

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp506a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33F PRODUCT FAMILIES

The dsPIC33F General Purpose Family of devices are ideal for a wide variety of 16-bit MCU embedded applications. The controllers with codec interfaces are well-suited for speech and audio processing applications.

The device names, pin counts, memory sizes and peripheral availability of each family are listed below, followed by their pinout diagrams.

dsPIC33F	General	Purpose	Family	Controllers
----------	---------	---------	--------	--------------------

Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	16-bit Timer	Input Capture	Output Compare Std. PWM	Codec Interface	ADC	UART	IdS	I²C™	Enhanced CAN™	VO Pins (Max) ⁽²⁾	Packages
dsPIC33FJ64GP206A	64	64	8	9	8	8	1	1 ADC, 18 ch	2	2	1	0	53	PT, MR
dsPIC33FJ64GP306A	64	64	16	9	8	8	1	1 ADC, 18 ch	2	2	2	0	53	PT, MR
dsPIC33FJ64GP310A	100	64	16	9	8	8	1	1 ADC, 32 ch	2	2	2	0	85	PF, PT
dsPIC33FJ64GP706A	64	64	16	9	8	8	1	2 ADC, 18 ch	2	2	2	2	53	PT, MR
dsPIC33FJ64GP708A	80	64	16	9	8	8	1	2 ADC, 24 ch	2	2	2	2	69	PT
dsPIC33FJ64GP710A	100	64	16	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT
dsPIC33FJ128GP206A	64	128	8	9	8	8	1	1 ADC, 18 ch	2	2	1	0	53	PT, MR
dsPIC33FJ128GP306A	64	128	16	9	8	8	1	1 ADC, 18 ch	2	2	2	0	53	PT, MR
dsPIC33FJ128GP310A	100	128	16	9	8	8	1	1 ADC, 32 ch	2	2	2	0	85	PF, PT
dsPIC33FJ128GP706A	64	128	16	9	8	8	1	2 ADC, 18 ch	2	2	2	2	53	PT, MR
dsPIC33FJ128GP708A	80	128	16	9	8	8	1	2 ADC, 24 ch	2	2	2	2	69	PT
dsPIC33FJ128GP710A	100	128	16	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT
dsPIC33FJ256GP506A	64	256	16	9	8	8	1	1 ADC, 18 ch	2	2	2	1	53	PT, MR
dsPIC33FJ256GP510A	100	256	16	9	8	8	1	1 ADC, 32 ch	2	2	2	1	85	PF, PT
dsPIC33FJ256GP710A	100	256	30	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT

Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.

2: Maximum I/O pin count includes pins shared by the peripheral functions.

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section
 2. "CPU" (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJXXXGPX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The dsPIC33FJXXXGPX06A/X08A/X10A instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJXXXGPX06A/X08A/X10A is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1. The programmer's model for the dsPIC33FJXXXGPX06A/ X08A/X10A is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own indepen-

dent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space. The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value, up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.3 Special MCU Features

The dsPIC33FJXXXGPX06A/X08A/X10A features a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJXXXGPX06A/X08A/X10A supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit, left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJXXXGPX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJXXXGPX06A/X08A/X10A devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06A/X08A/X10A DEVICES WITH 30 KBS RAM

IADLL	4-0.	I I I VI L																
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period I	Register 1								FFFF
T1CON	0104	TON	_	TSIDL		_	—	_	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tin	ner3 Holding	Register (fo	or 32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period I	Register 2								FFFF
PR3	010E								Period I	Register 3								FFFF
T2CON	0110	TON	—	TSIDL		_	_	—	—	—	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL		_	—	—	—	—	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116							Timer5 Hold	ling Register	(for 32-bit o	perations onl	y)						xxxx
TMR5	0118								Timer5	Register								0000
PR4	011A								Period I	Register 4								FFFF
PR5	011C								Period I	Register 5								FFFF
T4CON	011E	TON	—	TSIDL	_	—	—	—	—	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T5CON	0120	TON	—	TSIDL	_	—	—	—	—	—	TGATE	TCKP	S<1:0>	—	—	TCS	—	0000
TMR6	0122								Timer6	Register								0000
TMR7HLD	0124							Timer7 Hold	ling Register	(for 32-bit o	perations onl	y)						xxxx
TMR7	0126								Timer7	Register								0000
PR6	0128								Period I	Register 6								FFFF
PR7	012A								Period I	Register 7	_							FFFF
T6CON	012C	TON	_	TSIDL	_	_	—				TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T7CON	012E	TON	—	TSIDL	_	_	—	_	_	_	TGATE	TCKP	S<1:0>	—		TCS	—	0000
TMR8	0130								Timer8	Register								0000
TMR9HLD	0132		Timer9 Holding Register (for 32-bit operations only)															
TMR9	0134								Timer9	Register								0000
PR8	0136								Period I	Register 8								FFFF
PR9	0138		Period Register 9 FFFF															
T8CON	013A	TON	—	TSIDL		_	—	—	_	—	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T9CON	013C	TON	_	TSIDL	_	_	—	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000

