

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp506at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLL	4-0.																	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period I	Register 1								FFFF
T1CON	0104	TON	_	TSIDL		_	—	_	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tin	ner3 Holding	Register (fo	or 32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period I	Register 2								FFFF
PR3	010E								Period I	Register 3								FFFF
T2CON	0110	TON	—	TSIDL		_	_	—	—	—	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL		_	—	—	—	—	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116							Timer5 Hold	ling Register	(for 32-bit o	perations onl	y)						xxxx
TMR5	0118		Timer5 Register 0000															
PR4	011A		Period Register 4 FFFF															
PR5	011C								Period I	Register 5								FFFF
T4CON	011E	TON	—	TSIDL	_	—	—	—	—	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T5CON	0120	TON	—	TSIDL	_	—	—	—	—	—	TGATE	TCKP	S<1:0>	—	—	TCS	—	0000
TMR6	0122								Timer6	Register								0000
TMR7HLD	0124							Timer7 Hold	ling Register	(for 32-bit o	perations onl	y)						xxxx
TMR7	0126								Timer7	Register								0000
PR6	0128								Period I	Register 6								FFFF
PR7	012A								Period I	Register 7	_							FFFF
T6CON	012C	TON	_	TSIDL	_	_	—				TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T7CON	012E	TON	—	TSIDL	_	_	—	_	_	_	TGATE	TCKP	S<1:0>	—		TCS	—	0000
TMR8	0130								Timer8	Register								0000
TMR9HLD	0132							Timer9 Hold	ling Register	(for 32-bit o	perations onl	y)						xxxx
TMR9	0134		Timer9 Register 0000															
PR8	0136		Period Register 8 FFFF															
PR9	0138		Period Register 9 FFFF															
T8CON	013A	TON	—	TSIDL		_	—	—	_	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T9CON	013C	TON	_	TSIDL	_	_	—	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000

TABLE 4-6: TIMER REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJXXXGPX06A/X08A/X10A

TABLE 4-9: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
I2C1RCV	0200	_	_	—	_	_	_	—	_	Receive Register 0										
I2C1TRN	0202	_	_	_	_	_	_	_	- Transmit Register C											
I2C1BRG	0204	_	_	_	_	_	_	_		Baud Rate Generator Register 00										
I2C1CON	0206	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000		
I2C1STAT	0208	ACKSTAT	TRSTAT	_	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000		
I2C1ADD	020A	—	—	_	_	—				Address Register 000										
I2C1MSK	020C	_	_	_	_	_	_	Address Mask Register 0000												
Lanandi			D						1											

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: I2C2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								All Resets	
I2C2RCV	0210	_	_	_	_	_		—		Receive Register 0									
I2C2TRN	0212	—	—	—	_	—		_		- Transmit Register 0									
I2C2BRG	0214	_	_	_	_	_	_	_				Baud Ra	te Generato	r Register				0000	
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000	
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000	
I2C2ADD	021A	_	_	_	_	_	_			Address Register 00									
I2C2MSK	021C	_	_	_		_	_			Address Mask Register 0000								0000	

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	-0.	LOANZ																
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF10EID	056A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF11SID	056C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<'	17:16>	xxxx
C2RXF11EID	056E				EID<	15:8>							EID	<7:0>				xxxx
C2RXF12SID	0570		SID<10:3>								SID<2:0> — EXIDE — EID<17:16							xxxx
C2RXF12EID	0572		EID<15:8>										EID	<7:0>				xxxx
C2RXF13SID	0574				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16							17:16>	xxxx
C2RXF13EID	0576				EID<	15:8>				EID<7:0>								xxxx
C2RXF14SID	0578				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<'	17:16>	xxxx
C2RXF14EID	057A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF15SID	057C		SID<10:3>							SID<2:0> — EXIDE — EII				EID<	17:16>	xxxx		
C2RXF15EID	057E		EID<15:8>							EID<7:0>							xxxx	

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR dsPIC33FJXXXGP706A/708A/710A DEVICES ONLY (CONTINUED)

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 3 CNIF: Input Change Notification Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

