

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp506a-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	1_0	1_0	R/M/_0	R/\\/_0	R-0	R-0	R-0
0-0		0-0			R-0	DI <2:0>	K-0
bit 15			00	LDT		DL 12.05	bit 8
Dit 10							
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
Logond		C - Cloar on	v hit				
R = Readable	bit	W = Writable	y bit hit	₋n = Value at	POR	'1' = Rit is set	
0' = Bit is clear	ired	x = Bit is unk	nown	U = Unimple	mented bit, read	d as '0'	
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	US: DSP Mul	tiply Unsigned	Signed Control	ol bit			
	1 = DSP engi	ne multiplies a	re unsigned				
bit 11	0 = DSP engi	ne multiplies a	re signed	,;;+(1)			
DICTI	1 = Terminate	executing DO	loop at end of	f current loop if	teration		
	0 = No effect						
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops active					
	•						
	001 = 1 DO lo	op active					
	000 = 0 DO lo	ops active					
bit 7	SATA: AccA	Saturation Ena	ble bit				
	1 = Accumula	itor A saturatio	n enabled n disabled				
bit 6	SATB: AccB	Saturation Ena	ible bit				
	1 = Accumula	tor B saturatio	n enabled				
	0 = Accumula	tor B saturatio	n disabled				
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit		
	1 = Data spac	ce write satura	tion enabled				
bit 4		cumulator Satu	iration Mode S	Select hit			
	1 = 9.31 satu	ration (super s	aturation)				
	0 = 1.31 satu	ration (normal	saturation)				
bit 3	IPL3: CPU In	terrupt Priority	Level Status I	oit 3 ⁽²⁾			
	1 = CPU inter	rupt priority lev	vel is greater t	han 7			
hit 2	0 = CPU Inter	rupt priority iev n Snaco Visibil	/el ls / or less ity in Data Soc	, nco Enablo bit			
DIL Z	1 = Program	snace visible ir	n data snace				
	0 = Program	space not visib	le in data space	се			
bit 1	RND: Roundi	ng Mode Seleo	ct bit				
	1 = Biased (c 0 = Unbiased	onventional) ro (convergent) ı	ounding enable counding enab	ed Ied			
bit 0	IF: Integer or	Fractional Mul	tiplier Mode S	elect bit			
	1 = Integer m	ode enabled fo	or DSP multipl	y ops			
	0 = Fractiona	I mode enable	d for DSP mul	tiply ops			

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

Note 1: This bit will always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06A/X08A/X10A DEVICES WITH 8 KBS RAM