TABLE 4-6: TIMER REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJXXXGPX06A/X08A/X10A

TABLE 4-2	1: E	CAN2 F	REGISTE	R MAP	WHEN (C2CTRL	1.WIN =	0 OR 1	L FOR	dsPIC33F	-JXXXC	GP706/	4/708A	/710A D	DEVICE	SONL	Y	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	—	—	CSIDL	ABAT	—	RI	EQOP<2:0	>	OPN	MODE<2:0)>	—	CANCAP	—	—	WIN	0480
C2CTRL2	0502	—	_	_	_	_	_	_	_	_	_	_		D	NCNT<4:()>		0000
C2VEC	0504	—	_	_		F	LHIT<4:0>			_				ICODE<6:0)>			0000
C2FCTRL	0506	[DMABS<2:0	>	-	—	_	—	-	_	—	—			FSA<4:0>			0000
C2FIFO	0508	_	_		•	FBP<	5:0>			_	—			FNRE	3<5:0>			0000
C2INTF	050A	_	_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	_	_	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E				TERRCN	T<7:0>							RERRC	NT<7:0>				0000
C2CFG1	0510	_	_	_	_	_	_	_	_	SJW<1	1:0>			BRP	<5:0>			0000
C2CFG2	0512	_	WAKFIL	_	_	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	S	EG1PH<2	:0>	P	RSEG<2:0)>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C2FMSKSEL1	0518	F7MS	K<1:0>	F6MS	K<1:0>	F5MSI	< <1:0>	F4MS	K<1:0>	F3MSK	<1:0>	F2MS	K<1:0>	F1MSł	<<1:0>	F0MS	K<1:0>	0000
C2FMSKSEL2	051A	F15MS	K<1:0>	F14MS	SK<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	(<1:0>	F10MS	K<1:0>	F9MSł	<<1:0>	F8MS	K<1:0>	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 FOR dsPIC33FJXXXGP706A/708A/710A DEVICES ONLY **TABLE 4-22:**

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							See	definition	when WIN	= x							
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TX ABAT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PF	RI<1:0>	0000
C2TR23CON	0532	TXEN3	TX ABAT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	RI<1:0>	0000
C2TR45CON	0534	TXEN5	TX ABAT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	RI<1:0>	0000
C2TR67CON	0536	TXEN7	TX ABAT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C2RXD	0540		Recieved Data Word xxxx															
C2TXD	0542								Transmit [Data Word								xxxx

