

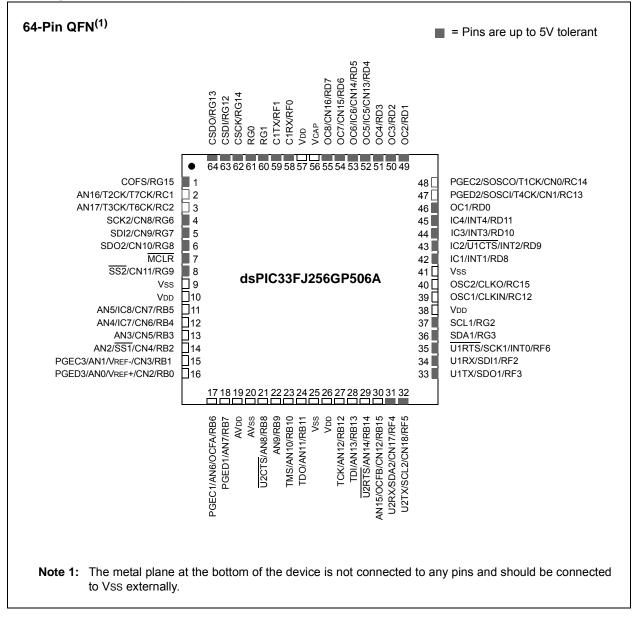
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

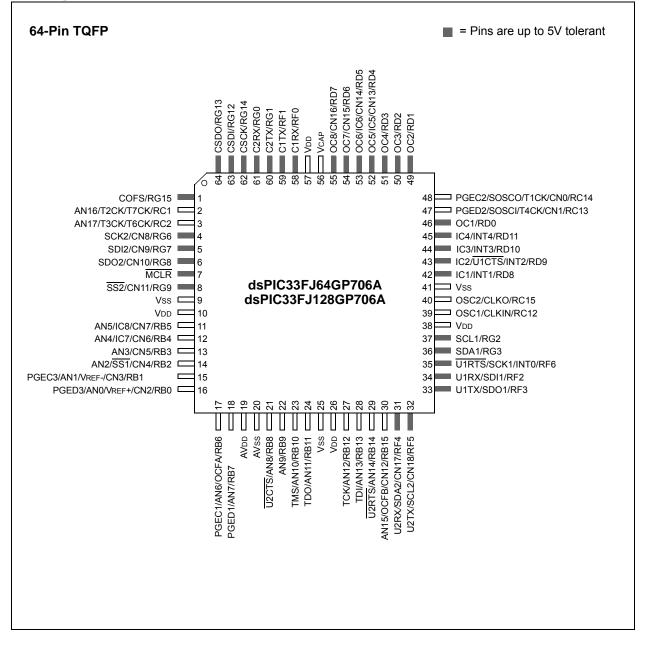
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XE

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp510a-e-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section
 2. "CPU" (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJXXXGPX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The dsPIC33FJXXXGPX06A/X08A/X10A instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJXXXGPX06A/X08A/X10A is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1. The programmer's model for the dsPIC33FJXXXGPX06A/ X08A/X10A is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own indepen-

dent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space. The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value, up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.3 Special MCU Features

