

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	30K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp710a-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 CPU Control Registers

CPU control registers include:

- SR: CPU Status Register
- CORCON: Core Control Register

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽²⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> (2)		RA	N	OV	Z	С
bit 7							bit 0
Legend:							
C = Clear only	y bit	R = Readable	e bit	U = Unimpler	mented bit, read	as '0'	
S = Set only b	oit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown		
bit 15	OA: Accumul	ator A Overflow	v Status bit				
	1 = Accumula	ator A overflowe	ed				
bit 14		ator P Ovorflov					
DIL 14		ator B overflow	v Status Dit				
	0 = Accumula	tor B has not c	verflowed				
bit 13	SA: Accumula	ator A Saturatio	on 'Sticky' Sta	itus bit ⁽¹⁾			
	1 = Accumula	ator A is satura	ted or has bee	en saturated at	some time		
	0 = Accumula	tor A is not sat	urated				
bit 12	SB: Accumula	ator B Saturation	on 'Sticky' Sta	tus bit ⁽¹⁾			
	1 = Accumula 0 = Accumula	tor B is saturation bit is not sat	ted or has bee urated	en saturated at	some time		
bit 11		B Combined A	ccumulator C	verflow Status	bit		
	1 = Accumula	tors A or B hav	ve overflowed		2.1		
	0 = Neither A	ccumulators A	or B have ove	erflowed			
bit 10	SAB: SA SI	B Combined A	ccumulator 'S	ticky' Status bit			
	1 = Accumula	tors A or B are	saturated or	have been sat	urated at some	time in the past	t
	0 = Neither A	ccumulator A c	or B are satura	ated			
	Note: TI	his bit may be i	read or cleare	ed (not set). Cle	earing this bit wi	I clear SA and	SB.
bit 9	DA: DO Loop	Active bit					
	1 = DO loop in	n progress					
	υ = DO loop n	ot in progress					
Note 1: Th	is bit may be rea	ad or cleared (r	not set).				
			/				

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06A/X08A/X10A DEVICES WITH 30 KBS RAM

IABLE 4-18	8: F	CAN1 H	REGIST	ER MAP	WHEN	CICIR	L1.WIN	= 0 OR	1 FOR	dsPIC331	JXXXC	3P506A	/51A0//	(06A/70	8A//10/	A DEVI	CESC	JNLY
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	—	R	EQOP<2:0	>	OPI	MODE<2:0	>	_	CANCAP	_	—	WIN	0480
C1CTRL2	0402	_	_	_	_	_	_	_	_	_	_	_		DN	ICNT<4:0>			0000
C1VEC	0404	_	—	_		F	FILHIT<4:0>			—			IC	CODE<6:0>				0000
C1FCTRL	0406		DMABS<2:0	>	—	—	_	_	-	_	_	—		F	SA<4:0>			0000
C1FIFO	0408	_	_			FBP<	:5:0>			— — FNRB<5:0>					0000			
C1INTF	040A	_	—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	—	_	—	_	_	—	—	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRC	NT<7:0>							RERRCN	[<7:0>				0000
C1CFG1	0410	_	—	_	—	_	_	—	—	- SJW<1:0> BRP<5:0>					0000			
C1CFG2	0412	_	WAKFIL	_	—	_	SE	EG2PH<2:()>	SEG2PHTS	SAM	S	EG1PH<2	:0>	PF	RSEG<2:0	>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSI	K<1:0>	F6MSI	< <1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK	<1:0>	F2MS	< <1:0>	F1MSk	<1:0>	FOMS	< <1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12M8	SK<1:0>	F11MSK	(<1:0>	F10MS	K<1:0>	F9MSk	<1:0>	F8MS	<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 FOR dsPIC33FJXXXGP506A/510A/706A/708A/710A DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RX0				RXOVF17	RXOVF16	0000				
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	N5 TX5PRI<1:0> TXEN4 TXABAT4 TXLARB4 TXERR4 TXREQ4 RTREN4 TX4PRI<1:0>						RI<1:0>	0000			
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	REN7 TX7PRI<1:0> TXEN6 TXABAT6 TXLARB6 TXERR6 TXREQ6 RTREN6 TX6PRI<1:0>						RI<1:0>	xxxx			
C1RXD	0440								Received [Data Word								xxxx
C1TXD	0442		Transmit Data Word xxxx															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norm	al Addres	S		Bit-Reversed Address					
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal		
0	0	0	0	0	0	0	0	0	0		
0	0	0	1	1	1	0	0	0	8		
0	0	1	0	2	0	1	0	0	4		
0	0	1	1	3	1	1	0	0	12		
0	1	0	0	4	0	0	1	0	2		
0	1	0	1	5	1	0	1	0	10		
0	1	1	0	6	0	1	1	0	6		
0	1	1	1	7	1	1	1	0	14		
1	0	0	0	8	0	0	0	1	1		
1	0	0 1 9		1	0	0	1	9			
1	0	1	0	10	0	1	0	1	5		
1	0	1	1	11	1	1	0	1	13		
1	1	0	0	12	0	0	1	1	3		
1	1	0	1	13	1	0	1	1	11		
1	1	1	0	14	0	1	1	1	7		
1	1	1	1	15	1	1	1	1	15		