dsPIC33FJXXXGPX06A/X08A/X10A

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTG REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02E4	TRISG15	TRISG14	TRISG13	TRISG12	_	—	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PORTG	02E6	RG15	RG14	RG13	RG12	_	_	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	xxxx
LATG	02E8	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
ODCG	06E4	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-32: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	—	—	—	—	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)
OSCCON	0742	_	(COSC<2:0	>	_	1	NOSC<2:0	>	CLKLOCK	_	LOCK	_	CF	_	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI	I	DOZE<2:0>	>	DOZEN	F	RCDIV<2:0)>	PLLPOS	ST<1:0>	_		F	PLLPRE<4:	:0>		3040
PLLFBD	0746	_	_	_	_	_	—	_					PLLDIV<8:0)>				0030
OSCTUN	0748	_	_	_	_	_	—	_	_	_				TUN	l<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-33: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	_	—	—	_	_	ERASE	—	-		NVMO	P<3:0>		0000(1)
NVMKEY	0766	_	_	_	_	_	—	—	_				NVMKE	Y<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-34: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	—	_	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	T9MD	T8MD	T7MD	T6MD	_	-		_	_	_	_	_	—	_	I2C2MD	AD2MD	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TRAPR IOPUWR — — — VF bit 15 </th <th></th>	
bit 15	1200
	bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 F	R/W-1
EXTR SWR SWDTEN ⁽²⁾ WDTO SLEEP IDLE BOR	POR
bit 7	bit 0
Legend:	
R = Readable bit $W = Writable bit II = Unimplemented bit read as '0'$	
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown)	
bit 15 TRAPR: Trap Reset Flag bit	
1 = A Trap Conflict Reset has occurred	
bit 14 IOPLINE: Illegel Opende er Uninitialized W Assess Repet Flag bit	
1 = An illegal opcode detection, an illegal address mode or uninitialized W register use	ed as an
Address Pointer caused a Reset	
0 = An illegal opcode or uninitialized W Reset has not occurred	
bit 13-9 Unimplemented: Read as '0'	
bit 8 VREGS: Voltage Regulator Standby During Sleep bit ⁽³⁾	
1 = Voltage Regulator goes into standby mode during Sleep	
bit 7 EXTR: External Reset (MCLR) Pin bit	
1 = A Master Clear (pin) Reset has occurred	
0 = A Master Clear (pin) Reset has not occurred	
bit 6 SWR: Software Reset (Instruction) Flag bit	
1 = A RESET INSTRUCTION has been executed 0 = A RESET instruction has not been executed	
bit 5 SWDTEN: Software Enable/Disable of WDT bit ⁽²⁾	
1 = WDT is enabled	
0 = WDT is disabled	
bit 4 WDTO: Watchdog Timer Time-out Flag bit	
1 = WDT time-out has occurred	
bit 3 SI FEP: Wake-up from Sleep Flag bit	
1 = Device has been in Sleep mode	
0 = Device has not been in Sleep mode	
bit 2 IDLE: Wake-up from Idle Flag bit	
1 = Device was in Idle mode	
bit 1 BOB: Brown out Depet Fleg bit	
1 = A Brown-out Reset has occurred	
0 = A Brown-out Reset has not occurred	
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software of a device Reset	does not
2: If the FWDTEN Configuration bit is '1' (unprogrammed) the WDT is always enabled regardless of	of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

SWDTEN bit setting.
3: For dsPIC33FJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed value.

7.0 INTERRUPT CONTROLLER

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70184) in the "dsPIC33F/PIC24H Familv Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJXXXGPX06A/X08A/X10A CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- · Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight non-maskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

dsPIC33FJXXXGPX06A/X08A/X10A devices implement up to 67 unique interrupts and five non-maskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJXXXGPX06A/X08A/X10A device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user programs a GOTO instruction at the Reset address which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

Vector	Interrupt Request (IRQ)	IVT Address	AIVT Address	Interrupt Source
Number	Number			
54	46	0x000070	0x000170	DMA4 – DMA Channel 4
55	47	0x000072	0x000172	T6 – Timer6
56	48	0x000074	0x000174	T7 – Timer7
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59	51	0x00007A	0x00017A	T8 – Timer8
60	52	0x00007C	0x00017C	T9 – Timer9
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready
64	56	0x000084	0x000184	C2 – ECAN2 Event
65	57	0x000086	0x000186	Reserved
66	58	0x000088	0x000188	Reserved
67	59	0x00008A	0x00018A	DCIE – DCI Error
68	60	0x00008C	0x00018C	DCID – DCI Transfer Done
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	62	0x000090	0x000190	Reserved
71	63	0x000092	0x000192	Reserved
72	64	0x000094	0x000194	Reserved
73	65	0x000096	0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	U2E – UART2 Error
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request
80-125	72-117	0x0000A4-0x0000FE	0x0001A4-0x0001FE	Reserved

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

7.3 Interrupt Control and Status Registers

dsPIC33FJXXXGPX06A/X08A/X10A devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC17
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a Status bit, which is set by the respective peripherals or external signal and is cleared via software.

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level bits (ILR<3:0>) in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32.