- 1 = Interrupt request enabled
- 0 = Interrupt request not enabled
- bit 1 SPI2IE: SPI2 Event Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 SPI2EIE: SPI2 Error Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		U2TXIP<2:0>		—		U2RXIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		INT2IP<2:0>				T5IP<2:0>	
bit 7							bit 0
1							
Legend:							
R = Readable I	oit	W = Writable b	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	Unimplomo	ntod: Pood as 'o	,				
bit 14-12		Neau as 0	mitter Interru	nt Priority bite			
51(14-12	111 = Interru	upt is priority 7 (h	ighest priorit	y interrupt)			
	•		• • •				
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as '0	,				
bit 10-8	U2RXIP<2:0	>: UART2 Recei	ver Interrupt	Priority bits			
	111 = Interru	upt is priority 7 (h	ighest priority	y interrupt)			
	•						
	•						
	001 = Intern 000 = Intern	upt is priority 1 upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '0	3				
bit 6-4	INT2IP<2:0>	: External Interru	upt 2 Priority	bits			
	111 = Interru	upt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1	abled				
bit 3	Unimpleme	nted: Read as '0	,				
bit 2-0	T5IP<2:0>:	Timer5 Interrupt I	Priority bits				
	111 = Interru	upt is priority 7 (h	ighest priorit	y interrupt)			
	•		• • •				
	•						
	- 001 = Interri	upt is priority 1					
	000 = Interru	upt source is disa	abled				

-- -

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		C1IP<2:0>		—		C1RXIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		SPI2IP<2:0>				SPI2EIP<2:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as '0)'				
bit 14-12	C1IP<2:0>:	ECAN1 Event In	terrupt Prior	ity bits			
	111 = Interr	rupt is priority 7 (h	nighest priori	ity interrupt)			
	•						
	•						
		rupt is priority 1	ablad				
bit 11		upt source is dis	ableu				
			j ivo Doto Bo	adv Interrupt D	riarity bita		
DIL TU-O	111 = Interr	unt is priority 7 (k	nighest prior	auy interrupt Fi	nonty bits		
	•	upt is priority 7 (i	lightest phon	ity interrupt)			
	•						
	• 001 – Inter	unt is priority 1					
	000 = Inter	rupt source is disa	abled				
bit 7	Unimpleme	ented: Read as '()'				
bit 6-4	SPI2IP<2:0	>: SPI2 Event Int	errupt Priori	ty bits			
	111 = Interr	rupt is priority 7 (ł	nighest prior	ity interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is disa	abled				
bit 3	Unimpleme	ented: Read as 'o)'				
bit 2-0	SPI2EIP<2:	0>: SPI2 Error In	terrupt Prior	ity bits			
	111 = Interr	rupt is priority 7 (h	nighest prior	ity interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is disa	abled				

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/ X08A/X10A family of devices. However, not intended to it is be а comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A oscillator system provides:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection

A simplified diagram of the oscillator system is shown in Figure 9-1.

Note 1: See Figure 9-2 for PLL details.

- 2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 M Ω must be connected.
- **3:** The term, FP refers to the clock source for all the peripherals, while Fcy refers to the clock source for the CPU. Throughout this document FP and Fcy are used interchangeably, except in the case of Doze mode. FP and Fcy will be different when Doze mode is used in any ratio other than 1:1, which is the default.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

