

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp510a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 8-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
			5444	54446		B 111 A	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAI	0<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	—	—	—	CNT<9:8> ⁽²⁾	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> (2)			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

10.0 POWER-SAVING FEATURES

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) in "dsPIC33F/PIC24H Familv the Reference Manual", which is available the site from Microchip web (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJXXXGPX06A/X08A/X10A devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

dsPIC33FJXXXGPX06A/X08A/X10A devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

dsPIC33FJXXXGPX06A/X08A/X10A devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

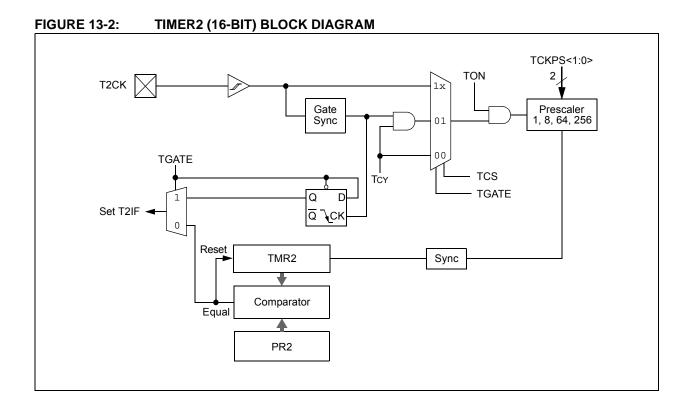
Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.


The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

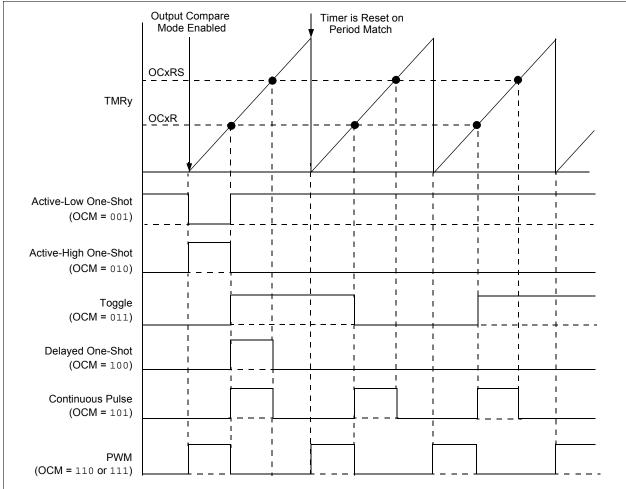
On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE_MODE; Put the device into IDLE mode

15.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user


TABLE 15-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note:	See Section 13. "Output Compare"
	(DS70209) in the "dsPIC33F/PIC24H
	Family Reference Manual" for OCxR and
	OCxRS register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation		
000	Module Disabled	Controlled by GPIO register	_		
001	Active-Low One-Shot	0	OCx rising edge		
010	Active-High One-Shot	1	OCx falling edge		
011	Toggle	Current output is maintained	OCx rising and falling edge		
100	Delayed One-Shot	0	OCx falling edge		
101	Continuous Pulse	0	OCx falling edge		
110	PWM without Fault Protection	ʻ0', if OCxR is zero ʻ1', if OCxR is non-zero	No interrupt		
111	PWM with Fault Protection	ʻ0', if OCxR is zero ʻ1', if OCxR is non-zero	OCFA falling edge for OC1 to OC4		