REGISTER 5	-1: NVMC	ON: FLASH	MEMORY C		EGISTER		
R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR			—	_	_
bit 15							bit 8
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
	ERASE	_	_		NVMOP	P<3:0>(2)	
bit 7							bit 0
Legend		SO - Settable	only hit				
R = Readable	bit	W = Writable	bit	II = I Inimple	mented hit read	l as 'O'	
n = Value at [$(1)^2 = \text{Rit is set}$	DIL	0' = Bit is cl	eared	v = Bitis unkr	
		I - DILIS SEL			eareu		IOWIT
bit 15	WR: Write Co	ontrol bit					
	1 = Initiates	a Flash memor	y program or	erase operat	ion. The operation	on is self-timed	and the bit is
	cleared b	by hardware on	ce operation i	is complete			
	0 = Program	or erase opera	ition is comple	ete and inactiv	/e		
bit 14	WREN: Write	Enable bit					
	1 = Enable F 0 = Inhibit Fla	ash program/e	ase operation	กร าร			
bit 13	WRERR: Wri	te Sequence F	rror Flag bit				
	1 = An impro	per program o	r erase seque	nce attempt o	r termination has	s occurred (bit i	s set
	automati	cally on any se	t attempt of th	ne WR bit)			
	0 = The prog	ram or erase o	peration com	pleted normal	ly		
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6	ERASE: Eras	se/Program Ena	able bit				
	1 = Perform	the erase operation of the program o	ation specified	d by NVMOP<	3:0> on the next	WR command	and
bit 5.4		une program op					
bit 3-0		NVM Operat	o ion Select hits	₂ (2)			
bit 3-0	If FRASE = 1			5			
	1111 = Mem	<u>.</u> ory bulk erase (operation				
	1110 = Rese	rved					
	1101 = Erase	e General Segr	nent				
	1100 = Erase	e Secure Segm	ent				
	1011 - Rese	peration					
	0010 = Mem	ory page erase	operation				
	0001 = No o p	peration					
	0000 = Erase	e a single Confi	guration regis	ster byte			
	If ERASE = 0	:					
	1111 = No o p	peration					
	1110 = Rese	rved					
	1100 = N000	peration					
	1011 = Rese	rved					
	0011 = Memo	ory word progra	am operation				
	0010 = No op	peration					
	0001 = Nem	ory row program	n operation	aister hyte			
		and a ungle of		giotor byto			
Note 1: The	ese bits can onl	v be reset on F	POR.				