The dsPIC33FJXXXGPX06A/X08A/X10A features a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJXXXGPX06A/X08A/X10A supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit, left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR dsPIC33FJXXXGP706A/708A/710A DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500							Se	e definition	n when WIN = x								
	- 051E																	
C2BUFPNT1	0520		F3BF	P<3:0>			F2BF	~ 3:0>		F1BP<3:0> F0BP<3:0>				0000				
C2BUFPNT2	0522		F7BP<3:0> F6BP<3:0>							F5BF	><3:0>			F4BF	P<3:0>		0000	
C2BUFPNT3	0524		F11BP<3:0> F10BP<3:0>						F9BF	><3:0>			F8BF	P<3:0>		0000		
C2BUFPNT4	0526		F15B	P<3:0>			F14BF	><3:0>			F13BI	><3:0>			F12B	P<3:0>		0000
C2RXM0SID	0530				SID<	10:3>					SID<2:0>		—	MIDE	—	EID<1	7:16>	xxxx
C2RXM0EID	0532				EID<	15:8>							EID∙	<7:0>				xxxx
C2RXM1SID	0534				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<1	7:16>	xxxx
C2RXM1EID	0536				EID<	15:8>							EID	<7:0>				xxxx
C2RXM2SID	0538				SID<	10:3>					SID<2:0>		-	MIDE	—	EID<	7:16>	xxxx
C2RXM2EID	053A		EID<15:8>										EID	<7:0>				xxxx
C2RXF0SID	0540		SID<10:3>							SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx	
C2RXF0EID	0542				EID<	15:8>							EID	<7:0>				xxxx
C2RXF1SID	0544				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<'	7:16>	xxxx
C2RXF1EID	0546				EID<	15:8>							EID	<7:0>				xxxx
C2RXF2SID	0548				SID<	10:3>					SID<2:0>		—	EXIDE		EID<	7:16>	xxxx
C2RXF2EID	054A				EID<	15:8>				EID<7:0>						xxxx		
C2RXF3SID	054C				SID<	10:3>				SID<2:0> — EXIDE —			—	EID<	7:16>	xxxx		
C2RXF3EID	054E				EID<	15:8>				EID<7:0>						xxxx		
C2RXF4SID	0550				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16>					7:16>	xxxx		
C2RXF4EID	0552				EID<					EID<7:0>						XXXX		
C2RXF5SID	0554				SID<						SID<2:0>		—	EXIDE	—	EID<'	7:16>	XXXX
C2RXF5EID	0556				EID<								EID	<7:0>				XXXX
C2RXF6SID	0558				SID<						SID<2:0>		—	EXIDE	—	EID<	7:16>	XXXX
C2RXF6EID	055A				EID<								EID	<7:0>				xxxx
C2RXF7SID	055C				SID<						SID<2:0>		-	EXIDE	—	EID<	7:16>	xxxx
C2RXF7EID	055E	EID<15:8>				EID<7:0>						xxxx						
C2RXF8SID	0560	SID<10:3>					SID<2:0> — EXIDE — EID<17:16>					/:16>	XXXX					
C2RXF8EID	0562				EID<									<7:0>			7.40	XXXX
C2RXF9SID	0564				SID<						SID<2:0>			EXIDE		EID<	7:16>	XXXX
C2RXF9EID	0566				EID<						010 40-0-			<7:0>			7.40	XXXX
C2RXF10SID	0568				SID<						SID<2:0>		—	EXIDE		EID<	7:16>	XXXX

dsPIC33FJXXXGPX06A/X08A/X10A

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	BOR, POR	_
POR (RCON<0>)	POR	

TABLE 6-1:RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 9.0** "Oscillator Configuration" for further details.

TABLE 6-2:OSCILLATOR SELECTION VSTYPE OF RESET (CLOCKSWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR]

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. The system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

REGISTER 8-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
			5444	54446		5 .4.4.6	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAI	0<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow				

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

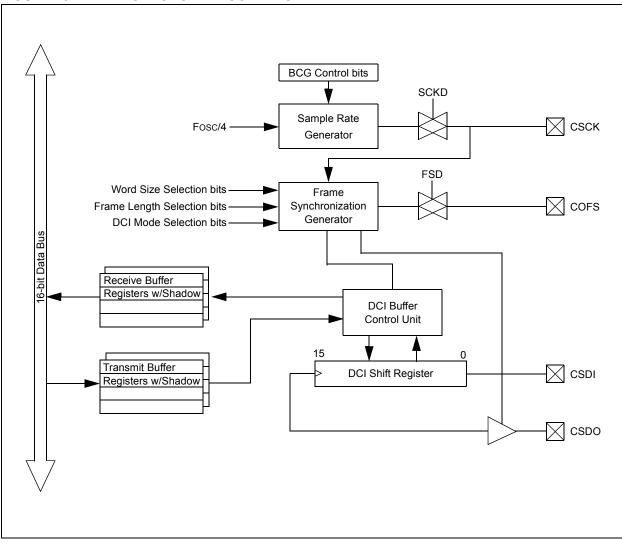
REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	—	—	—	CNT<	9:8> ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> (2)			
bit 7 bit (