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:		U = Unimplei	nented bit, rea	d as '0'			
R = Readable	e hit	W = Writable		HS = Set in h	ardware	HC = Cleared	in hardware
-n = Value at		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkr	
	TOIN						
bit 15	12CEN: 12Cx	Enable bit					
	1 = Enables t	the I2Cx modu	le and configur	es the SDAx a	and SCLx pins a	as serial port pir	าร
					by port functio		
bit 14	Unimplemen	ted: Read as	ʻ0'				
bit 13	I2CSIDL: Sto	p in Idle Mode	bit				
		•	eration when de		n Idle mode		
		-	tion in Idle mod		1 ² 0 1		
bit 12			ontrol bit (when	operating as	I ² C slave)		
	1 = Release 3	SCLX CIOCK _X Clock low (cl	ock stretch)				
	If STREN = 1	•					
			y write '0' to in	itiate stretch a	nd write '1' to re	elease clock). H	ardware clear
					d of slave rece		
	If STREN = 0						
	Bit is R/S (i.e transmission.		y only write '1'	to release clo	ck). Hardware c	lear at beginnin	g of slave
bit 11	IPMIEN: Intel	lligent Periphe	ral Managemer	nt Interface (IF	MI) Enable bit		
	1 = IPMI mod 0 = IPMI mod		all addresses A	cknowledged			
bit 10	A10M: 10-bit	Slave Address	s bit				
	1 = I2CxADD) is a 10-bit sla	ve address				
	0 = I2CxADD) is a 7-bit slave	e address				
bit 9		able Slew Rate					
		e control disable e control enable					
bit 8		us Input Levels					
		-	ds compliant wi	th SMBus spe	cification		
		SMBus input th		·			
bit 7			e bit (when ope	•	,		
				ddress is rece	eived in the I2C	xRSR	
	•	is enabled for	• •				
hit C		call address di		han anaratia -	a_{12}		
bit 6			h Enable bit (w	nen operating	as I-C slave)		
		unction with SC oftware or rece	VEREL Dit.	hina			
			eive clock stret	•			

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC
ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
oit 7							bit (
Legend:		U = Unimpler	nented bit, rea	ad as '0'		C = Clear onl	y bit
R = Readable	bit	W = Writable	bit	HS = Set in h	ardware	HSC = Hardwa	are set/cleared
n = Value at I	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15 bit 14	1 = NACK rec 0 = ACK rece Hardware set TRSTAT: Trar	ng as I ² C mas eived from slav ived from slav or clear at end	iter, applicable ive e d of slave Ack t (when opera	nowledge. ting as I ² C ma	nsmit operation ster, applicable) to master trans	mit operation
	0 = Master tra	ansmit is not in	progress		ware clear at e	nd of slave Ack	nowledge.
oit 13-11	Unimplemen	ted: Read as	0'				
bit 10		on	n detected dur	ing a master o	peration		
bit 9	GCSTAT: Ger	neral Call Statu	us bit				
	0 = General c	all address wa all address wa when address	as not received		ss. Hardware c	lear at Stop det	ection.
bit 8	1 = 10-bit add 0 = 10-bit add	it Address Sta Iress was mate Iress was not i at match of 2i	ched matched	ched 10-bit ad	dress. Hardwa	re clear at Stop	detection.
bit 7	IWCOL: Write				0		
	0 = No collisio	on	-		use the I ² C mo usy (cleared by	-	
bit 6	I2COV: Recei	ve Overflow F	lag bit				
	0 = No overflo	ow.		-	till holding the V (cleared by s	-	
bit 5		Idress bit (whe		_	, ,	,	
	0 = Indicates		/te received w	as device add	ress by reception of	slave byte.	
bit 4	P: Stop bit						
	1 = Indicates	that a Stop bit	has been dete	ected last			

REGISTER 19-8: CiEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		TERRO	CNT<7:0>				
						bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		RERRO	CNT<7:0>				
						bit 0	
bit	W = Writable b	it	U = Unimplement	ted bit, rea	ad as '0'		
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
	R-0	R-0 R-0 bit W = Writable b	R-0 R-0 R-0 RERRO bit W = Writable bit	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> bit W = Writable bit U = Unimplement	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0>	R-0 R-0 R-0 R-0 R-0 R-0 Bit W = Writable bit U = Unimplemented bit, read as '0' U = Unimplemented bit, read as '0'	

bit 15-8 **TERRCNT<7:0>:** Transmit Error Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 19-9: CiCFG1: ECAN[™] BAUD RATE CONFIGURATION REGISTER 1

			11.0				11.0
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—		—	—	
bit 15							bit 8
5444	5444.0		DM/ 0	D 444 A	5444.0	5444.0	D M M A
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	N<1:0>			BRI	P<5:0>		
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-8	Unimplemer	nted: Read as '	0'				
bit 7-6	SJW<1:0>: S	Synchronization	Jump Width I	bits			
	11 = Length	is 4 x Tq					
	10 = Length						
	01 = Length						
	00 = Length						
bit 5-0		Baud Rate Pres					
		[q = 2 x 64 x 1/	FCAN				
	•						
	•						
	•						
		$Q = 2 \times 3 \times 1/F$					
		「q = 2 x 2 x 1/F 「q = 2 x 1 x 1/F					
	00 0000 - 1						