NOTES:

REGISTER 7	-28: IPC1	3: INTERRUPT	PRIORITY		REGISTER 1	3	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		C2RXIP<2:0>				INT4IP<2:0>	
bit 15							bit
		DAMO	DAVO		D/// 4		D/// 0
0-0	R/W-1		R/W-0	0-0	R/W-1	R/VV-0	R/W-0
		INT3IP<2:0>		_		1912<2:0>	
							DIL
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as '0	,				
bit 14-12	C2RXIP<2:	0>: ECAN2 Recei	ive Data Re	ady Interrupt P	riority bits		
	111 = Interr	rupt is priority 7 (h	ighest priori	ty interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is disa	abled				
bit 11	Unimpleme	ented: Read as '0	,				
bit 10-8	INT4IP<2:0	>: External Interru	upt 4 Priority	/ bits			
	111 = Interr	rupt is priority 7 (h	ighest priori	ity interrupt)			
	•						
	•						
	• 001 = Interr	runt is priority 1					
	000 = Interr	rupt source is disa	abled				
bit 7	Unimpleme	ented: Read as '0	,				
bit 6-4	INT3IP<2:0	>: External Interru	upt 3 Priority	/ bits			
	111 = Interr	rupt is priority 7 (h	ighest priori	ity interrupt)			
	•		U	y			
	•						
	• 001 - Interr	runt is priority 1					
	001 = Interior	rupt source is disa	abled				
bit 3	Unimpleme	ented: Read as '0	,				
bit 2-0	T9IP<2:0>:	Timer9 Interrupt I	Priority bits				
	111 = Interr	rupt is priority 7 (h	iahest priori	ity interrupt)			
	•						
	•						
	•						
	001 = Interr	rupt is priority 1	abled				

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33FJXXXGPX06A/X08A/X10A devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 22.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the status bits, LOCK (OSCCON<5>) and CF (OSCCON<3>) are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRC-PLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** Refer to **Section 7. "Oscillator"** (DS70186) in the *"dsPIC33F/PIC24H Family Reference Manual"* for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2009-2012} Microchip Technology Inc.

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the "**Pin Diagrams**" section for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The use of the ADxPCFGH, ADxPCFGL and TRIS registers control the operation of the ADC port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

Clearing any bit in the ADxPCFGH or ADxPCFGL register configures the corresponding bit to be an analog pin. This is also the Reset state of any I/O pin that has an analog (ANx) function associated with it.

Note:	In devices with two ADC modules, if the
	corresponding PCFG bit in either
	AD1PCFGH(L) and AD2PCFGH(L) is
	cleared, the pin is configured as an analog
	input.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

Note:	The voltage on an analog input pin can be
	between -0.3V to (VDD + 0.3 V).

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJXXXGPX06A/X08A/X10A devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 24 external signals (CN0 through CN23) that can be selected (enabled) for generating an interrupt request on a change-of-state.

There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the CN interrupt enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the weak pull-up enable (CNxPUE) bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
btss	PORTB, #13	;	Next Instruction

NOTES:

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJXXXGPX06A/X08A/X10A device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8 or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS pins
- Fully Integrated Baud Rate Generator with 16-bit Prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In-First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART is shown in Figure 18-1. The UART module consists of the key important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UART SIMPLIFIED BLOCK DIAGRAM

- **Note 1:** Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as a result of a UART1 or UART2 transmission or reception.
 - 2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

REGISTER 19-11: CIFEN1: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER

R/W-1 Bit 8 Bit 9 Bit 9 <th< th=""><th>Legend:</th><th>L:4</th><th></th><th>L:1</th><th></th><th></th><th></th><th></th></th<>	Legend:	L:4		L:1				
R/W-1 R/W-1 <th< th=""><th>bit 7</th><th></th><th></th><th></th><th></th><th></th><th></th><th>bit 0</th></th<>	bit 7							bit 0
R/W-1 R/W-1 <th< td=""><td>FLTEN7</td><td>FLTEN6</td><td>FLTEN5</td><td>FLTEN4</td><td>FLTEN3</td><td>FLTEN2</td><td>FLTEN1</td><td>FLTEN0</td></th<>	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
R/W-1 R/W-1 <th< td=""><td>R/W-1</td><td>R/W-1</td><td>R/W-1</td><td>R/W-1</td><td>R/W-1</td><td>R/W-1</td><td>R/W-1</td><td>R/W-1</td></th<>	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8 bit 15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 bit 8								5110
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8	bit 15			•	•		•	bit 8
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **FLTENn:** Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

20.0 DATA CONVERTER INTERFACE (DCI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Data Converter Interface (DCI)" (DS70288) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

20.1 Module Introduction

The dsPIC33FJXXXGPX06A/X08A/X10A Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), ADC and D/A converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- · AC-Link Compliant mode

The DCI module provides the following general features:

- · Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

20.2 Module I/O Pins

There are four I/O pins associated with the module. When enabled, the module controls the data direction of each of the four pins.

