

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp710at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX10A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	—	_	_	_	_	_	_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A		_			_	_	_	-	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX08A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	_	_	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_		_	_	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX06A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	_	_	CN21IE	CN20IE	_	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	_	_	CN21PUE	CN20PUE	_	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 4-18	8: F	CAN1 H	REGIST	ER MAP	WHEN	CICIR	L1.WIN	= 0 OR	1 FOR	dsPIC331	JXXXC	3P506A	/51A0//	(06A/70	8A//10/	A DEVI	CESC	JNLY
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	—	R	EQOP<2:0	>	OPI	MODE<2:0	>	_	CANCAP	_	—	WIN	0480
C1CTRL2	0402	_	_	_	_	_	_	_	_	_	_	_		DN	ICNT<4:0>			0000
C1VEC	0404	_	—	_		F	FILHIT<4:0>			—			IC	CODE<6:0>				0000
C1FCTRL	0406		DMABS<2:0	>	—	—	_	_	-	_	_				0000			
C1FIFO	0408	_	_			FBP<	:5:0>			_	— FNRB<5:0>				0000			
C1INTF	040A	_	—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	—	_	—	_	_	—	—	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRC	NT<7:0>							RERRCN	[<7:0>				0000
C1CFG1	0410	_	—	_	—	_	_	—	—	SJW<	1:0>			BRP<5	5:0>			0000
C1CFG2	0412	_	WAKFIL	_	—	_	SE	EG2PH<2:()>	SEG2PHTS	SAM	S	EG1PH<2	:0>	PF	RSEG<2:0	>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSI	K<1:0>	F6MSI	< <1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK	<1:0>	F2MSI	< <1:0>	F1MSk	<1:0>	FOMS	< <1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12M8	SK<1:0>	F11MSK	(<1:0>	F10MS	K<1:0>	F9MSk	<1:0>	F8MS	<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 FOR dsPIC33FJXXXGP506A/510A/706A/708A/710A DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7 RTREN7 TX7PRI<1:0> TXEN6 TXABAT6 TXLARB6 TXER6 TXREQ6 RTREN6 TX6PRI<1:0>						xxxx						
C1RXD	0440								Received [Data Word								xxxx
C1TXD	0442		Transmit Data Word xxxx															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will

operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

7.0 INTERRUPT CONTROLLER

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70184) in the "dsPIC33F/PIC24H Familv Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJXXXGPX06A/X08A/X10A CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- · Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight non-maskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

dsPIC33FJXXXGPX06A/X08A/X10A devices implement up to 67 unique interrupts and five non-maskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJXXXGPX06A/X08A/X10A device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user programs a GOTO instruction at the Reset address which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER	7-6: IFS1: I	INTERRUPT	FLAG STAT	US REGISTE	ER 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21IF
bit 15						·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IF	IC7IF	AD2IF	INT1IF	CNIF	—	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	U2TXIF: UAF 1 = Interrupt 1 0 = Interrupt 1	RT2 Transmitte request has oc request has no	r Interrupt Flag curred t occurred	g Status bit			
DIL 14	1 = Interrupt	request has oc request has no	curred t occurred				
bit 13	INT2IF: Exter	mal Interrupt 2	Flag Status bi	it			
	1 = Interrupt I 0 = Interrupt I	request has oc request has no	curred t occurred				
bit 12	T5IF: Timer5	Interrupt Flag	Status bit				
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 11	T4IF: Timer4	Interrupt Flag	Status bit				
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 10	OC4IF: Output 1 = Interrupt I 0 = Interrupt I	ut Compare Ch request has oc request has no	annel 4 Interr curred t occurred	upt Flag Status	s bit		
bit 9	OC3IF: Outpu	ut Compare Ch	annel 3 Interr	upt Flag Status	bit		
	1 = Interrupt	request has oc request has no	curred t occurred	1 0			
bit 8	DMA21IF: DM	MA Channel 2	Data Transfer	Complete Inter	rrupt Flag Stat	us bit	
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 7	IC8IF: Input C	Capture Chann	el 8 Interrupt l	Flag Status bit			
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 6	IC7IF: Input C	Capture Chann	el 7 Interrupt l	Flag Status bit			
	1 = Interrupt	request has oc request has no	curred t occurred				
bit 5	AD2IF: ADC2	2 Conversion C	complete Inter	rupt Flag Statu	s bit		
	1 = Interrupt	request has oc	curred				
1.11.4	0 = Interrupt	request has no	t occurred	•			
dit 4	INITIF: Exter	nai interrupt 1	Fiag Status bi	IT			
	1 = 1 interrupt 0 = Interrupt i	request has oc request has no	t occurred				