REGISTER 19-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BF	P<3:0>			F2BF	?< 3:0>	
bit 15							bit 8
	5444.6		5444	D 444 A	5444.0	5444.6	D 444 A
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F1BP<3:0>					FUBF	P<3:0>	bit (
							Dit t
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-12	1111 = Filte	RX Buffer Writte r hits received in r hits received in	RX FIFO bu	ffer			
	•						
		r hits received in r hits received in					
bit 11-8	1111 = Filte	RX Buffer Writter r hits received in r hits received in	RX FIFO bu	ffer			
	•						
		r hits received in r hits received in					
bit 7-4	1111 = Filte	RX Buffer Writter r hits received in r hits received in	RX FIFO bu	ffer			
	•						
		r hits received in r hits received in					
bit 3-0	F0BP<3:0>:	RX Buffer Writte	en when Filte	er 0 Hits bits			
		r hits received in r hits received in		-			
	•						
	•						
		r hits received in r hits received in					

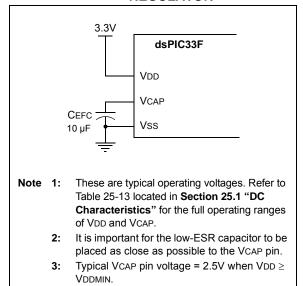
R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
DCIEN		DCISIDL		DLOOP	CSCKD	CSCKE	COFSD				
bit 15						-	bit 8				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
UNFM	CSDOM	DJST		_		COFS	COFSM<1:0>				
bit 7							bit 0				
Legend:											
R = Readable	e hit	W = Writable	hit	LI = LInimpler	mented bit, read	1 as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
n value at											
bit 15	DCIEN: DCI	Module Enable	bit								
	1 = Module is	1 = Module is enabled									
		0 = Module is disabled									
bit 14	-	nted: Read as '									
bit 13		CI Stop in Idle C									
	 Module will halt in CPU Idle mode Module will continue to operate in CPU Idle mode 										
bit 12	Unimplemented: Read as '0'										
bit 11	DLOOP: Digital Loopback Mode Control bit										
		1 = Digital Loopback mode is enabled. CSDI and CSDO pins internally connected									
	•	0 = Digital Loopback mode is disabled									
bit 10		CSCKD: Sample Clock Direction Control bit									
	 1 = CSCK pin is an input when DCI module is enabled 0 = CSCK pin is an output when DCI module is enabled 										
bit 9	CSCKE: Sample Clock Edge Control bit										
		1 = Data changes on serial clock falling edge, sampled on serial clock rising edge									
		0 = Data changes on serial clock rising edge, sampled on serial clock falling edge									
bit 8		COFSD: Frame Synchronization Direction Control bit									
	1 = COFS pin is an input when DCI module is enabled										
bit 7	-	 0 = COFS pin is an output when DCI module is enabled UNFM: Underflow Mode bit 									
bit i	•••••••••	1 = Transmit last value written to the transmit registers on a transmit underflow									
		ʻ0 's on a trans n									
bit 6	CSDOM: Serial Data Output Mode bit										
		n will be tri-state n drives '0's dur									
bit 5	 0 = CSDO pin drives '0's during disabled transmit time slots DJST: DCI Data Justification Control bit 										
	1 = Data transmission/reception is begun during the same serial clock cycle as the frame										
	synchronization pulse 0 = Data transmission/reception is begun one serial clock cycle after frame synchronization pulse										
bit 4-2		-	-	TONE SENALCIO	ok cycle alter fra	ame synchroniz	auon puise				
bit 4-2 bit 1-0	Unimplemented: Read as '0'										
	COFSM<1:0>: Frame Sync Mode bits 11 = 20-bit AC-Link mode										
	10 = 16-bit A	C-Link mode									
		01 = I ² S Frame Sync mode 00 = Multi-Channel Frame Sync mode									
	00 = Multi-Ch	nannel Frame S	ync mode								

REGISTER 20-1: DCICON1: DCI CONTROL REGISTER 1

REGISTER 21-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2) (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or $1x$)
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software may write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software may write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software may write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