IABLE 4-18	8: F	CAN1 H	REGIST	ER MAP	WHEN	CICIR	L1.WIN	= 0 OR	1 FOR	dsPIC331	JXXXC	3P506A	/51A0//	(06A/70	8A//10/	A DEVI	CESC	JNLY
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	—	R	EQOP<2:0	>	OPI	MODE<2:0	>	_	CANCAP	_	—	WIN	0480
C1CTRL2	0402	_	_	_	_	_	_	_	_	_	_	_		DN	ICNT<4:0>			0000
C1VEC	0404	_	—	_		F	FILHIT<4:0>			—			IC	CODE<6:0>				0000
C1FCTRL	0406		DMABS<2:0	>	—	—	_	_	-	_	_	—		F	SA<4:0>			0000
C1FIFO	0408	_	_			FBP<	:5:0>			_	_			FNRB<	5:0>			0000
C1INTF	040A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	—	_	—	_	_	—	—	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRC	NT<7:0>							RERRCN	[<7:0>				0000
C1CFG1	0410	_	—	_	—	_	_	—	—	SJW<	1:0>			BRP<5	5:0>			0000
C1CFG2	0412	_	WAKFIL	_	—	_	SE	EG2PH<2:()>	SEG2PHTS	SAM	S	EG1PH<2	:0>	PF	RSEG<2:0	>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSI	K<1:0>	F6MSI	< <1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK	<1:0>	F2MSI	< <1:0>	F1MSk	<1:0>	FOMS	< <1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12M8	SK<1:0>	F11MSK	(<1:0>	F10MS	K<1:0>	F9MSk	<1:0>	F8MS	<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 FOR dsPIC33FJXXXGP506A/510A/706A/708A/710A DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C1RXD	0440								Received [Data Word								xxxx
C1TXD	0442		Transmit Data Word xxxx															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5	-1: NVMC	ON: FLASH	MEMORY C		EGISTER		
R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR			—	_	_
bit 15							bit 8
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
	ERASE	_	_		NVMOP	≥<3:0>(2)	
bit 7							bit 0
Legend		SO - Settable	only hit				
R = Readable	bit	W = Writable	bit	II = I Inimple	mented hit read	l as 'O'	
n = Value at [$(1)^2 = \text{Rit is set}$	DIL	0' = Bit is cl	eared	v = Bitis unkr	
		I - DILIS SEL			eareu		IOWIT
bit 15	WR: Write Co	ontrol bit					
	1 = Initiates	a Flash memor	y program or	erase operat	ion. The operation	on is self-timed	and the bit is
	cleared b	by hardware on	ce operation i	is complete			
	0 = Program	or erase opera	ition is comple	ete and inactiv	/e		
bit 14	WREN: Write	Enable bit					
	1 = Enable F 0 = Inhibit Fla	ash program/e	ase operation	กร าร			
bit 13	WRERR: Wri	te Sequence F	rror Flag bit				
	1 = An impro	per program o	r erase seque	nce attempt o	r termination has	s occurred (bit i	s set
	automati	cally on any se	t attempt of th	ne WR bit)			
	0 = The prog	ram or erase o	peration com	pleted normal	ly		
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6	ERASE: Eras	se/Program Ena	able bit				
	1 = Perform	the erase operation of the program o	ation specified	d by NVMOP<	3:0> on the next	WR command	and
bit 5.4		une program op					
bit 3-0		NVM Operat	o ion Select hits	₂ (2)			
bit 3-0	If FRASE = 1			5			
	1111 = Mem	<u>.</u> ory bulk erase (operation				
	1110 = Rese	rved					
	1101 = Erase	e General Segr	nent				
	1100 = Erase	e Secure Segm	ent				
	1011 - Rese	peration					
	0010 = Mem	ory page erase	operation				
	0001 = No o p	peration					
	0000 = Erase	e a single Confi	guration regis	ster byte			
	If ERASE = 0	:					
	1111 = No o p	peration					
	1110 = Rese	rved					
	1100 = N000	peration					
	1011 = Rese	rved					
	0011 = Memo	ory word progra	am operation				
	0010 = No op	peration					
	0001 = Nem	ory row program	n operation	aister hyte			
		an a ungio ot		giotor byto			
Note 1: The	ese bits can onl	v be reset on F	POR.				

7.3 Interrupt Control and Status Registers

dsPIC33FJXXXGPX06A/X08A/X10A devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC17
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a Status bit, which is set by the respective peripherals or external signal and is cleared via software.

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level bits (ILR<3:0>) in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32.

REGISTER	7-12: IEC2:		ENABLE CO		GISTER 2	D #44 C	D 444 6	
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
16IE	DMA4IE	—	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	
bit 15							bit 8	
P/M/O	P/M/_0	P/M/_0	P/M/-0	P/\\/_0	P/W/_0		P/M/_0	
hit 7	10412	ICOL	DIVIAJIL	OIL	CIIVIE	SI IZIL	bit 0	
Sit 1								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15	T6IE: Timer6	Interrupt Enab	le bit					
	1 = Interrupt i	request enable	d					
h:+ 4 4		request not ena	ibled	lanalata latar	w			
DIC 14	1 = Interrupt (A Channel 4 D	ata Transfer C		rupt Enable bit			
	0 = Interrupt i	request not enable	abled					
bit 13	Unimplemen	ted: Read as '	0'					
bit 12	OC8IE: Outpu	ut Compare Ch	annel 8 Interro	upt Enable bit				
	1 = Interrupt i	request enable	d					
L:1 44		request not ena						
DICT	1 = Interrupt I	ut Compare Cn	annei / Interri	upt Enable bit				
	0 = Interrupt request not enabled							
bit 10	OC6IE: Outpu	ut Compare Ch	annel 6 Interri	upt Enable bit				
	1 = Interrupt i	request enable	d					
	0 = Interrupt i	request not ena	abled					
bit 9	OC5IE: Output	ut Compare Ch	annel 5 Interri	upt Enable bit				
	0 = Interrupt i	request enable	abled					
bit 8	IC6IE: Input C	Capture Chann	el 6 Interrupt E	Enable bit				
	1 = Interrupt i	request enable	d					
	0 = Interrupt i	request not ena	abled					
bit 7	IC5IE: Input (Capture Chann	el 5 Interrupt E	Enable bit				
	\perp = Interrupt i 0 = Interrupt i	request enable	a abled					
bit 6	IC4IE: Input (Capture Chann	el 4 Interrupt E	Enable bit				
	1 = Interrupt ı	request enable	d					
	0 = Interrupt i	request not ena	abled					
bit 5	IC3IE: Input (Capture Chann	el 3 Interrupt E	Enable bit				
	1 = Interrupt i	request enable	d abled					
bit 4	DMA3IF: DM	A Channel 3 D	ata Transfer (Complete Inter	rupt Enable bit			
	1 = Interrupt i	request enable	d		- apt			
	0 = Interrupt i	request not ena	abled					
bit 3	C1IE: ECAN1	Event Interrup	ot Enable bit					
	1 = Interrupt i	request enable	d blod					
	0 = interrupt i	equest not ena	Iniea					

