

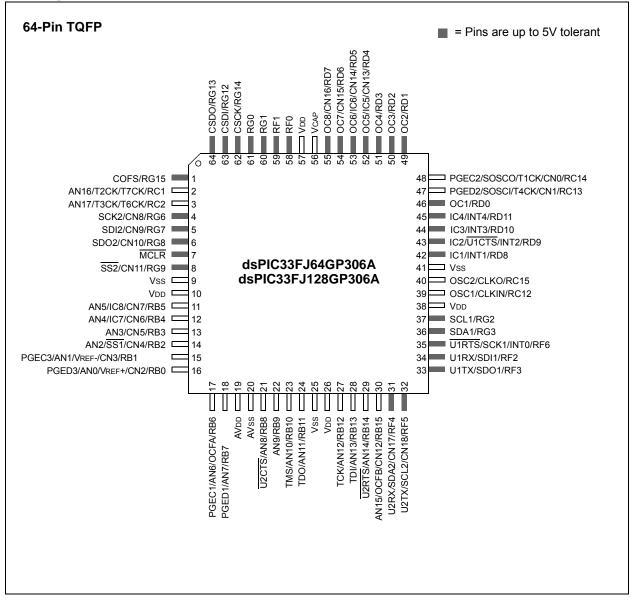
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

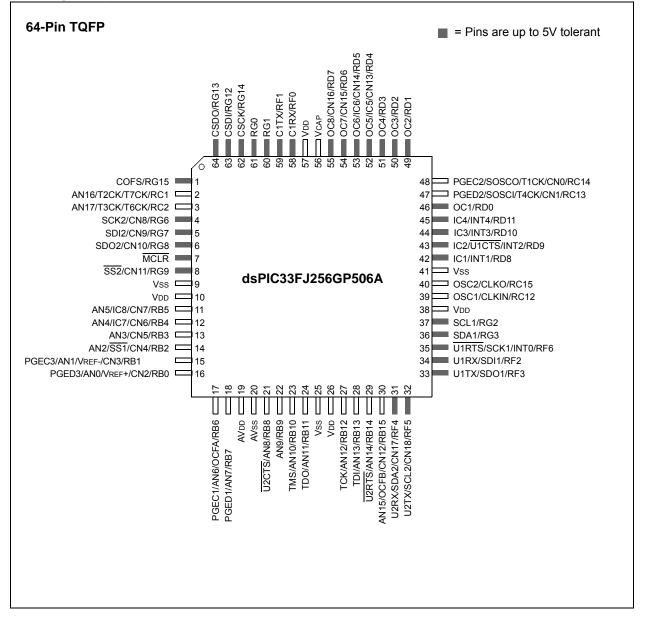
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	30K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp710a-h-pf


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

5.0 FLASH PROGRAM MEMORY

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Familv Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

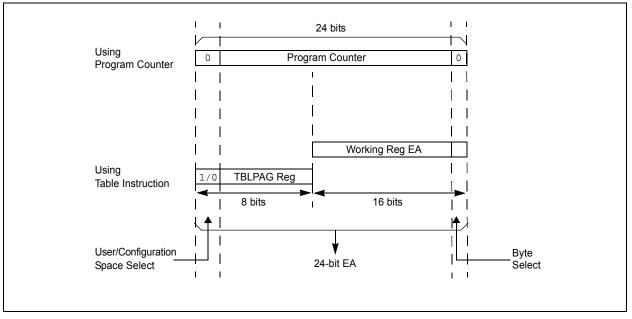
Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJXXXGPX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and

Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
FORCE ⁽¹⁾	—	—	-	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	IRQSEL6 ⁽²⁾	IRQSEL5 ⁽²⁾	IRQSEL4 ⁽²⁾	IRQSEL3(2)	IRQSEL2 ⁽²⁾	IRQSEL1(2)	IRQSEL0(2)
bit 7							bit 0
Legend:							
R = Readable bit W = V		W = Writable	/ = Writable bit		U = Unimplemented bit, read		
-n = Value at F	POR	'1' = Bit is set	et '0' = Bit		ared	x = Bit is unknown	
bit 15	FORCE: Force	e DMA Transfe	er bit ⁽¹⁾				
		ingle DMA tran		,			
		DMA transfer	-	MA request			
bit 14-7	Unimplemen	ted: Read as '	0'				
bit 6-0	IRQSEL<6:0>	DMA Periph	eral IRQ Numl	ber Select bits	(2)		
	1111111 = D	MAIRQ127 se	lected to be C	hannel DMARI	EQ		
	•						
	•						
	•						
	0000000 = DN	MAIRQ0 select	ed to be Chan	nel DMAREQ			