20.2.1 CSCK PIN

The CSCK pin provides the serial clock for the DCI module. The CSCK pin may be configured as an input or output using the CSCKD control bit in the DCICON1 SFR. When configured as an output, the serial clock is provided by the dsPIC33FJXXXGPX06A/X08A/X10A. When configured as an input, the serial clock must be provided by an external device.

20.2.2 CSDO PIN

The Serial Data Output (CSDO) pin is configured as an output only pin when the module is enabled. The CSDO pin drives the serial bus whenever data is to be

transmitted. The CSDO pin is tri-stated, or driven to '0', during CSCK periods when data is not transmitted depending on the state of the CSDOM control bit. This allows other devices to place data on the serial bus during transmission periods not used by the DCI module.

20.2.3 CSDI PIN

The Serial Data Input (CSDI) pin is configured as an input only pin when the module is enabled.

20.2.3.1 COFS Pin

The Codec Frame Synchronization (COFS) pin is used to synchronize data transfers that occur on the CSDO and CSDI pins. The COFS pin may be configured as an input or an output. The data direction for the COFS pin is determined by the COFSD control bit in the DCICON1 register.

The DCI module accesses the shadow registers while the CPU is in the process of accessing the memory mapped buffer registers.

20.2.4 BUFFER DATA ALIGNMENT

Data values are always stored left justified in the buffers since most Codec data is represented as a signed 2's complement fractional number. If the received word length is less than 16 bits, the unused Least Significant bits in the Receive Buffer registers are set to '0' by the module. If the transmitted word length is less than 16 bits, the unused LSbs in the Transmit Buffer register are ignored by the module. The word length setup is described in subsequent sections of this document.

20.2.5 TRANSMIT/RECEIVE SHIFT REGISTER

The DCI module has a 16-bit shift register for shifting serial data in and out of the module. Data is shifted in/ out of the shift register, MSb first, since audio PCM data is transmitted in signed 2's complement format.

20.2.6 DCI BUFFER CONTROL

The DCI module contains a buffer control unit for transferring data between the shadow buffer memory and the Serial Shift register. The buffer control unit is a simple 2-bit address counter that points to word locations in the shadow buffer memory. For the receive memory space (high address portion of DCI buffer memory), the address counter is concatenated with a '0' in the MSb location to form a 3-bit address. For the transmit memory space (high portion of DCI buffer memory), the address counter is concatenated with a '1' in the MSb location.

Note: The DCI buffer control unit always accesses the same relative location in the transmit and receive buffers, so only one address counter is provided.

© 2009-2012 Microchip Technology Inc.

	11.0		11.0				
	0-0		0-0				
bit 15		DCIGIDE	_	DLOOI	COCKD	COOKL	bit 8
bit to							Site
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
UNFM	CSDOM	DJST	_	_	_	COFSI	M<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	DCIEN: DCI N	Module Enable	bit				
	1 = Module is 0 = Module is	disabled					
bit 14	Unimplemen	ted: Read as '	o'				
bit 13	DCISIDL: DC	I Stop in Idle C	ontrol bit				
	1 = Module w	ill halt in CPU I	dle mode				
	0 = Module w	ill continue to c	perate in CP	U Idle mode			
bit 12	Unimplemen	ted: Read as '	כ'				
bit 11	DLOOP: Digit	tal Loopback M	ode Control	bit			
	1 = Digital Lo	opback mode is opback mode is	s enabled. C: s disabled	SDI and CSDO	pins internally o	connected	
bit 10	CSCKD: Sam	ple Clock Dire	ction Control	bit			
	1 = CSCK pin 0 = CSCK pin	n is an input wh n is an output w	en DCI modu hen DCI mod	ule is enabled dule is enabled			
bit 9	CSCKE: Sam	ple Clock Edge	e Control bit				
	1 = Data char 0 = Data char	nges on serial on serial of nges on serial of	clock falling e clock rising e	dge, sampled o dge, sampled o	on serial clock ri n serial clock fa	sing edge Iling edge	
bit 8	COFSD: Fran	ne Synchroniza	ation Direction	n Control bit			
	1 = COFS pin 0 = COFS pin	n is an input wh n is an output w	en DCI modu hen DCI mod	ile is enabled dule is enabled			
bit 7	UNFM: Under	rflow Mode bit					
	1 = Transmit 0 = Transmit '	last value writte '0's on a transn	en to the tran	smit registers o	on a transmit und	derflow	
bit 6	CSDOM: Ser	ial Data Output	Mode bit				
	1 = CSDO pir 0 = CSDO pir	n will be tri-state n drives '0's dui	ed during disa ring disabled	abled transmit f transmit time s	time slots lots		
bit 5	DJST: DCI Da	ata Justification	Control bit				
	1 = Data transmission/reception is begun during the same serial clock cycle as the frame						
	0 = Data tran	ismission/recep	otion is begur	n one serial clo	ck cycle after fra	ame synchroniz	ation pulse
bit 4-2	Unimplemen	ted: Read as '	כ'				
bit 1-0	COFSM<1:0>	- Frame Sync	Mode bits				
	11 = 20-bit A(10 = 16-bit A(C-LINK mode					
	$01 = I^2 S Fran$	ne Sync mode					
	00 = Multi-Ch	annel Frame S	ync mode				