U-0	R-0	R-0	R-0	U-0	R/W-v	R/W-v	R/W-v
_		COSC<2:0>	-	_	,	NOSC<2:0> ⁽²⁾	,
bit 15							bit 8
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOC	к —	LOCK	_	CF	<u> </u>	LPOSCEN	OSWEN
bit 7							bit 0
Levende			fram Canfigur	ration hita an D			and thit
D - Doode	bla bit	y = value set	hit		'UR montod hit, road		only bit
		41' = Rit is set	DIL	$0^{\circ} = 0$	mented bit, read	uas u v - Ritis unkno	WD
		I - DILIS SEL			aleu		VVII
bit 15	Unimplemen	ted: Read as '	D '				
bit 14-12	COSC<2:0>:	Current Oscilla	tor Selection	bits (read-only	()		
	111 = Fast R	C oscillator (FF	RC) with Divid	le-bv-N			
	110 = Fast R	C oscillator (FF	RC) with Divid	le-by-16			
	101 = Low-Po	ower RC oscilla	tor (LPRC)	, -			
	100 = Second	dary oscillator (Sosc)				
	011 = Primary	y oscillator (XT	HS, EC) with	h PLL			
	010 = Primary	y oscillator (XT	HS, EC)				
	001 = Fast R	C Oscillator (FI	RC) with Divid	de-by-N and PL	L (FRCDIVN +	PLL)	
hit 11		tod. Bood on "	, ,				
		Now Oppillator	Soloction bit	_c (2)			
DIL IU-O	111 = Fast P(Selection bit	s, ,			
	111 - Fast R(C oscillator (FF	C) with Divid	le-by-in le-by-16			
	101 = 1 ow-Pc	ower RC oscilla	tor (I PRC)				
	100 = Second	dary oscillator (Sosc)				
	011 = Primary	y oscillator (XT	HS, EC) with	h PLL			
	010 = Primary	y oscillator (XT	HS, EC)				
	001 = Fast R	C Oscillator (FI	RC) with Divid	de-by-N and Pl	_L (FRCDIVN +	PLL)	
hit 7		C OSCIIIAIOI (FF	(C) bla hit				
	1 = If (FCKS)	M0 = 1) then c	lock and PLI	configurations	are locked		
	If (FCKS	M0 = 1), then a $M0 = 0$). then a	lock and PLL	. configurations	s may be modifi	ed	
	0 = Clock and	d PLL selectior	is are not loc	ked, configurat	ions may be mo	odified	
bit 6	Unimplemen	ted: Read as '	כ'				
bit 5	LOCK: PLL L	ock Status bit (read-only)				
	1 = Indicates	that PLL is in I	ock, or PLL s	start-up timer is	satisfied	is disabled	
hit 4		ted: Read as '	י טו וטכא, אנמו נ ז'				
hit 3	CF: Clock Fai	il Detect hit (re:	, ad/clear by ar	onlication)			
bit 0	1 = FSCM ha	as detected clo	nk failura	oplication)			
	0 = FSCM ha	as not detected	clock failure				
bit 2	Unimplemen	ted: Read as '	כי				
Note 1:	Writes to this regis	ter require an ι Η Family Refor	Inlock sequel	nce. Refer to S "for details	ection 7. "Osc	illator" (DS7018	6) in the
2.	Direct clock switch	es between an	v primary oso	illator mode wit	th PLL and FRC	PII mode are no	t permitted
۷.	This applies to cloc	ck switches in e	either directio	n. In these inst	ances, the appl	ication must swite	ch to FRC
	mode as a transitio	on clock source	between the	two PLL mode	es.		-

3: This is register is reset only on a Power-on Reset (POR).

11.0 I/O PORTS

- This data sheet summarizes the features Note 1: of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in "dsPIC33F/PIC24H the Familv Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pins will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

© 2009-2012 Microchip Technology Inc.

1 = Frame sync pulse is active-high0 = Frame sync pulse is active-low

FRMDLY: Frame Sync Pulse Edge Select bit 1 = Frame sync pulse coincides with first bit clock 0 = Frame sync pulse precedes first bit clock

This bit must not be set to '1' by the user application.

Unimplemented: Read as '0'

Unimplemented: Read as '0'

REGISTER 1	6-3: SPIxC	ON2: SPIx C	ONTROL RE	EGISTER 2			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	—	_	FRMDLY	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	FRMEN: Frar	ned SPIx Supp	ort bit				
	1 = Framed S 0 = Framed S	Plx support en Plx support dis	abled (SSx pi sabled	n used as fram	ne sync pulse in	put/output)	
bit 14	SPIFSD: Fran	me Sync Pulse	Direction Cor	ntrol bit			
	1 = Frame sy 0 = Frame sy	nc pulse input (nc pulse outpu	(slave) t (master)				
bit 13	FRMPOL: Fra	ame Sync Puls	e Polarity bit				

DS70593D-page 186

bit 12-2

bit 1

bit 0

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The dsPIC33FJXXXGPX06A/X08A/X10A devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C Port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and will arbitrate accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I^2C module can operate either as a slave or a master on an I^2C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, please refer to the "*dsPIC33F/PIC24H Family Reference Manual*".