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'


bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1					
—	_	—	—		LSTCH	+<3:0>						
oit 15	·						bit					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0					
bit 7						I	bit					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-12	Unimplemen	ted: Read as '	0'									
bit 11-8	LSTCH<3:0>	: Last DMA Ch	annel Active t	oits								
	1111 = No DM	MA transfer ha	s occurred sin	ce system Res	et							
	1110-1000 =											
		lata transfer wa										
		lata transfer wa										
		0101 = Last data transfer was by DMA Channel 5 0100 = Last data transfer was by DMA Channel 4										
		011 = Last data transfer was by DMA Channel 3										
		lata transfer wa										
		lata transfer wa										
bit 7		lata transfer wa inel 7 Ping-Por	-									
	1 = DMA7STE	B register select register select	ted	S Flag bit								
bit 6		inel 6 Ping-Por		s Flag bit								
		B register selec	-									
		A register selec										
bit 5	PPST5: Chan	nel 5 Ping-Por	ng Mode Statu	s Flag bit								
	1 = DMA5STE	B register selec	ted	-								
	0 = DMA5STA	A register selec	ted									
bit 4	PPST4: Chan	inel 4 Ping-Por	ng Mode Statu	s Flag bit								
		B register select A register select										
bit 3	PPST3: Chan	inel 3 Ping-Por	ng Mode Statu	s Flag bit								
		B register select A register select										
bit 2	PPST2: Chan	inel 2 Ping-Por	ng Mode Statu	s Flag bit								
	1 = DMA2STE	B register select	ted									
bit 1		inel 1 Ping-Por		s Flao bit								
	1 = DMA1STE	B register select register select	cted									
bit 0		inel 0 Ping-Por		s Flag bit								
		B register selec	-									

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	WAKFIL		_			SEG2PH<2:0>	
bit 15		·		· · · ·			bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM		SEG1PH<2:0>	>		PRSEG<2:0>	
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 13-11 bit 10-8 bit 7	0 = CAN bus Unimplemen SEG2PH<2:(111 = Length 000 = Length		used for wake o' fer Segment 2	bits			
bit 6	SAM: Samp 1 = Bus line i	n of SEG1PH b le of the CAN b is sampled thre	ous Line bit e times at the	sample point	Time (IPT), wh	ichever is grea	ter
bit 5-3	0 = Bus line is sampled once at the sample point SEG1PH<2:0>: Phase Buffer Segment 1 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ						
bit 2-0	PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ						

FIGURE 20-1: DCI MODULE BLOCK DIAGRAM

REGISTER 2	1-6: ADxC	HS0: ADCx IN	IPUT CHAN	NEL 0 SELE	CT REGISTE	R	
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	_	_			CH0SB<4:0>(1)	
bit 15	·	•	•				bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA			10.00-0	14.00-0	CH0SA<4:0>(1	-	14.00-0
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown
bit 14-13 bit 12-8	CH0SB<4:0 > 11111 = Cha	on as bit 7. ited: Read as '(: Channel 0 Po annel 0 positive annel 0 positive	sitive Input Se input is AN31	elect for Samp	le B bits ⁽¹⁾		
bit 7	00001 = Cha 00000 = Cha CH0NA: Cha	annel 0 positive annel 0 positive annel 0 positive annel 0 Negative	input is AN1 input is AN0 Input Select	for Sample A I	bit		
		0 negative input 0 negative input					
bit 6-5	Unimplemer	nted: Read as 'o)'				
bit 4-0	11111 = Cha 11110 = Cha • •	: Channel 0 Po annel 0 positive annel 0 positive	input is AN31 input is AN30	elect for Samp	le A bits ⁽¹⁾		
	00001 = Cha	annel 0 positive annel 0 positive annel 0 positive	input is AN1				

Note 1: ADC2 can only select AN0 through AN15 as positive input.