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	_	_	_	—				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	—			
bit 7							bit C			
Levende										
Legena: D - Doodobl	a hit	\// = \//ritable	hit		monted bit read					
r = Value at POR (1' = Rit is set					nented bit, read					
-n = value at	POR	= Bit is set	eared	x = Bit is unkno	own					
bit 15 9	Unimplomon	tod: Dood oo '	0'							
bit 7	COTVIE: ECAN2 Transmit Data Dequest Interrupt Enable bit									
	1 - Interrupt request enabled									
	0 = Interrupt i	request enable	u abled							
bit 6	C1TXIE: ECA	N1 Transmit D	ata Request I	nterrupt Enabl	e bit					
	1 = Interrupt ı	request enable	d							
	0 = Interrupt i	request not ena	abled							
bit 5	DMA7IE: DM	A Channel 7 D	ata Transfer C	Complete Enab	le Status bit					
	1 = Interrupt	request enable	d							
	0 = Interrupt i	request not ena	abled							
bit 4	DMA6IE: DM	A Channel 6 D	ata Transfer C	Complete Enab	ole Status bit					
	1 = Interrupt i	request enable	d							
hit 3		tequest not end	0'							
bit 2		2 Error Interru	o nt Enable bit							
	1 = Interrunt i	request enable	d							
	0 = Interrupt i	request on able	abled							
bit 1	U1EIE: UART	1 Error Interru	pt Enable bit							
	1 = Interrupt i	request enable	d							
	0 = Interrupt i	request not ena	abled							

bit 0 Unimplemented: Read as '0'

REGISTER 9-	-3: PLLF	BD: PLL FEE	DBACK DIV	ISOR REGIS	TER ⁽¹⁾		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾
_	—	—		_	_		PLLDIV<8>
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLD	IV<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	known
bit 15-9	Unimpleme	nted: Read as '	0'				
bit 8-0	PLLDIV<8:0	>: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
	111111111	= 513					
	•						
	•						
	•						
	000110000	= 50 (default)					
	•						
	•						
	•						
	000000010 000000001 000000000	= 4 = 3 = 2					

Note 1: This is register is reset only on a Power-on Reset (POR).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
T5MD	T4MD	T3MD	T2MD	T1MD		_	DCIMD
bit 15			I	1			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD ⁽¹⁾
bit 7							bit 0
Legend:						1	
R = Readabl		W = Writable	DIt		nented bit, read		
-n = value at	POR	"1" = Bit is set		$0^{\circ} = Bit is clea$	ared	x = Bit is unk	nown
bit 15	T5MD. Timer	5 Modulo Disat	le hit				
DIL 15	1 = Timer5 m	odule is disable	vic pir vid				
	0 = Timer5 m	odule is enable	d				
bit 14	T4MD: Timer4	4 Module Disat	ole bit				
	1 = Timer4 me	odule is disable	ed				
	0 = Timer4 m	odule is enable	d				
bit 13	T3MD: Timer	3 Module Disat	ole bit				
	1 = 1 mer3 mer3	odule is disable odule is enable	a d				
bit 12	T2MD: Timer2	2 Module Disab	∽ ole bit				
	1 = Timer2 mo	odule is disable	ed				
	0 = Timer2 m	odule is enable	d				
bit 11	T1MD: Timer	1 Module Disab	ole bit				
	1 = Timer1 mo	odule is disable	ed d				
hit 10_0		tod: Pood as '	u v				
bit 8		Module Disable	, hit				
bit 0	1 = DCI modu	le is disabled	, Dit				
	0 = DCI modu	le is enabled					
bit 7	I2C1MD: I ² C1	l Module Disab	le bit				
	$1 = I^2 C1 \mod I^2$	ule is disabled					
1.11.0	$0 = I^2 C1 \mod I$	ule is enabled					
bit 6	U2MD: UART	2 Module Disa	ble bit				
	1 = UART2 m 0 = UART2 m	odule is enable	ed ed				
bit 5	U1MD: UART	1 Module Disa	ble bit				
	1 = UART1 m	odule is disable	ed				
	0 = UART1 m	odule is enable	ed				
bit 4	SPI2MD: SPI2	2 Module Disat	ole bit				
	1 = SPI2 mod	lule is disabled					
hit 3	SPI1MD: SPI	1 Module Disat	ole hit				
Situ	1 = SPI1 mod	lule is disabled					
	0 = SPI1 mod	lule is enabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJXXXGPX06A/X08A/X10A devices support up to eight input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- · Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin

