit 3		ail Detect bit (rea		plication)							
		as detected clo									
		as not detected									
bit 2	Unimplemer	nted: Read as ')'								
Note 1:	Writes to this regis	ster require an u	Inlock sequer	ice. Refer to S	ection 7. "Oso	cillator" (DS701	86) in the				
	"dsPIC33F/PIC24						, -				
2:	Direct clock switch	nes between any	/ primary osci	llator mode wit	th PLL and FRO	CPLL mode are r	not permitted.				
	This applies to clo	ck switches in e	either direction	n. In these inst	ances, the app						
	mode as a transiti	on clock source	between the	two PLL mode	es.						
_											

3: This is register is reset only on a Power-on Reset (POR).

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active-low slave select).

In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

18.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en546064

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 19-7: CIINTE: ECAN™ INTERRUPT ENABLE REGISTER										
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
			_							
bit 15							bit			
D 444 0	5444.0	D 444 0		D 444 0	Dates	Dates	D 444 0			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
IVRIE bit 7	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE			
							DI			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
hit 15 0	Unimplomor	tod. Dood oo '	o'							
bit 15-8	-	nted: Read as '								
bit 7	IVRIE: Invalid Message Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 6	WAKIE: Bus Wake-up Activity Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 5	ERRIE: Error Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 4	Unimplemen	nted: Read as '	0'							
bit 3	FIFOIE: FIFO	O Almost Full In	terrupt Enabl	e bit						
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 2	RBOVIE: RX Buffer Overflow Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 1		iffer Interrupt Er								
	1 = Interrupt request enabled									
	•	request not ena								
bit 0		ffer Interrupt En								
		request enable								
	0 = Interrupt	request not ena	abled							

REGISTER 19-7: CIINTE: ECAN™ INTERRUPT ENABLE REGISTER

REGISTER 19-13: CIBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F7BP	<3:0>					
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F5BP	<3:0>			F4B	P<3:0>	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkı	nown
bit 15-12		RX Buffer Writt					
		hits received ir hits received ir		-			
	•						
	•						
		hits received ir hits received ir					
bit 11-8	1111 = Filter	RX Buffer Writt hits received ir hits received ir	RX FIFO bu	uffer			
	•						
	•						
	•						
		hits received ir hits received ir					
bit 7-4	1111 = Filter 1110 = Filter	RX Buffer Writt hits received in hits received in	RX FIFO bu	uffer			
	•						
	•						
		hits received ir hits received ir					
bit 3-0	F4BP<3:0>: 1111 = Filter	RX Buffer Writt hits received ir hits received ir	en when Filte n RX FIFO bu	er 4 Hits bits uffer			
	•						
	•						
	•						
	0001 = Filter 0000 = Filter	hits received ir					

REGISTER 20-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RSE7 | RSE6 | RSE5 | RSE4 | RSE3 | RSE2 | RSE1 | RSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 RSE<15:0>: Receive Slot Enable bits

1 = CSDI data is received during the individual time slot n

0 = CSDI data is ignored during the individual time slot n

REGISTER 20-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TSE7 | TSE6 | TSE5 | TSE4 | TSE3 | TSE2 | TSE1 | TSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0', during the individual time slot, depending on the state of the CSDOM bit

22.5 JTAG Interface

dsPIC33FJXXXGPX06A/X08A/X10A devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on the interface will be provided in future revisions of the document.

22.6 Code Protection and CodeGuard™ Security

The dsPIC33F product families offer the advanced implementation of CodeGuard[™] Security. CodeGuard[™] Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IP are resident on the single chip. The code protection features vary depending on the actual dsPIC33F implemented. The following sections provide an overview of these features.

The code protection features are controlled by the Configuration registers: FBS, FSS and FGS.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70199) in the "dsPIC33F/ PIC24H Family Reference Manual" for further information on usage, configuration and operation of CodeGuard™ Security.

22.7 In-Circuit Serial Programming

dsPIC33FJXXXGPX06A/X08A/X10A family digital signal controllers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming sequence. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware, to be programmed. Please refer to the "*dsPIC33F/PIC24H Flash Programming Specification*" (DS70152) document for details about ICSP.

Any one out of three pairs of programming clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

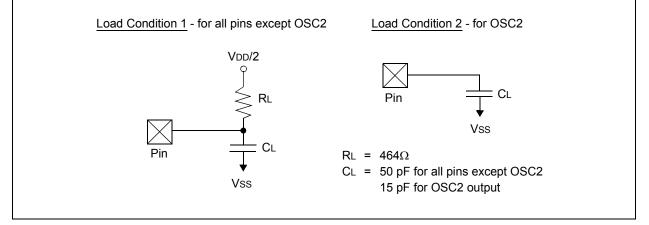
22.8 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any one out of three pairs of debugging clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to $\overline{\text{MCLR}}$, VDD, Vss and the PGEDx/PGECx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.


25.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33FJXXXGPX06A/X08A/X10A AC characteristics and timing parameters.

TABLE 25-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

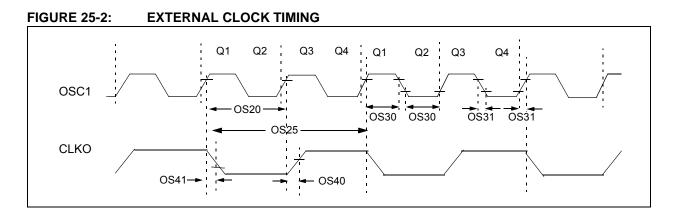

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
	Operating voltage VDD range as described in Table 25-1.					

FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 25-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_		15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		_	400	pF	In l ² C™ mode

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC	
		Oscillator Crystal Frequency	3.5 10 —		10 40 33	MHz MHz kHz	XT HS SOSC	
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns	—	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25	_	DC	ns	—	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc		0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_		20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	_	5.2		ns	_	
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	_	ns	—	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C	

TABLE 25-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

АС СНА	RACTERI	STICS		Standard Op (unless othe Operating ter	rwise st	a ted) re -40°	ons: 3.0V to 3.6V $C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +125^{\circ}C$ for Extended
Param No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μS	—
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	_	μS	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	
	Setup Time	400 kHz mode	100		ns		
		1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0		μS	
		Hold Time	400 kHz mode	0	0.9	μS	-
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6		μS	Start condition
			1 MHz mode ⁽¹⁾	0.25		μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25		μS	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μS	
		Setup Time	400 kHz mode	0.6	_	μS	
			1 MHz mode ⁽¹⁾	0.6		μS	-
IS34	THD:STO	Stop Condition	100 kHz mode	4000		ns	
		Hold Time	400 kHz mode	600	_	ns	
			1 MHz mode ⁽¹⁾	250		ns	-
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	_
		From Clock	400 kHz mode	0	1000	ns	1
			1 MHz mode ⁽¹⁾	0	350	ns	1
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3		μS	before a new transmission
			1 MHz mode ⁽¹⁾	0.5		μS	can start
IS50	Св	Bus Capacitive Lo			400	pF	

TABLE 25-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).