22.2 On-Chip Voltage Regulator

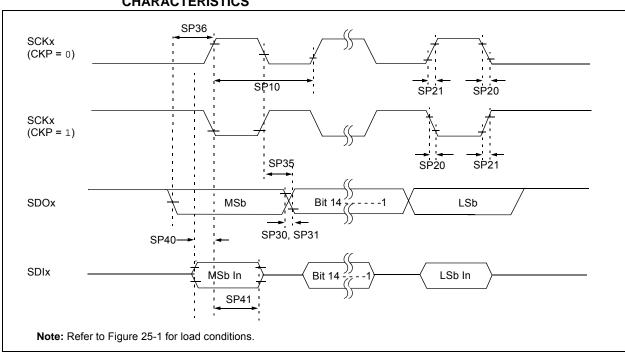

All of the dsPIC33FJXXXGPX06A/X08A/X10A devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJXXXGPX06A/X08A/X10A family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. The regulator requires that a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) be connected to the VCAP pin (Figure 22-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 25-13 of **Section 25.0** "**Electrical Characteristics**".

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the VCAP
	pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 22-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)


22.3 BOR: Brown-out Reset

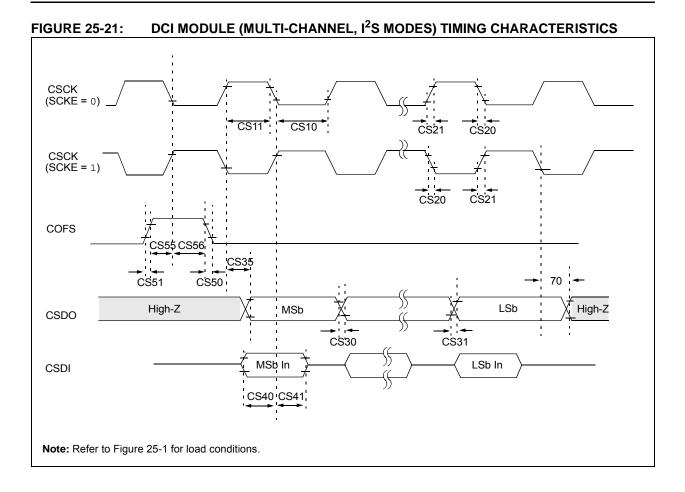
The BOR (Brown-out Reset) module is based on an internal voltage reference circuit that monitors the regulated voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

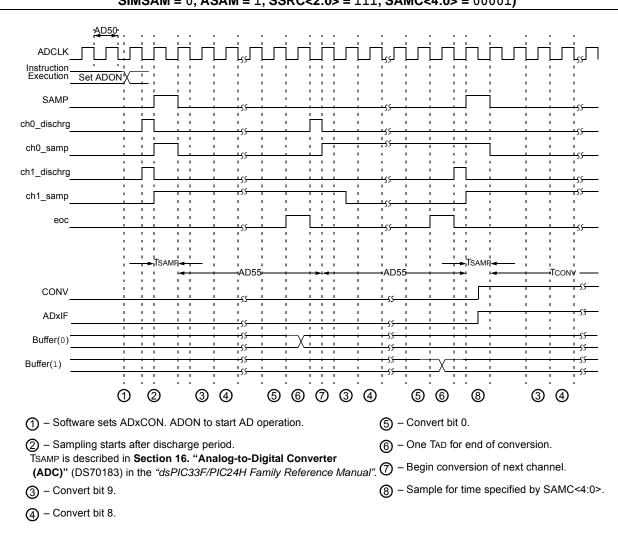
A BOR will generate a Reset pulse which will reset the device. The BOR will select the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>). Furthermore, if an oscillator mode is selected, the BOR will activate the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, then the clock will be held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) will be set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and will reset the device should VDD fall below the BOR threshold voltage.