						DAMA	D/M/ O
0-0							R/W-U
	DIVIATIF	ADTIF	UTTAIF	UIRAIF	SPITE	SPITEIF	I JIF bit 9
DIL 15							DILO
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INTOIF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as	'0'				
bit 14	DMA1IF: DM	A Channel 1 E	ata Transfer C	omplete Inter	rupt Flag Status	s bit	
	1 = Interrupt	request has or request has no	curred				
bit 13	AD1IF: ADC	1 Conversion (Complete Interr	unt Flag Statu	ıs bit		
	1 = Interrupt	request has oc	curred	upt i lag otato			
	0 = Interrupt	request has no	ot occurred				
bit 12	U1TXIF: UAF	RT1 Transmitte	er Interrupt Flag	g Status bit			
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred ot occurred				
bit 11	U1RXIF: UAF	RT1 Receiver I	nterrupt Flag S	Status bit			
	1 = Interrupt	request has or	curred				
hit 10	SPI1E- SPI1	Event Interrur	n occurreu ht Flag Status h	vit			
	1 = Interrupt	request has or	curred	Л			
	0 = Interrupt	request has no	ot occurred				
bit 9	SPI1EIF: SPI	11 Fault Interru	pt Flag Status	bit			
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred ot occurred				
bit 8	T3IF: Timer3	Interrupt Flag	Status bit				
	1 = Interrupt	request has oc	curred				
h:+ 7	0 = Interrupt	request has no	ot occurred				
DIT /	1 = Interrupt	Interrupt Flag	Status Dit				
	0 = Interrupt	request has oc	ot occurred				
bit 6	OC2IF: Outpu	ut Compare Cl	nannel 2 Interru	upt Flag Status	s bit		
	1 = Interrupt	request has oc request has no	curred ot occurred				
bit 5	IC2IF: Input (Capture Chanr	el 2 Interrupt F	lag Status bit			
	1 = Interrupt	request has oc	curred	-			
	0 = Interrupt	request has no	ot occurred				
bit 4	DMA01IF: DI	MA Channel 0	Data Transfer	Complete Inte	errupt Flag Statu	is bit	
	1 = Interrupt	request has oc request has no	curred				
bit 3	T1IF: Timer1	Interrupt Flag	Status bit				
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	ot occurred				

NOTES:

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note:	For more de	etails on the	instruction set,
	refer to th	e "16-bit N	ICU and DSC
	Programmer	's Refere	nce Manual"
	(DS70157).		

Field	Description						
#text	Means literal defined by "text"						
(text)	Means "content of text"						
[text]	Means "the location addressed by text"						
{ }	Optional field or operation						
<n:m></n:m>	Register bit field						
.b	Byte mode selection						
.d	Double-Word mode selection						
.S	Shadow register select						
.W	Word mode selection (default)						
Acc	One of two accumulators {A, B}						
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}						
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$						
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero						
Expr	Absolute address, label or expression (resolved by the linker)						
f	File register address ∈ {0x00000x1FFF}						
lit1	1-bit unsigned literal ∈ {0,1}						
lit4	4-bit unsigned literal ∈ {015}						
lit5	5-bit unsigned literal ∈ {031}						
lit8	8-bit unsigned literal ∈ {0255}						
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode						
lit14	14-bit unsigned literal ∈ {016384}						
lit16	16-bit unsigned literal ∈ {065535}						
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'						
None	Field does not require an entry, may be blank						
OA, OB, SA, SB	DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate						
PC	Program Counter						
Slit10	10-bit signed literal ∈ {-512511}						
Slit16	16-bit signed literal ∈ {-3276832767}						
Slit6	6-bit signed literal ∈ {-1616}						
Wb	Base W register ∈ {W0W15}						
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }						
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }						
Wm,Wn	Dividend, Divisor working register pair (direct addressing)						

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

DC CHARACTERISTICS			Standard (unless of Operating	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	$IOL \leq 3 \; mA, \; VDD = 3.3 V$	
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	IOL \leq 6 mA, VDD = 3.3V	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	V	Iol \leq 10 mA, Vdd = 3.3V	
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	$IOL \ge -3 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	$IOL \ge -6 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	V	Io∟ ≥ -10 mA, Vdd = 3.3V	
		Output High Voltage I/O Pins:	1.5	_	_		IOH ≥ -6 mA, VDD = 3.3V See Note 1	
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_		V	$\begin{array}{l} \mbox{IOH} \geq -5 \mbox{ mA, VDD} = 3.3 V \\ \mbox{See Note 1} \end{array}$	
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1	
		Output High Voltage 4x Source Driver Pins - RA2, RA3,	1.5	_	_		IOH ≥ -12 mA, VDD = 3.3V See Note 1	
DO20A	Voн1	RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.0	_	_	V	IOH ≥ -11 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1	
		Output High Voltage 8x Source Driver Pins - OSC2,	1.5	_			IOH ≥ -16 mA, VDD = 3.3V See Note 1	
		CLKO, RC15	2.0	_	_	V	IOH ≥ -12 mA, VDD = 3.3V See Note 1	
			3.0				IOH ≥ -4 mA, VDD = 3.3V See Note 1	