REGISTER 20-1: DCICON1: DCI CONTROL REGISTER 1

REGISTER 21-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2)

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM	Л<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0

				HC,HS	HC, HS
SSRC<2:0>	—	SIMSAM	ASAM	SAMP	DONE
pit 7					bit 0

Legend:	HC = Cleared by hardware	HS = Set by hardware	C = Clear only bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 14 Unimplemented: Read as '0' bit 13 ADSIDL: Stop in Idle Mode bit 1 Discontinue module operation when device enters Idle mode 0 Continue module operation in Idle mode bit 12 ADDMABM: DMA Buffer Build Mode bit 1 DMA buffers are written in the order of conversion. The module will provide an address to the DM/ channel that is the same as the address used for the non-DMA stand-alone buffer 0 DMA buffers are written in Scatter/Cather mode. The module will provide a scatter/gather address to the DMA buffer are written in Scatter/Cather mode. The module will provide as scatter/gather address to the DMA buffer are written in Scatter/Cather mode. The module will provide as scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers are written in Scatter/Cather mode. The module will provide as scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers are written in Scatter/Cather mode. The module will provide as scatter/gather address to the DMA channel ADC operation 0 = 10-bit, 4-channel (Dour = scass scass diddd dddd, where s = .NOT.d<9>) 0 = Integer (Dour = scass scass diddd dddd 0000, where s = .NOT.d<9>) 0 = Integer (Dour = scass scass diddd dddd 0000, where s = .NOT.d<1>>) 1 = Signed fractional (Dour = scass scasd dddd dddd 0000, where s = .NOT.d<1>>) 0 = Integer (Dour = scass scasd dddd dddd 0000, where s = .NOT.d<1>>) 0 = Integer (Dour = 0000 dddd dddd dddd 0000, 000 = signed integer (Dour	bit 15	ADON: ADC Operating Mode bit 1 = ADC module is operating 0 = ADC is off
bit 13 ADSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide as catter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers are written in Scatter/Gather mode. The module will provide as catter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers are written in Scatter/Gather mode. The module will provide as catter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers are written in Scatter/Gather mode. The module will provide as catter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers are written in Scatter/Gather mode. The module will provide as catter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers are written in Isotater/Gather mode. The module will provide as catter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers are written in Isotater/Gather mode. The module will provide as catter/gather address to the DMA buffers are written in the crite at a 'o' bit 10 AD12B: 10-Bit or 12-Bit Operation 11 = Signed fractional (DouT = sided dadd dadd 00000, where s = .NOT.d<11>) 11	bit 14	Unimplemented: Read as '0'
1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers to the DMA channel, based on the index of the analog input and the size of the DMA buffer bit 11 Unimplemented: Read as '0' bit 10 AD12B: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation 0 = 10-bit, 4-channel ADC operation 0 = 10-bit operation: 11 = Signed fractional (DouT = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (DouT = addd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (DouT = oddd dddd dddd 0000) 10 = Signed Integer (DouT = sss sddd dddd dddd) 000) 11 = Signed fractional (DouT = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (DouT = addd dddd dddd 0000) 01 = Signed Integer (DouT = sss sddd dddd 0000) 11 = Signed Integer (DouT = sss sddd dddd dddd, where s = .NOT.d<11>) 10 = Fractional (DouT = sddd dddd dddd 0000) 01 = Signed Integer (DouT = 0000 dddddddd 0000) 0	bit 13	ADSIDL: Stop in Idle Mode bit
bit 12 ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer bit 11 Unimplemented: Read as '0' bit 11 Unimplemented: Read as '0' bit 10 AD12E: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation 11 = Signed fractional (Dour = sddd dddd d000 0000, where s = .NOT.d<9>) 10 = Fractional (Dour = sddd dddd dd00 0000) 11 = Signed fractional (Dour = sddd dddd ddd0 0000, where s = .NOT.d<9>) 10 = Integer (Dour = oddd dddd dddd 0000) 11 = Signed fractional (Dour = sddd dddd dddd 0000, where s = .NOT.d<1>) 10 = Fractional (Dour = sddd dddd dddd 0000, where s = .NOT.d<1>) 10 = Fractional (Dour = sddd dddd dddd 0000) 11 = Signed fractional (Dour = sddd dddd dddd 0000) 12 = Signed Integer (Dour = sss sddd dddd dddd, where s = .NOT.d<1>) 10 = Fractional (Dour = sddd dddd dddd 0000) <td></td> <td>1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode</td>		1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