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	_	—	—	
bit 15							bit 8
P/M/_0	P/M/ 0	P/M/_0	PM/0	11-0	P/M/ 0	P/M/_0	11-0
C2TXIE	C1TXIE		DMA6IF				
bit 7	0 T T/AI	Billinin	Billini		OZEN	01Ell	bit C
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
			e.1				
DIT 15-8	Unimplemen	ited: Read as	0.				
bit /	C2TXIF: EC/	AN2 Transmit D	ata Request I	nterrupt Flag S	status bit		
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 6	C1TXIE: FCA	AN1 Transmit D	ata Request I	nterrupt Flag S	Status bit		
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 5	DMA7IF: DM	IA Channel 7 D	ata Transfer C	Complete Interr	upt Flag Status	bit	
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 4	DMA6IF: DM	IA Channel 6 D	ata Transfer C	Complete Interr	upt Flag Status	bit	
	1 = Interrupt	request has oc	curred				
L:1 0		request has no	t occurred				
DIT 3	Unimplemen	ited: Read as	0.				
bit 2	U2EIF: UAR	12 Interrupt Fla	g Status bit				
	\perp = Interrupt 0 = Interrupt	request has oc request has no	currea t occurred				
bit 1	U1EIF: UAR	T1 Interrupt Fla	g Status bit				
-	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 0	Unimplemer	nted: Read as '	0'				

REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		DCIEIP<2:0>		_	—	—	_
bit 15				•			bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	—	_	<u> </u>		C2IP<2:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-12	DCIEIP<2:0	-: DCI Error Inte	errupt Priority	bits			
	111 = Interru	ipt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	ipt source is dis	abled				
bit 11-3	Unimpleme	nted: Read as '	0'				
bit 2-0	C2IP<2:0>:	ECAN2 Event li	nterrupt Priori	ity bits			
	111 = Interru	pt is priority 7 (highest priori	ty interrupt)			
	•	, ,	- '	,			
	•						
	•						
		ipt is priority 1	ablad				

000 = Interrupt source is disabled

9.1 CPU Clocking System

There are seven system clock options provided by the dsPIC33FJXXXGPX06A/X08A/X10A:

- FRC Oscillator
- · FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- · Primary Oscillator with PLL
- Secondary (LP) Oscillator
- LPRC Oscillator
- FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC (Low-Power RC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 25-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 22.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose between twelve different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) Fosc is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device, and speeds up to 40 MHz are supported by the dsPIC33FJXXXGPX06A/ X08A/X10A architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

$FCY = \frac{FOSC}{2}$

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:

EQUATION 9-2: Fosc CALCULATION

 $Fosc = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-v	R/W-v
_		COSC<2:0>	-	_	,	NOSC<2:0> ⁽²⁾	,
bit 15							bit 8
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOC	к —	LOCK	_	CF	<u> </u>	LPOSCEN	OSWEN
bit 7							bit 0
Levende			fram Canfigur	ration hita an D			and thit
D - Doode	bla bit	y = value set	hit		'UR montod hit, road		only bit
		41' = Rit is set	DIL	$0^{\circ} = 0$	mented bit, read	uas u v - Ritis unkno	WD
		I - DILIS SEL			aleu		VVII
bit 15	Unimplemen	ted: Read as '	D '				
bit 14-12	COSC<2:0>:	Current Oscilla	tor Selection	bits (read-only	()		
	111 = Fast R	C oscillator (FF	RC) with Divid	le-bv-N			
	110 = Fast R	C oscillator (FF	RC) with Divid	le-by-16			
	101 = Low-Po	ower RC oscilla	tor (LPRC)	, -			
	100 = Second	dary oscillator (Sosc)				
	011 = Primary	y oscillator (XT	HS, EC) with	h PLL			
	010 = Primary	y oscillator (XT	HS, EC)				
	001 = Fast R	C Oscillator (FI	RC) with Divid	de-by-N and PL	L (FRCDIVN +	PLL)	
hit 11	Unimplement	tod. Bood on "	, ,				
		Now Oppillator	Soloction bit	_c (2)			
DIL IU-O	111 = Fast P(Selection bit	s, ,			
	111 - Fast R(C oscillator (FF	C) with Divid	le-by-in le-by-16			
	101 = 1 ow-Pc	ower RC oscilla	tor (I PRC)				
	100 = Second	dary oscillator (Sosc)				
	011 = Primary	y oscillator (XT	HS, EC) with	h PLL			
	010 = Primary	y oscillator (XT	HS, EC)				
	001 = Fast R	C Oscillator (FI	RC) with Divid	de-by-N and Pl	_L (FRCDIVN +	PLL)	
hit 7		C OSCIIIAIOI (FF	(C) bla hit				
	1 = If (FCKS)	M0 = 1) then c	lock and PLI	configurations	are locked		
	If (FCKS	M0 = 1), then a $M0 = 0$). then a	lock and PLL	. configurations	s may be modifi	ed	
	0 = Clock and	d PLL selectior	is are not loc	ked, configurat	ions may be mo	odified	
bit 6	Unimplemen	ted: Read as '	כ'				
bit 5	LOCK: PLL L	ock Status bit (read-only)				
	1 = Indicates	that PLL is in I	ock, or PLL s	start-up timer is	satisfied	is disabled	
hit 4		ted: Read as '	י טו וטכא, אנמו נ ז'				
hit 3	CF: Clock Fai	il Detect hit (re:	, ad/clear by ar	onlication)			
bit 0	1 = FSCM ha	as detected clo	nk failura	oplication)			
	0 = FSCM ha	as not detected	clock failure				
bit 2	Unimplemen	ted: Read as '	כי				
Note 1:	Writes to this regis	ter require an ι Η Family Refor	Inlock sequel	nce. Refer to S "for details	ection 7. "Osc	illator" (DS7018	6) in the
2.	Direct clock switch	es between an	v primary oso	illator mode wit	th PLL and FRC	PII mode are no	t permitted
۷.	This applies to cloc	ck switches in e	either directio	n. In these inst	ances, the appl	ication must swite	ch to FRC
	mode as a transitio	on clock source	between the	two PLL mode	es.		-

3: This is register is reset only on a Power-on Reset (POR).

NOTES:

FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (X = 1 OR 2)

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

REGISTER 1	9-16: CiRX	FnSID: ECAN™	ACCEPTAN	ICE FILTER n	STANDARD II	DENTIFIER (n =	: 0, 1,, 15)		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			SID	<10:3>					
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
	SID<2:0>		_	EXIDE	_	EID<	17:16>		
bit 7							bit 0		
Legend:									
R = Readabl	le bit	W = Writable I	bit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at	t POR	'1' = Bit is set		ared	x = Bit is unknown				
bit 15-5	SID-10.0-	Standard Identifi	er hite						
bit 10-0	1 = Messag 0 = Messag	e address bit SIE e address bit SIE)x must be '1)x must be '0	' to match filter ' to match filter					
bit 4	Unimpleme	ented: Read as 'o)'						
bit 3	EXIDE: Ext	ended Identifier I	Enable bit						
	If MIDE = 1	then:							
	1 = Match o	nly messages wi	th extended i	identifier addre	sses				
	0 = Match o	nly messages wi	th standard i	dentifier addres	ses				
	If MIDE = 0	then:							
	Ignore EXII	DE bit.							

bit 2
 Unimplemented: Read as '0'

 bit 1-0
 EID<17:16>: Extended Identifier bits

 1 = Message address bit EIDx must be '1' to match filter

 0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-17: CIRXFnEID: ECAN™ ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EID	<15:8>				
bit 15							bit 8	
]	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EID	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 =Message address bit EIDx must be '0' to match filter