18.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this UDL in your brouger
	this URL in your prowser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en546064

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

REGISTER 19-27: CITRBnSID: ECAN™ BUFFER n STANDARD IDENTIFIER (n = 0, 1, ..., 31)

- - SID<10:6> bit 15 bit bit	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
bit 15 bi	—	—	—			SID<10:6>		
	bit 15							bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x								
	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

	SID<5:0>	SRR	IDE
bit 7			bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-2	SID<10:0>: Standard Identifier bits
bit 1	SRR: Substitute Remote Request bit
	1 = Message will request remote transmission0 = Normal message
bit 0	IDE: Extended Identifier bit
	1 = Message will transmit extended identifier

0 = Message will transmit standard identifier

REGISTER 19-28: CITRBnEID: ECAN™ BUFFER n EXTENDED IDENTIFIER (n = 0, 1, ..., 31)

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	—		EID<	17:14>	
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID<	:13:6>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd		Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,A	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	1,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
64	DT 1-7	RLC	WS,Wd	wu = Rotate Left through Carry Ws	1	1	U,N,Z
04	RLNC	RLNC	I C UDDO		1	1	N,Z
		RLNC	I,WREG	WREG = Rotate Left (No Carry) T	1	1	N,∠
6F	DDC	RLNC	ws,Wa	f = Pototo Pight through Correct	1	1	
00	KKC	RRC	L f WDEC	I - Rotate Right through Carry f	1	1	
		RRC	L, WKEG	Wite - Rotate Right through Carry We	1	1	
1	1	NN	ws,wu	Wu - Notate Night through Cally WS			0,IN,Z