1 = DMA buffers are written in the order of conversion. The module will provide an address to the DM/ channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer bit 11 Unimplemented: Read as '0' bit 10 AD12B: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation 0 = 10-bit, 4-channel ADC operation 0 = 10-bit, 4-channel ADC operation 11 = Signed fractional (Dour = addd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dour = addd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dour = addd dddd ddd0 0000, where s = .NOT.d<9>) 0 = Integer (Dour = 0000 00dd dddd dddd 0000, where s = .NOT.d<9>) 11 = Signed fractional (Dour = addd dddd dddd 0000, where s = .NOT.d<1>) 10 = Fractional (Dour = addd dddd dddd 0000) 11 = Signed fractional (Dour = addd dddd dddd 0000) 0 = Integer (Dour = addd dddd dddd 0000) 11 = Signed fractional (Dour = addd dddd dddd 0000) 0 = Integer (Dour = ass sddd dddd dddd, where s = .NOT.d<11>) 10 = Fractional (Dour = addd dddd dddd dddd, where s = .NOT.d<11>) 0 = Integer (Dour = oss sddd dddd dddd) 11 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 10 = Reserved </td <td>bit 12</td> <td>ADDMABM: DMA Buffer Build Mode bit</td>	bit 12	ADDMABM: DMA Buffer Build Mode bit
bit 11 Unimplemented: Read as '0' bit 10 AD12B: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation bit 9-8 FORM<1:0>: Data Output Format bits For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = dddd dddd ddd0 0000) 01 = Signed integer (Dout = sss ssed dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd) Por 12-bit operation: 11 = Signed fractional (Dout = sddd dddd dddd) 00 = Integer (Dout = sss ssed dddd dddd) 01 = Fractional (Dout = sddd dddd dddd) 00 = Integer (Dout = 0000 00dd dddd dddd) 00 = Integer (Dout = sss sddd dddd dddd, where s = .NOT.d<11>) 00 = Fractional (Dout = sddd dddd dddd) 00 = Integer (Dout = 0000 dddd dddd dddd) 01 = Signed Integer (Dout = sss sddd dddd ddd) 00 = Integer (Dout = 0000 dddd dddd dddd) 01 = Seerved 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 101 = Reserved 101 = Reserved 102 = GP timer (Timer3 for ADC1, Timer3 for		 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 10 AD12B: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation bit 9-8 FORM<1:0>: Data Output Format bits For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = dddd dddd ddd0 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd 0000, where s = .NOT.d<9>) 00 = Integer (Dout = ssss ssdd dddd dddd 0000) 01 = Signed fractional (Dout = sddd dddd dddd 0000) 11 = Signed fractional (Dout = sddd dddd dddd 0000) 11 = Signed fractional (Dout = sddd dddd dddd 0000) 11 = Signed fractional (Dout = ssss sddd dddd 0000) 11 = Signed Integer (Dout = ssss sddd dddd 0000) 01 = Signed Integer (Dout = 0000 dddd dddd 0000) 01 = Integer (Dout = 0000 dddd dddd 0000) 01 = Integer (Dout = 0000 dddd dddd 0000) 01 = Reserved 101 = GP timer (Timer3 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 001 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion	bit 11	Unimplemented: Read as '0'
1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation bit 9-8 FORM-1:0>: Data Output Format bits For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd 0000, where s = .NOT.d<9>) 00 = Integer (Dout = sddd dddd dddd 0000) 01 = Signed fractional (Dout = sddd dddd dddd 0000) 01 = Fractional (Dout = addd dddd dddd 0000) 01 = Fractional (Dout = sddd dddd dddd 0000) 01 = Signed fractional (Dout = sddd dddd dddd, where s = .NOT.d<11>) 10 = Fractional (Dout = addd dddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd) 01 = Signed Integer (Dout = o000 dddd dddd dddd) 02 = Integer (Dout = 0000 dddd dddd dddd) 03 = Street (Dout = 0000 dddd dddd dddd) 110 = Reserved 101 = Reserved 102 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Reserved 012 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 013 = Active transition on INT0 pin ends sampling and starts conver	bit 10	AD12B: 10-Bit or 12-Bit Operation Mode bit
bit 9-8 FORM<1:0>: Data Output Format bits For 10-bit operation: 11 = Signed fractional (DoUT = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (DOUT = dddd dddd dd00 0000) 01 = Signed integer (DOUT = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (DOUT = 0000 00dd dddd dddd) For 12-bit operation: 11 = Signed fractional (DOUT = sddd dddd dddd 0000, where s = .NOT.d<1>) 10 = Fractional (DOUT = dddd dddd dddd 0000) 01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<1>) 10 = Fractional (DOUT = sddd dddd dddd 0000) 01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<1>) 00 = Integer (DOUT = 0000 dddd dddd dddd) bit 7-5 SSRC<2:0>: Sample Clock Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 102 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 011 = Active transition on INT0 pin ends sampling and starts conversion 012 = Active transition on INT0 pin ends sampling and starts conversion 013 = Active transition on INT0 pin ends sampling and starts conversion 014 = Mimplemented: Read as '0'		1 = 12-bit, 1-channel ADC operation