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X data space prefetch address register for DSP instructions ∈ {[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2, [W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2, [W9 + W12], none}
Wxd	X data space prefetch destination register for DSP instructions \in {W4W7}
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2, [W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2, [W11 + W12], none}
Wyd	Y data space prefetch destination register for DSP instructions \in {W4W7}

DC CHARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units	Conditions				
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽¹⁾								
DC40d	3	25	mA	-40°C				
DC40a	3	25	mA	+25°C		10 MIPS		
DC40b	3	25	mA	+85°C	3.3V	TO MIPS		
DC40c	3	25	mA	+125°C				
DC41d	4	25	mA	-40°C		16 MIPS		
DC41a	5	25	mA	+25°C	3.3V			
DC41b	6	25	mA	+85°C	3.30	10 1011-5		
DC41c	6	25	mA	+125°C				
DC42d	8	25	mA	-40°C		20 MIPS		
DC42a	9	25	mA	+25°C	3.3V			
DC42b	10	25	mA	+85°C	3.3V			
DC42c	10	25	mA	+125°C				
DC43a	15	25	mA	+25°C				
DC43d	15	25	mA	-40°C	3.3V	30 MIPS		
DC43b	15	25	mA	+85°C	3.3V	30 MIPS		
DC43c	15	25	mA	+125°C				
DC44d	16	25	mA	-40°C				
DC44a	16	25	mA	+25°C	3.3V	40 MIPS		
DC44b	16	25	mA	+85°C	3.3V	40 WIF5		
DC44c	16	25	mA	+125°C				

TABLE 25-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled

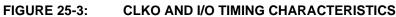
• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)

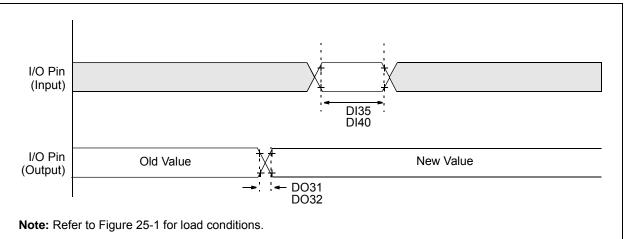
- JTAG is disabled
- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

DC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
	VIL	Input Low Voltage						
DI10		I/O pins	Vss	—	0.2 VDD	V		
DI15		MCLR	Vss	_	0.2 VDD	V		
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 VDD	V		
DI18		I/O Pins with I ² C	Vss	_	0.3 VDD	V	SMBus disabled	
DI19		I/O Pins with I ² C	Vss	—	0.8 V	V	SMBus enabled	
	Vih	Input High Voltage						
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd 0.7 Vdd	_	Vdd 5.5	V V		
DI28		SDAx, SCLx	0.7 Vdd	_	5.5	V	SMBus disabled	
DI29		SDAx, SCLx	2.1	—	5.5	V	SMBus enabled	
	ICNPU	CNx Pull-up Current						
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS	
DI50	lı∟	Input Leakage Current ^(2,3) I/O Pins 5V Tolerant ⁽⁴⁾	_	_	±2	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +85°C	
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±2	μA	Shared with external reference pins, -40°C \leq TA \leq +85°C	
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±3.5	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +125°C	
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±8	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$	
DI55		MCLR	—	_	±2	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	—	—	±2	μA	$\label{eq:VSS} \begin{split} &Vss \leq V PIN \leq V DD, \\ &XT \text{ and } HS \text{ modes} \end{split}$	

TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (VSS 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	$\text{IOL} \leq 3 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	$IOL \le 6 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	v	$\text{IOL} \leq 10 \text{ mA, VDD} = 3.3 \text{V}$		
DO20 Voh		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	IoL ≥ -3 mA, Vod = 3.3V		
	Vон	Dutput High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	IOL ≥ -6 mA, VDD = 3.3V		
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	v	Io∟ ≥ -10 mA, VDD = 3.3V		
		Output High Voltage I/O Pins:	1.5	_	_	v	IOH ≥ -6 mA, VDD = 3.3V See Note 1		
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_	_		IOH ≥ -5 mA, VDD = 3.3V See Note 1		
	10.14		3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1		
		Output High Voltage 4x Source Driver Pins - RA2, RA3,	1.5	_	_		IOH ≥ -12 mA, VDD = 3.3V See Note 1		
DO20A		RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.0	_	_	V	IOH ≥ -11 mA, VDD = 3.3V See Note 1		
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1		
		Output High Voltage 8x Source Driver Pins - OSC2,	1.5				IOH ≥ -16 mA, VDD = 3.3V See Note 1		
		CLKO, RC15	2.0	_		V	IOH ≥ -12 mA, VDD = 3.3V See Note 1		
			3.0	_	_		$IOH \ge -4 \text{ mA}, \text{VDD} = 3.3\text{V}$ See Note 1		