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
	Cloc	k Parame	eters			
Tad	ADC Clock Period	76			ns	—
TRC	ADC Internal RC Oscillator Period	—	250	_	ns	—
	Con	version F	late			
TCONV	Conversion Time	_	12 Tad	_	_	_
FCNV	Throughput Rate	_		1.1	Msps	—
TSAMP	Sample Time	2 Tad		—	_	—
	Timir	ng Paramo	eters			
TPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad		3.0 Tad		Auto-Convert Trigger (SSRC<2:0> = 111) not selected
TPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	_	3.0 TAD	_	—
Tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	_	0.5 TAD			_
TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)			20	μS	
	ARACTER Symbol Tad Trc Trc Tconv Fcnv Tsamp Tpcs Tpcs Tpss Tcss Tdpu	Symbol Characteristic Cloc TAD ADC Clock Period TRC ADC Internal RC Oscillator Period TCONV Conversion Time FCNV Throughput Rate TSAMP Sample Time TPCS Conversion Start from Sample Trigger ⁽²⁾ TPSS Sample Start from Setting Sample (SAMP) bit ⁽²⁾ TCS Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾ TDPU Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	ARACTERISTICS (unless Operation of the second state of the s	ARACTERISTICS (unless otherwise Operating temper Symbol Characteristic Min. Typ ⁽¹⁾ Symbol Characteristic Min. Typ ⁽¹⁾ Clock Parameters TAD ADC Clock Period 76 — TRC ADC Internal RC Oscillator Period — 250 Conversion Rate TCONV Conversion Time — 12 TAD FCNV Throughput Rate — — TSAMP Sample Time 2 TAD — TPCS Conversion Start from Sample Trigger ⁽²⁾ 2.0 TAD — TPSS Sample Start from Setting Sample (SAMP) bit ⁽²⁾ 2.0 TAD — TCSS Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾ — 0.5 TAD TDPU Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3) — —	ARACTERISTICS (unless otherwise stated) Operating temperature 4 4 Symbol Characteristic Min. Typ ⁽¹⁾ Max. Symbol Characteristic Min. Typ ⁽¹⁾ Max. TAD ADC Clock Period 76 — — TRC ADC Internal RC Oscillator Period — 250 — TRC ADC Internal RC Oscillator Period — 250 — TCONV Conversion Time — 12 TAD — TCONV Conversion Time — 12 TAD — TCONV Conversion Time — 12 TAD — TRCNV Throughput Rate — 1.1 11 TSAMP Sample Time 2 TAD — — TPCS Conversion Start from Sample Trigger ⁽²⁾ 2.0 TAD — 3.0 TAD TPSS Sample Start from Setting Sample (SAMP) bit ⁽²⁾ 2.0 TAD — 3.0 TAD TCS Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾ — 0.5 TAD — TDPU Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3) — <t< td=""><td>ARACTERISTICS(unless otherwise stated) Operating temperature $-40^{\circ}C \le TA$ $-40^{\circ}C \le TA$ $-40^{\circ}C \le TA$SymbolCharacteristicMin.Typ⁽¹⁾Max.UnitsClock ParametersTADADC Clock Period76—nsTRCADC Internal RC Oscillator Period—250—TRCADC Internal RC Oscillator Period—250—Conversion RateTCONVConversion Time—12 TAD—TIMING ParametersTSAMPSample Time2 TAD——Timing ParametersTPCSConversion Start from Sample Trigger⁽²⁾2.0 TAD—3.0 TAD—TPSSSample Start from Setting Sample (SAMP) bit⁽²⁾2.0 TAD—3.0 TAD—TCSSConversion Completion to Sample Start (ASAM = 1)⁽²⁾—0.5 TAD——TDPUTime to Stabilize Analog Stage from ADC Off to ADC On^(2,3)——20μs</td></t<>	ARACTERISTICS(unless otherwise stated) Operating temperature $-40^{\circ}C \le TA$ $-40^{\circ}C \le TA$ $-40^{\circ}C \le TA$ SymbolCharacteristicMin.Typ ⁽¹⁾ Max.UnitsClock ParametersTADADC Clock Period76—nsTRCADC Internal RC Oscillator Period—250—TRCADC Internal RC Oscillator Period—250—Conversion RateTCONVConversion Time—12 TAD—TIMING ParametersTSAMPSample Time2 TAD——Timing ParametersTPCSConversion Start from Sample Trigger ⁽²⁾ 2.0 TAD—3.0 TAD—TPSSSample Start from Setting Sample (SAMP) bit ⁽²⁾ 2.0 TAD—3.0 TAD—TCSSConversion Completion to Sample Start (ASAM = 1) ⁽²⁾ —0.5 TAD——TDPUTime to Stabilize Analog Stage from ADC Off to ADC On ^(2,3) ——20 μ s

TABLE 25-45: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: TDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 25-46: DMA READ/WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Characteristic	Min. Typ Max. Units Conditions				
DM1a	DMA Read/Write Cycle Time	_	_	2 Tcy	ns	This characteristic applies to dsPIC33FJ256GPX06A/X08A/X10A devices only.
DM1b	DMA Read/Write Cycle Time	_	—	1 Tcy	ns	This characteristic applies to all devices with the exception of the dsPIC33FJ256GPX06A/X08A/X10A.

26.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33FJXXXGPX06A/X08A/X10A AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in Section 25.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 25.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 26-7: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature Operating voltage VDD range as described in Table 26-1.				

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-8: PLL CLOCK TIMING SPECIFICATIONS

A CHARAC	AC FERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				e stated) ure	
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

Note 1: These parameters are characterized, but are not tested in manufacturing.

VOL (V)

VOL – 8x DRIVER PINS

DS70593D-page 332

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO:	Technical Publications Manager	Total Pages Sent
Γ		
Fron	n: Name	
	Company	
	City / State / ZIP / Country	
	Telephone: ()	
Ann		FAA: ()
Wou	$\frac{1}{2}$	
Devi		
Devi	ce: dspic33FJXXXGPX06A/X08A/X10A	Literature Number: DS70593D
Que	stions:	
1. '	What are the best features of this document?	
-		
2.	How does this document meet your hardware and softwa	re development needs?
	,	
-		
3.	Do you find the organization of this document easy to follo	ow? If not, why?
-		
4.	What additions to the document do you think would enha	nce the structure and subject?
5.	What deletions from the document could be made withou	t affecting the overall usefulness?
6.	Is there any incorrect or misleading information (what and	I where)?
-		
7.	How would you improve this document?	