FIGURE 25-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS


TABLE 25-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	—	_	10	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	-	ns	—	

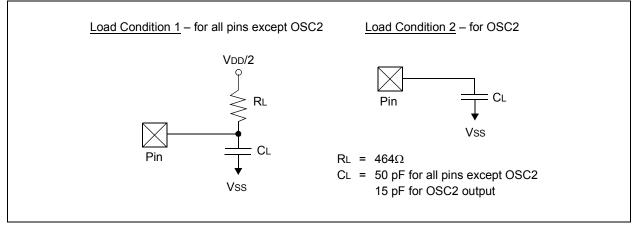
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 25-26:ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

26.2 AC Characteristics and Timing Parameters


The information contained in this section defines dsPIC33FJXXXGPX06A/X08A/X10A AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in Section 25.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

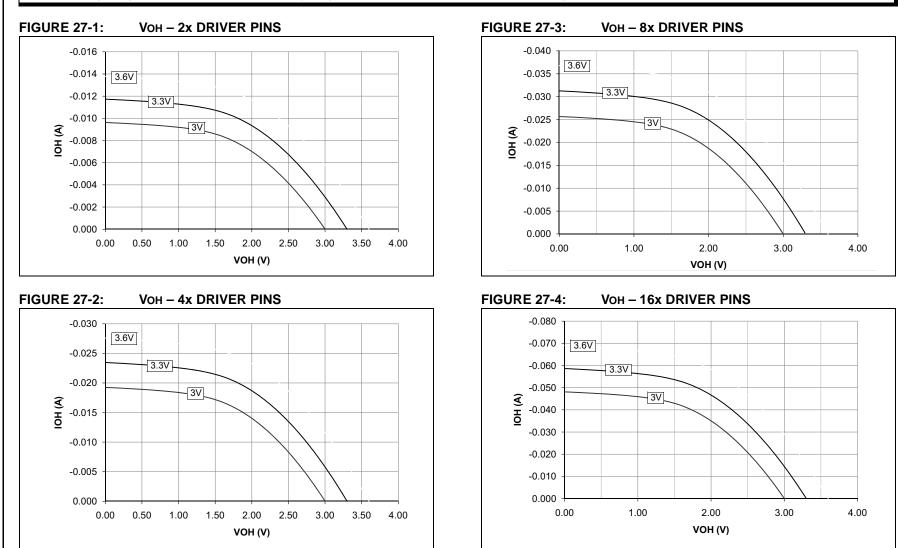
Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 25.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 26-7: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
	$\begin{array}{llllllllllllllllllllllllllllllllllll$

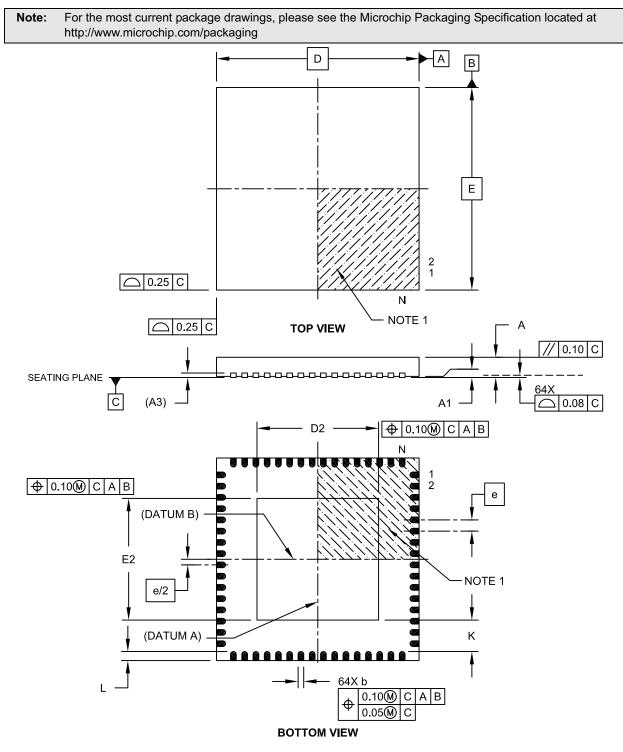
FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-8: PLL CLOCK TIMING SPECIFICATIONS


AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No. Symbol		Characteristic	Min	Тур	Max	Units	Conditions	
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period	

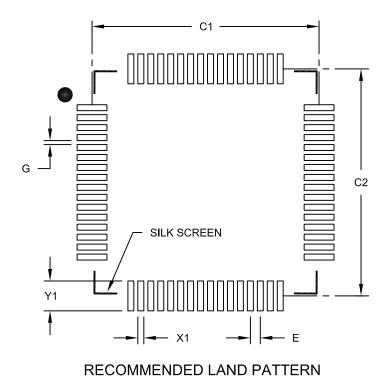
Note 1: These parameters are characterized, but are not tested in manufacturing.

NOTES:


27.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

28.2 Package Details


64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E		0.50 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B