- Capture timer value on every edge (rising and falling)
- Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to 1 (ICI<1:0> = 00).

FIGURE 14-1: INPUT CAPTURE BLOCK DIAGRAM

1 = Frame sync pulse is active-high0 = Frame sync pulse is active-low

FRMDLY: Frame Sync Pulse Edge Select bit 1 = Frame sync pulse coincides with first bit clock 0 = Frame sync pulse precedes first bit clock

This bit must not be set to '1' by the user application.

Unimplemented: Read as '0'

Unimplemented: Read as '0'

REGISTER 1	6-3: SPIxC	ON2: SPIx C	ONTROL RE	EGISTER 2					
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	FRMPOL	_	_	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
—	—	—	—	—	_	FRMDLY	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15	FRMEN: Frar	ned SPIx Supp	ort bit						
	1 = Framed S 0 = Framed S	Plx support en Plx support dis	abled (<mark>SSx</mark> pi sabled	n used as fram	ne sync pulse in	put/output)			
bit 14	SPIFSD: Fran	ne Sync Pulse	Direction Cor	ntrol bit					
	1 = Frame sy 0 = Frame sy	nc pulse input (nc pulse outpu	(slave) t (master)						
bit 13	FRMPOL: Frame Sync Pulse Polarity bit								

DS70593D-page 186

bit 12-2

bit 1

bit 0

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

20.0 DATA CONVERTER INTERFACE (DCI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Data Converter Interface (DCI)" (DS70288) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

20.1 Module Introduction

The dsPIC33FJXXXGPX06A/X08A/X10A Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), ADC and D/A converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- · AC-Link Compliant mode

The DCI module provides the following general features:

- · Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

20.2 Module I/O Pins

There are four I/O pins associated with the module. When enabled, the module controls the data direction of each of the four pins.

20.2.1 CSCK PIN

The CSCK pin provides the serial clock for the DCI module. The CSCK pin may be configured as an input or output using the CSCKD control bit in the DCICON1 SFR. When configured as an output, the serial clock is provided by the dsPIC33FJXXXGPX06A/X08A/X10A. When configured as an input, the serial clock must be provided by an external device.

20.2.2 CSDO PIN

The Serial Data Output (CSDO) pin is configured as an output only pin when the module is enabled. The CSDO pin drives the serial bus whenever data is to be

transmitted. The CSDO pin is tri-stated, or driven to '0', during CSCK periods when data is not transmitted depending on the state of the CSDOM control bit. This allows other devices to place data on the serial bus during transmission periods not used by the DCI module.

20.2.3 CSDI PIN

The Serial Data Input (CSDI) pin is configured as an input only pin when the module is enabled.

20.2.3.1 COFS Pin

The Codec Frame Synchronization (COFS) pin is used to synchronize data transfers that occur on the CSDO and CSDI pins. The COFS pin may be configured as an input or an output. The data direction for the COFS pin is determined by the COFSD control bit in the DCICON1 register.

The DCI module accesses the shadow registers while the CPU is in the process of accessing the memory mapped buffer registers.

20.2.4 BUFFER DATA ALIGNMENT

Data values are always stored left justified in the buffers since most Codec data is represented as a signed 2's complement fractional number. If the received word length is less than 16 bits, the unused Least Significant bits in the Receive Buffer registers are set to '0' by the module. If the transmitted word length is less than 16 bits, the unused LSbs in the Transmit Buffer register are ignored by the module. The word length setup is described in subsequent sections of this document.

20.2.5 TRANSMIT/RECEIVE SHIFT REGISTER

The DCI module has a 16-bit shift register for shifting serial data in and out of the module. Data is shifted in/ out of the shift register, MSb first, since audio PCM data is transmitted in signed 2's complement format.