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.
 - 2: Please see Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ST/	\<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	red x = Bit is unknown	

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

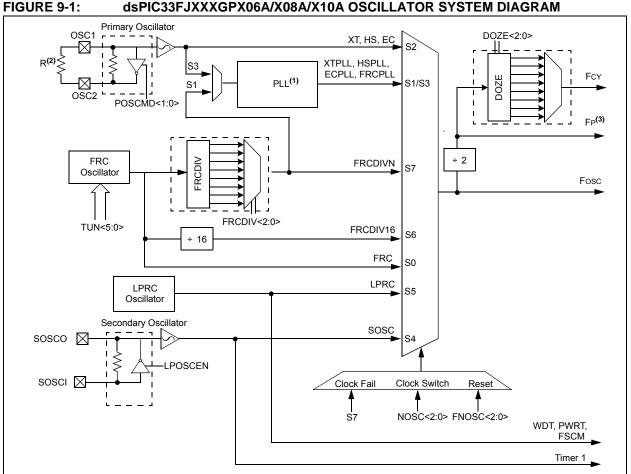
REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected


9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/ X08A/X10A family of devices. However, not intended to it is be а comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A oscillator system provides:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection

A simplified diagram of the oscillator system is shown in Figure 9-1.

Note 1: See Figure 9-2 for PLL details.

- 2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 M Ω must be connected.
- **3:** The term, FP refers to the clock source for all the peripherals, while Fcy refers to the clock source for the CPU. Throughout this document FP and Fcy are used interchangeably, except in the case of Doze mode. FP and Fcy will be different when Doze mode is used in any ratio other than 1:1, which is the default.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
T5MD	T4MD	T3MD	T2MD	T1MD		_	DCIMD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD ⁽¹⁾
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown
bit 15	T5MD: Timer	5 Module Disat	ole bit				
		nodule is disable nodule is enable					
bit 14	T4MD: Timer	4 Module Disat	ole bit				
	-	nodule is disable nodule is enable					
bit 13		3 Module Disat					
	1 = Timer3 m	nodule is disable	ed				
	0 = Timer3 m	nodule is enable	d				
bit 12	-	2 Module Disat					
	-	nodule is disable nodule is enable					
bit 11	T1MD: Timer	1 Module Disat	ole bit				
		nodule is disable nodule is enable					
bit 10-9	Unimplemer	ted: Read as '	כ'				
bit 8	DCIMD: DCI	Module Disable	e bit				
		ule is disabled ule is enabled					
bit 7	I2C1MD: I ² C	1 Module Disab	le bit				
		dule is disabled dule is enabled					
bit 6		T2 Module Disa	ble bit				
	-	nodule is disabl nodule is enable					
bit 5		T1 Module Disa					
		nodule is disabl					
	0 = UART1 n	nodule is enable	ed				
bit 4	SPI2MD: SP	I2 Module Disal	ole bit				
		dule is disabled					
		dule is enabled					
bit 3		11 Module Disal	ole bit				
		dule is disabled dule is enabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

11.0 I/O PORTS

- This data sheet summarizes the features Note 1: of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in "dsPIC33F/PIC24H the Familv Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pins will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

© 2009-2012 Microchip Technology Inc.

REGISTER	12-1: T1CO	N: TIMER1 C	ONTROL R	EGISTER			
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	—	_	—	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKP	S<1:0>		TSYNC	TCS	_
bit 7							bit 0
							
Legend:						1	
R = Readabl		W = Writable			mented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	TON: Timer1 1 = Starts 16- 0 = Stops 16-	bit Timer1					
bit 14	-	ited: Read as '	0'				
bit 13	-	in Idle Mode bi					
	1 = Discontin		ration when	device enters lo ode	lle mode		
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6	TGATE: Time	er1 Gated Time	Accumulatio	n Enable bit			
	When TCS =						
	This bit is ign						
	<u>When TCS =</u> 1 = Gated times	<u>0:</u> ne accumulatio	n enabled				
		ne accumulatio					
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Presca	ale Select bits			
	11 = 1:256						
	10 = 1:64						
	01 = 1:8 00 = 1:1						
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	TSYNC: Time	er1 External Cl	ock Input Syr	hchronization S	elect bit		
	When TCS =						
		ize external clo					
	0 = Do not sy When TCS =	nchronize exte	ernal clock inp	but			
	This bit is ign						
bit 1	-	Clock Source	Select bit				
		clock from pin		rising edge)			
	0 = Internal c						
bit 0	Unimplemen	ted: Read as '	0'				