TABLE 25-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

AC CHARACTERISTICS			Standard Ope (unless other) Operating tem	vise state	e d) -40°C ≤	Ta≤ +8	5°C for I	ndustrial Extended
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TioR	Port Output Rise Time			10	25	ns	
DO32	TIOF	Port Output Fall Time		_	10	25	ns	_
DI35	TINP	INTx Pin High or Low Time (input)		20			ns	—
DI40	Trbp	CNx High or Low Time (input)		2			TCY	_

	TABLE 25-20:	I/O TIMING REQUIREMENTS
--	--------------	--------------------------------

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 25-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—		ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

TABLE 25-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_		ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	-
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

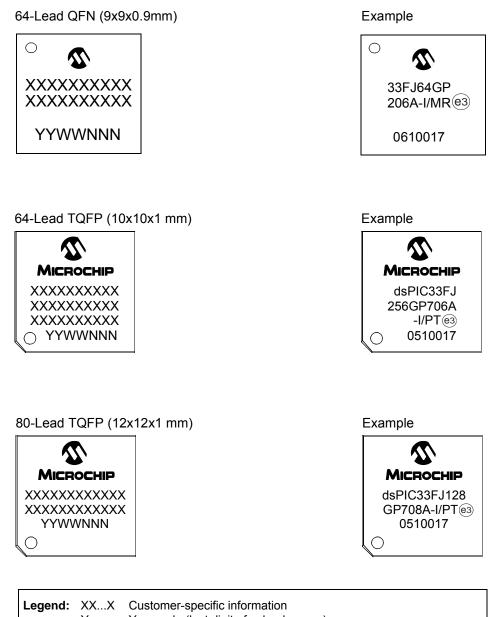
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

TABLE 25-38:	DCI MODULE	MULTI-CHANNEL.	I ² S MODES	TIMING REQUIREMENTS
	DOLINODOLL			

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
CS10	TCSCKL	CSCK Input Low Time (CSCK pin is an input)	Tcy/2 + 20	_		ns	—
		CSCK Output Low Time ⁽³⁾ (CSCK pin is an output)	30			ns	—
CS11	Тсѕскн	CSCK Input High Time (CSCK pin is an input)	Tcy/2 + 20			ns	—
		CSCK Output High Time ⁽³⁾ (CSCK pin is an output)	30	_	_	ns	—
CS20	TCSCKF	CSCK Output Fall Time ⁽⁴⁾ (CSCK pin is an output)	—	10	25	ns	—
CS21	TCSCKR	CSCK Output Rise Time ⁽⁴⁾ (CSCK pin is an output)	—	10	25	ns	—
CS30	TCSDOF	CSDO Data Output Fall Time ⁽⁴⁾	—	10	25	ns	—
CS31	TCSDOR	CSDO Data Output Rise Time ⁽⁴⁾	—	10	25	ns	—
CS35	TDV	Clock Edge to CSDO Data Valid	—	—	10	ns	—
CS36	TDIV	Clock Edge to CSDO Tri-Stated	10	_	20	ns	—
CS40	TCSDI	Setup Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20		_	ns	_
CS41	THCSDI	Hold Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20		_	ns	_
CS50	TCOFSF	COFS Fall Time (COFS pin is output)	_	10	25	ns	Note 1
CS51	TCOFSR	COFS Rise Time (COFS pin is output)	_	10	25	ns	Note 1
CS55	TSCOFS	Setup Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	_	_	ns	—
CS56	THCOFS	Hold Time of COFS Data Input to CSCK Edge (COFS pin is input)	20		—	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- **3:** The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all DCI pins.

NOTES:

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

Legend	I: XXX Y YY WW	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01')
	NNN (e3) *	Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.