20.2.6 DCI BUFFER CONTROL

The DCI module contains a buffer control unit for transferring data between the shadow buffer memory and the Serial Shift register. The buffer control unit is a simple 2-bit address counter that points to word locations in the shadow buffer memory. For the receive memory space (high address portion of DCI buffer memory), the address counter is concatenated with a '0' in the MSb location to form a 3-bit address. For the transmit memory space (high portion of DCI buffer memory), the address counter is concatenated with a '1' in the MSb location.

Note: The DCI buffer control unit always accesses the same relative location in the transmit and receive buffers, so only one address counter is provided.

© 2009-2012 Microchip Technology Inc.

REGISTER 21	1-3: ADxC	ON3: ADCx C	ONTROL R	EGISTER 3			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	—	—			SAMC<4:0>(1)	
bit 15							bit 8
R/W-0	R/W/-0	R/W-0	R/W/-0	R/W-0	R/W-0	R/W-0	R/W-0
10000	1000 0	10000	ADCS	<7·()>(2)	10000	1000 0	1000 0
bit 7			7,000	1.0			bit 0
Legend:							
R = Readable I	bit	W = Writable b	oit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ADRC: ADC	Conversion Cloo	ck Source bit				
	1 = ADC inter	nal RC clock					
		ived from syster	n ciock				
DIT 14-13	Unimplemen	ted: Read as '0	(1)				
bit 12-8	SAMC<4:0>:	Auto Sample Ti	me bits("				
	11111 = 31	AD					
	•						
	•						
	00001 = 1 TA	D					
	10 = 00000	D · · ·		(1) (2)			
bit 7-0	ADCS<7:0>:	ADC Conversio	n Clock Sele	ect bits ⁽²⁾			
		Reserved					
	•						
	01000000 =	Reserved					
	00111111 =	TCY · (ADCS<7	:0> + 1) = 64	• TCY = TAD			
	•						
	•						
	•						
	00000010 =	TCY · (ADCS<7	:0> + 1) = 3	• TCY = TAD			
	00000001 =	TCY · (ADCS<7	(:0> + 1) = 2	 TCY = TAD TCY = TAD 			
	- 00000000 –		.0~ + 1) = 1	· ICT - IAD			
Note 1: This	s bit only used i	f ADxCON1<7:	5> (SSRC<2	: 0>) = 111.			

2: This bit is not used if ADxCON3<15> (ADRC) = 1.

TABLE 25-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHA	ARACTERIS	TICS	Standard Op (unless othe Operating ter	erating rwise sta mperatur	Condition ated) re -40° -40°	ONS: 2.4 C ≤ TA ≤ C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_		11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	_		_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	Ι	—	ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	_
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_		ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	_

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No. Symbol		Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	35	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	_	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—	_	ns	_		
HSP51 TssH2doZ		SSx ↑ to SDOx Output High-Impedance	15	_	55	ns	See Note 2		

TABLE 26-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 26-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature								
Param No. Symbol		Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions			
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge			35	ns	_			
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_			
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	_	_	ns	_			
HSP51 TssH2doZ		SSx ↑ to SDOx Output High-Impedance	15	_	55	ns	See Note 2			
HSP60 TssL2doV		SDOx Data Output Valid after SSx Edge	_	_	55	ns	—			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 26-14: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No. Symbol		Characteristic	Min	Тур	Max	Units	Conditions	
Reference Inputs								
HAD08 IREF		Current Drain		250 —	600 50	μA μA	ADC operating, See Note 1 ADC off, See Note 1	

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 26-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽³⁾

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	yp Max Units		Conditions		
	ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾								
AD23a	Gerr	Gain Error		5	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD24a	EOFF	Offset Error		2	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
	ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF- ⁽¹⁾								
AD23a	Gerr	Gain Error	2	10	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24a	Eoff	Offset Error	2	5	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
	Dynamic Performance (12-bit Mode) ⁽²⁾								
HAD33a	_		200	kHz					

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 26-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽³⁾

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	Max Units		Conditions		
	ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾								
AD23b	Gerr	Gain Error		3	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD24b	EOFF	Offset Error		2	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
	AD	C Accuracy (12-bit Mode)	– Measu	irement	s with int	ternal V	REF+/VREF- ⁽¹⁾		
AD23b	Gerr	Gain Error		7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24b EOFF		Offset Error		3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
	Dynamic Performance (10-bit Mode) ⁽²⁾								
HAD33b		_	400	kHz					

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N		80		
Lead Pitch	е		0.50 BSC		
Overall Height	A	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E	14.00 BSC			
Overall Length	D	14.00 BSC			
Molded Package Width	E1	12.00 BSC			
Molded Package Length	D1	12.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B