TABLE 25-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

TABLE 25-23: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Stand (unles Opera	ard Operating Co s otherwise stat ting temperature	ed) -40°C -40°C	ns: 3.0V to 3.6V C ≤ TA ≤ +85°C 1 C ≤ TA ≤ +125°C 1	for Indu	strial nded
Param No.	Symbol	/mbol Characteristic		1)	Min	Тур	Мах	Units	Conditions
TB10	TtxH	TxCK High Time	Synchro mode	onous	Greater of 20 or (Tcy + 20)/N	_	_	ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)
TB11	TtxL	TxCK Low Time	Synchro mode	onous	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)
TB15	TtxP	TxCK Input Period	Synchro mode	onous	Greater of: 40 or (2 Tcy + 40)/N	—	_	ns	N = prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from E Clock Edge ment	External ⊺ to Timer	TxCK Incre-	0.75 Tcy + 40	—	1.75 Tcy + 40	ns	_

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 25-24:TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING
REQUIREMENTS

AC CHARACTERISTICS			Stan (unle Oper	dard Operating C ess otherwise stat ating temperature	Conditio ited) e -40°(-40°(ns: 3.0V to 3.6 C ≤ Ta ≤ +85°C 1 C ≤ Ta ≤ +125°C	/ for Indus for Exte	strial ended
Param No.	Symbol Characteristic ⁽¹⁾		Min	Тур	Max	Units	Conditions	
TC10	TtxH	TxCK High Time	Synchronous	Tcy + 20	_	_	ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous	Тсү + 20	—	—	ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous with prescale	, 2Tcy + 40 r	—	_	ns	N = prescale value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from E Clock Edge to ment	elay from External TxCK lock Edge to Timer Incre- ent		—	1.75 Tcy + 40	ns	_

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 25-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARA	CTERISTICS		Standard Operating (unless otherwise s Operating temperate	g Conditions: stated) ure $-40^{\circ}C \le -40^{\circ}C \le 10^{\circ}$	3.0V to 3.6V TA \leq +85°C for TA \leq +125°C for	Industrial
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP
15 MHz	Table 25-29	—	—	0,1	0,1	0,1
10 MHz	_	Table 25-30	—	1	0,1	1
10 MHz	_	Table 25-31	—	0	0,1	1
15 MHz		—	Table 25-32	1	0	0
11 MHz		—	Table 25-33	1	1	0
15 MHz	_	_	Table 25-34	0	1	0
11 MHz	_	_	Table 25-35	0	0	0

FIGURE 25-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

TABLE 25-39: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standar (unless Operati	r d Opera otherwi ng tempe	t ing Co se state erature	nditions d) -40°C ≤ -40°C ≤	: 3.0V to 3.6V $TA \le +85^{\circ}C$ $TA \le +125^{\circ}C \text{ for Extended}$
Param No.	Symbol	Characteristic ^(1,2)	Min	Тур ⁽³⁾	Max	Units	Conditions
CS60	TBCLKL	BIT_CLK Low Time	36	40.7	45	ns	—
CS61	TBCLKH	BIT_CLK High Time	36	40.7	45	ns	—
CS62	TBCLK	BIT_CLK Period	—	81.4	_	ns	Bit clock is input
CS65	TSACL	Input Setup Time to Falling Edge of BIT_CLK	—	—	10	ns	_
CS66	THACL	Input Hold Time from Falling Edge of BIT_CLK	—	—	10	ns	_
CS70	TSYNCLO	SYNC Data Output Low Time	—	19.5		μs	Note 1
CS71	TSYNCHI	SYNC Data Output High Time	—	1.3	_	μs	Note 1
CS72	TSYNC	SYNC Data Output Period	—	20.8	_	μS	Note 1
CS75	TRACL	Rise Time, SYNC, SDATA_OUT	—	10	25	ns	Cload = 50 pF, Vdd = 5V
CS76	TFACL	Fall Time, SYNC, SDATA_OUT	—	10	25	ns	CLOAD = 50 pF, VDD = 5V
CS77	TRACL	Rise Time, SYNC, SDATA_OUT	—	—	30	ns	CLOAD = 50 pF, VDD = 3V
CS78	TFACL	Fall Time, SYNC, SDATA_OUT	—	—	30	ns	CLOAD = 50 pF, VDD = 3V
CS80	TOVDACL	Output Valid Delay from Rising Edge of BIT_CLK	—	_	15	ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

2: These values assume BIT_CLK frequency is 12.288 MHz.