14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
—	—	ICSIDL	_	_	—	—	_				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0				
ICTMR ⁽¹⁾	ICI	<1:0>	ICOV	ICBNE		ICM<2:0>					
bit 7							bit (
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15-14	Unimplemer	nted: Read as '	0'								
bit 13	ICSIDL: Inpu	t Capture Mod	ule Stop in Idle	e Control bit							
		ture module wi									
		ture module wi		operate in CPU	I Idle mode						
bit 12-8	-	nted: Read as '									
bit 7	ICTMR: Input Capture Timer Select bits ⁽¹⁾ 1 = TMR2 contents are captured on capture event										
		intents are capt									
oit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits										
	11 = Interrupt on every fourth capture event										
	10 = Interrupt on every third capture event										
	 01 = Interrupt on every second capture event 00 = Interrupt on every capture event 										
bit 4	-			i bit (read-only)							
	ICOV: Input Capture Overflow Status Flag bit (read-only) 1 = Input capture overflow occurred										
	0 = No input capture overflow occurred										
bit 3	•	t Capture Buffe	1,2	. ,	,						
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty 										
h ii 0 0			. ,	_							
bit 2-0		put Capture M			dovice is in SI	oon or Idlo mode	,				
	111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.)										
	110 = Unuse	d (module disa	bled)			,					
		re mode, every									
	•	re mode, every re mode, every		e							
		re mode, every									
	001 = Captur	re mode, every	edge (rising a								
		:0> bits do not		pt generation	for this mode.)						
	000 = input c	capture module	turnea oπ								

18.3 UART Control Registers

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	_	USIDL	IREN ⁽²⁾	RTSMD	—	UEN	<1:0>
bit 15				·			bit 8
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL	_<1:0>	STSEL
bit 7							bit 0
Legend:		HC = Hardwa					
R = Readable b		W = Writable	bit	-	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	1 = UARTx is		ARTx pins are		UARTx as defir port latches; U		
bit 14	Unimplemen	ted: Read as ')'				
bit 13	USIDL: Stop i	n Idle Mode bit					
		ue module ope module operat			dle mode		
bit 12		Encoder and D		e bit ⁽²⁾			
		coder and deco					
bit 11		e Selection for		it			
		in in Simplex m in in Flow Cont					
bit 10	Unimplemen	ted: Read as ')'				
bit 9-8		ARTx Pin Enat					
	10 = UxTX, U 01 = UxTX, U	xRX, UxCTS a xRX and UxRT d UxRX pins a	nd UxRTS pir S pins are en	ns are enabled abled an <u>d use</u>	; UxCTS pin col and used d; UxCTS pin co S and UxRTS/B	ontrolled by po	rt latches
bit 7	WAKE: Wake	-up on Start bit	Detect During	g Sleep Mode	Enable bit		
		are on following	-	RX pin; interru	ipt generated or	n falling edge; l	bit cleared
bit 6		RTx Loopback	Mode Select	hit			
2.1.0		popback mode					
		mode is disat	oled				
bit 5	ABAUD: Auto	-Baud Enable	bit				
	before ot	aud rate meas her data; cleare e measuremen	ed in hardwar	e upon comple	ter - requires re tion	ception of a S	ync field (55h)
Note 1: Refe	er to Section 1			-			

2: This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SID	<10:3>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
	SID<2:0>			MIDE		EID<1	7:16>
bit 7							bit C
Legend:							
R = Readable bit		W = Writable t	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-5	SID<10:0>:	Standard Identif	ier bits				
	1 = Include	bit SIDx in filter c	omparison				
	0 = Bit SIDx	is don't care in fi	ilter comparis	son			
bit 4	Unimpleme	nted: Read as '0)'				
bit 3	MIDE: Iden	tifier Receive Mo	de bit				
	0 = Match e	only message typ either standard or (Filter SID) = (Me	extended a	ddress messag	e if filters match	י. ו	DE bit in filter
bit 2	Unimpleme	nted: Read as 'o)'				
bit 1-0	EID<17:16>	: Extended Ident	ifier bits				
	1 = Include	bit EIDx in filter of	comparison				

REGISTER 19-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EIC)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown		

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

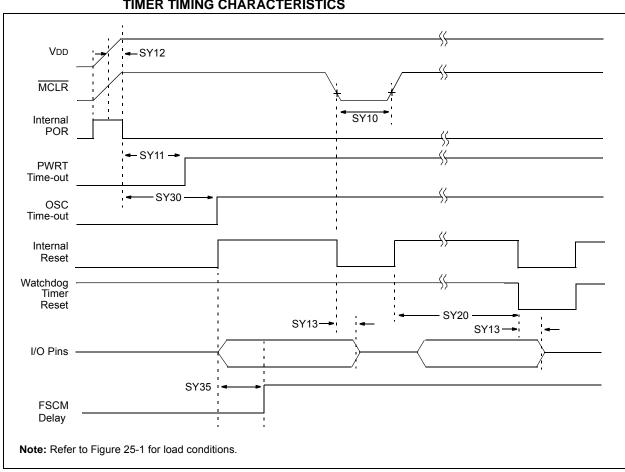
0 = Bit EIDx is don't care in filter comparison