bit 9-8 FORM<1:U>: Data Output Format bits For 10-bit operation: 11 = Signed fractional (DouT = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (DouT = dddd dddd dd00 0000) 01 = Signed integer (DouT = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (DouT = 0000 00dd dddd dddd 0000, where s = .NOT.d<9>) 00 = Integer (DouT = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (DouT = dddd dddd dddd 0000) 01 = Signed fractional (DouT = sddd dddd dddd 0000) 01 = Signed Integer (DouT = sddd dddd dddd 0000) 01 = Signed Integer (DouT = ssss sddd dddd dddd, where s = .NOT.d<11>) 10 = Fractional (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 ddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 ddd dddd dddd) 01 = Reserved 101 = Reserved 101 = Reserved 100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion <		0 = 10-bit, 4-channel ADC operation
For 10-bit operation: 11 = Signed fractional (DouT = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (DouT = dddd dddd dd00 0000) 01 = Signed integer (DouT = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (DouT = 0000 00dd dddd dddd) For 12-bit operation: 11 = Signed fractional (DouT = sddd dddd dddd 0000, where s = .NOT.d<9>) 00 = Integer (DouT = oddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (DouT = sddd dddd dddd 0000) 01 = Signed Integer (DouT = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (DouT = oddd dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 11 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 011 = Active trans	bit 9-8	FORM<1:0>: Data Output Format bits
For 12-bit operation: 11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (Dout = dddd dddd dddd 0000) 01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd) bit 7-5 SSRC<2:0>: Sample Clock Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = Clearing sample bit ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion bit 4 Unimplemented: Read as '0'		<u>For 10-bit operation:</u> 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd)
11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (Dout = dddd dddd dddd 0000) 01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd) bit 7-5 SSRC<2:0>: Sample Clock Source Select bits 11 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = Clearing sample bit ends sampling and starts conversion 010 = Clearing sample bit ends sampling and starts conversion 010 = Clearing sample bit ends sampling and starts conversion		For 12-bit operation:
10 = Fractional (Dout = dada dada dada 0000) 01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd) bit 7-5 SSRC<2:0>: Sample Clock Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 100 = Reserved 101 = Reserved 100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = Clearing sample bit ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion bit 4 Unimplemented: Read as '0'		11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)
bit 7-5SSRC<2:0>: Sample Clock Source Select bits111 = Internal counter ends sampling and starts conversion (auto-convert)110 = Reserved101 = Reserved100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion011 = Reserved010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion011 = Reserved010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion010 = Clearing sample bit ends sampling and starts conversion000 = Clearing sample bit ends sampling and starts conversionbit 4		01 = Signed Integer (Dout = asaa adad adad 0000) 00 = Integer (Dout = 0000 dddd dddd dddd, where s = .NOT.d<11>)
111 = Internal counter ends sampling and starts conversion (auto-convert)110 = Reserved101 = Reserved100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion011 = Reserved010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion001 = Active transition on INT0 pin ends sampling and starts conversion000 = Clearing sample bit ends sampling and starts conversionbit 4	bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
100 = GP timer (Timers for ADC1, Timers for ADC2) compare ends sampling and starts conversion011 = Reserved010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion001 = Active transition on INT0 pin ends sampling and starts conversion000 = Clearing sample bit ends sampling and starts conversionbit 4Unimplemented: Read as '0'		<pre>111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 102 = CPL timer (Timer 5 for ADC1, Timer 2 for ADC2) compare and complian and starts conversion</pre>
010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion001 = Active transition on INT0 pin ends sampling and starts conversion000 = Clearing sample bit ends sampling and starts conversionbit 4Unimplemented: Read as '0'		011 = Reserved
bit 4 Unimplemented: Read as '0'		 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion
	bit 4	Unimplemented: Read as '0'