3: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

	RISTICS	(unless) Operati	otherwis ng tempe	e stated) rature -4 -4	10°C ≤ TA 10°C ≤ TA	≤ +85°C for Industrial ≤ +125°C for Extended
Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
	Cloc	k Parame	eters			
Tad	ADC Clock Period	76			ns	—
TRC	ADC Internal RC Oscillator Period	—	250		ns	—
	Con	version F	late			
TCONV	Conversion Time	_	12 Tad	_	_	_
FCNV	Throughput Rate	_		1.1	Msps	—
TSAMP	Sample Time	2 Tad		—	_	—
	Timir	ng Paramo	eters			
TPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad		3.0 Tad		Auto-Convert Trigger (SSRC<2:0> = 111) not selected
TPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	_	3.0 TAD	_	—
Tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	_	0.5 TAD			_
TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)			20	μS	
	ARACTER Symbol Tad Trc Trc Tconv Fcnv Tsamp Tpcs Tpcs Tpss Tcss Tdpu	Symbol Characteristic Cloc TAD ADC Clock Period TRC ADC Internal RC Oscillator Period TCONV Conversion Time FCNV Throughput Rate TSAMP Sample Time TPCS Conversion Start from Sample Trigger ⁽²⁾ TPSS Sample Start from Setting Sample (SAMP) bit ⁽²⁾ TCS Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾ TDPU Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	ARACTERISTICS (unless Operation of the second state of the s	ARACTERISTICS (unless otherwise Operating temper Symbol Characteristic Min. Typ ⁽¹⁾ Symbol Characteristic Min. Typ ⁽¹⁾ Clock Parameters TAD ADC Clock Period 76 — TRC ADC Internal RC Oscillator Period — 250 Conversion Rate TCONV Conversion Time — 12 TAD FCNV Throughput Rate — — TSAMP Sample Time 2 TAD — TPCS Conversion Start from Sample Trigger ⁽²⁾ 2.0 TAD — TPSS Sample Start from Setting Sample (SAMP) bit ⁽²⁾ 2.0 TAD — TCSS Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾ — 0.5 TAD TDPU Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3) — —	ARACTERISTICS (unless otherwise stated) Operating temperature 4 Symbol Characteristic Min. Typ ⁽¹⁾ Max. Symbol Characteristic Min. Typ ⁽¹⁾ Max. TAD ADC Clock Period 76 — — TRC ADC Internal RC Oscillator Period — 250 — TRC ADC Internal RC Oscillator Period — 250 — TCONV Conversion Time — 12 TAD — TCONV Conversion Time — 12 TAD — TCONV Conversion Time — 12 TAD — TRCNV Throughput Rate — 1.1 11 TSAMP Sample Time 2 TAD — — TPCS Conversion Start from Sample Trigger ⁽²⁾ 2.0 TAD — 3.0 TAD TPSS Sample Start from Setting Sample (SAMP) bit ⁽²⁾ 2.0 TAD — 3.0 TAD TCS Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾ — 0.5 TAD — TDPU Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3) —	ARACTERISTICS(unless otherwise stated) Operating temperature $-40^{\circ}C \le TA$ $-40^{\circ}C \le TA$ $-40^{\circ}C \le TA$ SymbolCharacteristicMin.Typ ⁽¹⁾ Max.UnitsClock ParametersTADADC Clock Period76—nsTRCADC Internal RC Oscillator Period—250—TRCADC Internal RC Oscillator Period—250—Conversion RateTCONVConversion Time—12 TAD—TIMING ParametersTSAMPSample Time2 TAD——Timing ParametersTPCSConversion Start from Sample Trigger ⁽²⁾ 2.0 TAD—3.0 TAD—TPSSSample Start from Setting Sample (SAMP) bit ⁽²⁾ 2.0 TAD—3.0 TAD—TCSSConversion Completion to Sample Start (ASAM = 1) ⁽²⁾ —0.5 TAD——TDPUTime to Stabilize Analog Stage from ADC Off to ADC On ^(2,3) ——20 μ s

TABLE 25-45: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: TDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 25-46: DMA READ/WRITE TIMING REQUIREMENTS

АС СН	ARACTERISTICS	Standard (unless o Operating	Operatin therwise temperat	g Conditi stated) ure -40° -40°	C ≤ TA C ≤ TA	0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended	
Param No.	Characteristic	Min. Typ Max. Units Conditions					
DM1a	DMA Read/Write Cycle Time	_	_	2 Tcy	ns	This characteristic applies to dsPIC33FJ256GPX06A/X08A/X10A devices only.	
DM1b	DMA Read/Write Cycle Time	_	—	1 Tcy	ns	This characteristic applies to all devices with the exception of the dsPIC33FJ256GPX06A/X08A/X10A.	