Bit Fiel	d	Register	RTSP Effect	Description		
SSS<2:0	SSS<2:0> FSS		Immediate	Secure Segment Program Flash Code Protection Size		
				(FOR 128K and 256K DEVICES) x11 = No Secure program Flash segment		
				Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE		
				Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE		
				Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE		
				(FOR 64K DEVICES) x11 = No Secure program Flash segment		
				Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE		
				Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE		
				Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 007FFEh 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE		
RSS<1:0	0>	FSS	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM		
GSS<1:0	0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security; general program Flash segment starts at End of SS, ends at EOM 0x = High security; general program Flash segment starts at End of SS, ends at EOM		

TABLE 22-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 25-4:	DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	ARACTER	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
Operati	ng Voltag	9					
DC10	Supply V	/oltage					
	Vdd	—	3.0	_	3.6	V	—
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_		V	—
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V	_
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	—	V/ms	0-3.0V in 0.1s

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

FIGURE 25-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 25-22: 1	TIMER1 EXTERNAL	CLOCK TIMING	REQUIREMENTS ⁽¹⁾

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Charact		Min	Тур	Мах	Units	Conditions		
TA10	ТтхН	TxCK High Time Synchror no presc		onous, caler	Tcy + 20		_	ns	Must also meet parameter TA15	
			Synchronous, with prescaler		(Tcy + 20)/N			ns		
			Asynchronous		20	_	_	ns		
TA11	TTXL	TxCK Low Time	Synchronous, no prescaler		(Tcy + 20)/N	_	_	ns	Must also meet parameter TA15	
			Synchronous, with prescaler		20	_	—	ns	N = prescale value	
		Asynchronous		20	_	—	ns	(1,8,64,256)		
TA15	A15 TTXP TxCK Input Synchronous, Period no prescaler		2Tcy + 40		_	ns	_			
		Synchr with pr		onous, scaler	Greater of 40 ns or (2Tcy + 40)/N				N = prescale value (1, 8, 64, 256)	
			Asynchronous		40			ns	—	
OS60	Ft1	SOSC1/T1CK Oscillator Ir frequency Range (oscillator enabled by setting TCS bi (T1CON<1>))		nput or it	DC		50	kHz	_	
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increme			0.75Tcy+40		1.75Tcy+40	ns	—	

Note 1: Timer1 is a Type A.

TABLE 25-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

	RACTERIST	Standard Operating Conditions: 2.4V to 3.6V (unless otherwise stated)						
		$\begin{array}{ll} \mbox{Operating temperature} & -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +85^{\circ}\mbox{C for Industrial} \\ & -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +125^{\circ}\mbox{C for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	—	—	10	MHz	-40°C to +125°C and see Note 3	
SP20	TscF	SCKx Output Fall Time	—	—		ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time				ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time				ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Revision Level – Tape and Reel Fla Temperature Ran Package — Pattern —	nark — mily — v Size (K ag (if ap ge	(B)	SPIC 33 FJ 256 GP7 10 A T I / PT - XXX	Examples: a) dsPIC33FJ256GP710AI/PT: General-purpose dsPIC33, 64 KB program memory, 100-pin, Industrial temp., TQFP package.
Architecture:	33	=	16-bit Digital Signal Controller	
Flash Memory Family:	FJ	=	Flash program memory, 3.3V	
Product Group:	GP2 GP3 GP5 GP7	= = =	General purpose family General purpose family General purpose family General purpose family	
Pin Count:	06 08 10	= =	64-pin 80-pin 100-pin	
Temperature Range:	I E H	= = =	-40°C to+85°C(Industrial) -40°C to+125°C(Extended) -40°C to+150°C(High)	
Package:	PT PF MR	= = =	10x10 or 12x12 mm TQFP (Thin Quad Flatpack) 14x14 mm TQFP (Thin Quad Flatpack) 9x9mm QFN (Plastic Quad Flatpack)	
Pattern	Three-d (blank o ES	ligit othe =	QTP, SQTP, Code or Special Requirements wise) Engineering Sample	