FIGURE 25-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 25-22: 1	TIMER1 EXTERNAL	CLOCK TIMING	REQUIREMENTS ⁽¹⁾

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic			Min	Тур	Мах	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchro no preso	onous, caler	Tcy + 20		_	ns	Must also meet parameter TA15
			Synchronous, with prescaler		(Tcy + 20)/N		_	ns	
			Asynchr	ronous	20	_	_	ns	
TA11	TTXL	TxCK Low Time	 Synchronous, no prescaler Synchronous, with prescaler Asynchronous 		(Tcy + 20)/N	_	_	ns	Must also meet parameter TA15
					20	_	—	ns	N = prescale value
					20	_	—	ns	(1,8,64,256)
TA15	ΤτχΡ	TxCK Input Period	Synchronous, no prescaler		2Tcy + 40		_	ns	_
			Synchronous, with prescaler		Greater of 40 ns or (2Tcy + 40)/N				N = prescale value (1, 8, 64, 256)
			Asynchr	ronous	40			ns	—
OS60	Ft1	SOSC1/T1CK O frequency Range enabled by settir (T1CON<1>))	Dscillator Input le (oscillator ng TCS bit		DC		50	kHz	_
TA20	TCKEXTMRL	Delay from Exter Clock Edge to Ti	rnal TxCK mer Incre	< ement	0.75Tcy+40		1.75Tcy+40	ns	—

Note 1: Timer1 is a Type A.

TABLE 25-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.4V to 3.6V (unless otherwise stated)					
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Indust $-40^{\circ}C \le TA \le +125^{\circ}C$ for Exter				+85°C for Industrial +125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions					
SP10	TscP	Maximum SCK Frequency	—	—	10	MHz	-40°C to +125°C and see Note 3	
SP20	TscF	SCKx Output Fall Time	—	—		ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time				ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time				ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

NOTES:

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B