25.1 DC Characteristics

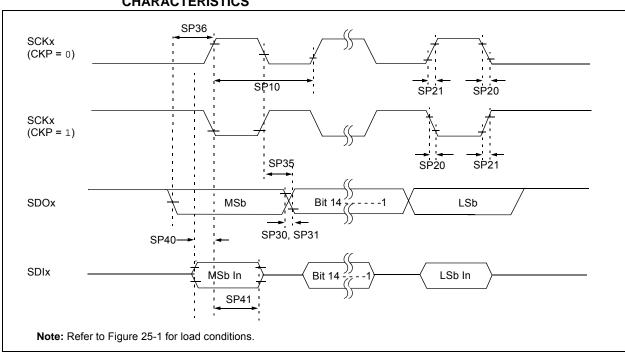
TABLE 25-1:	OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temp Range	Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33FJXXXGPX06A/X08A/X10A		
	VBOR-3.6V ⁽¹⁾	-40°C to +85°C	40		
	VBOR-3.6V ⁽¹⁾	-40°C to +125°C	40		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 25-11 for the minimum and maximum BOR values.


TABLE 25-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
dsPIC33FJXXXGPX06A/X08A/X10A					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+150	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD PINT + PI/O		W		
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	Pdmax	(TJ - TA)/θJ	A	W


TABLE 25-3: THERMAL PACKAGING CHARACTERISTICS

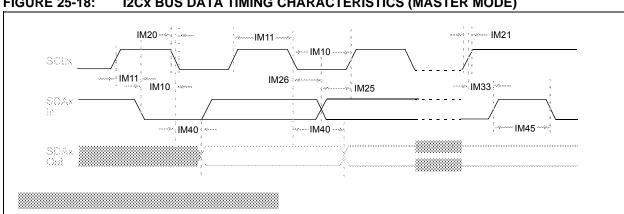
Characteristic		Тур	Max	Unit	Notes
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θja	40	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θја	40	—	°C/W	1
Package Thermal Resistance, 80-pin TQFP (12x12x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θja	28	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

FIGURE 25-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

FIGURE 25-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS

TABLE 25-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS


AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Inc $-40^{\circ}C \le TA \le +125^{\circ}C$ for E					+85°C for Industrial		
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions				
SP10	TscP	Maximum SCK Frequency	—	_	10	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	-	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

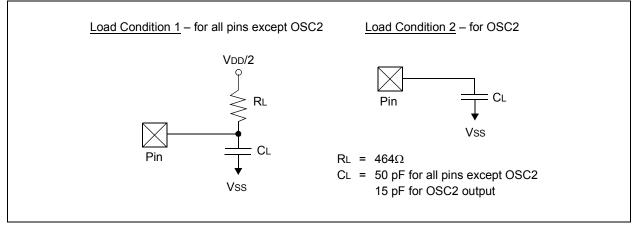
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 25-17: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)))ī SCLx IM34 IM31_ IM30 IM33 1 SDAx)) ((Start Stop Condition Condition Note: Refer to Figure 25-1 for load conditions.

FIGURE 25-18: **I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)**

26.2 AC Characteristics and Timing Parameters

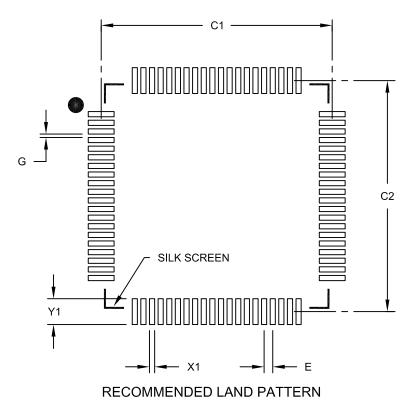

The information contained in this section defines dsPIC33FJXXXGPX06A/X08A/X10A AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in Section 25.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 25.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 26-7: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
	$\begin{array}{llllllllllllllllllllllllllllllllllll$

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS


TABLE 26-8: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICSStandard Operating Conditions: $3.0V$ to $3.6V$ (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic Min Typ Max				Units	Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

Note 1: These parameters are characterized, but are not tested in manufacturing.

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

[Units			-	
	MILLIMETERS				
Dimensi	MIN	NOM	MAX		
Contact Pitch	E		0.50 BSC		
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X80)	X1			0.30	
Contact Pad Length (X80)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B