

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	30K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp710a-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the documents listed below, browse to the documentation section of the dsPIC33FJ256GP710A product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 6. "Interrupts" (DS70184)
- Section 7. "Oscillator" (DS70186)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit[™] (I2C[™])" (DS70195)
- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Section 22. "Direct Memory Access (DMA)" (DS70182)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)

REGISTER 3-1: SR: CPU STATUS REGISTER

bit 8		DC: MCU ALU Half Carry/Borrow bit
		 1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred
		 0 = No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred
bit 7-	5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
		<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4		RA: REPEAT Loop Active bit
		1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3		N: MCU ALU Negative bit
		1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2		OV: MCU ALU Overflow bit
		This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude which causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1		Z: MCU ALU Zero bit
		 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result)
bit 0		C: MCU ALU Carry/Borrow bit
		 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note	1:	This bit may be read or cleared (not set).
	2:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority

- Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06A/X08A/X10A DEVICES WITH 8 KBS RAM

FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06A/X08A/X10A DEVICES WITH 16 KBS RAM

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

7.3 Interrupt Control and Status Registers

dsPIC33FJXXXGPX06A/X08A/X10A devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC17
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a Status bit, which is set by the respective peripherals or external signal and is cleared via software.

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level bits (ILR<3:0>) in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	—	_	_		DMA1IP<2:0>					
bit 15	·			·			bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		AD1IP<2:0>				U1TXIP<2:0>					
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-11	Unimpleme	nted: Read as '	0'								
bit 10-8	DMA1IP<2:	0>: DMA Chann	el 1 Data Tra	insfer Complete	e Interrupt Priori	ty bits					
	111 = Interr	11 = Interrupt is priority 7 (highest priority interrupt)									
	•	•									
	•										
	001 = Interr	upt is priority 1									
	000 = Interr	upt source is dis	abled								
bit 7	Unimpleme	nted: Read as '	0'								
bit 6-4	AD1IP<2:0>	ADC1 Convers	sion Complet	e Interrupt Prio	ority bits						
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	001 = Interr	001 = Interrupt is priority 1									
	000 = Interr	upt source is dis	abled								
bit 3	Unimpleme	nted: Read as '	0'								
bit 2-0	U1TXIP<2:0	>: UART1 Trans	smitter Interru	upt Priority bits							
	111 = Interr	upt is priority 7 (l	highest priori	ty interrupt)							
	•										
	•										
	001 = Interr	upt is priority 1									
	000 = Interr	upt source is dis	abled								

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		U2TXIP<2:0>		—		U2RXIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		INT2IP<2:0>				T5IP<2:0>	
bit 7							bit 0
1]
Legend:							
R = Readable I	oit	W = Writable b	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	Unimplomo	ntod: Pood as 'o	,				
bit 14-12		Neau as 0	mitter Interru	nt Priority bite			
51(14-12	111 = Interru	upt is priority 7 (h	ighest priorit	y interrupt)			
	•		• • •				
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as '0	,				
bit 10-8	U2RXIP<2:0	>: UART2 Recei	ver Interrupt	Priority bits			
	111 = Interru	upt is priority 7 (h	ighest priority	y interrupt)			
	•						
	•						
	001 = Intern 000 = Intern	upt is priority 1 upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '0	3				
bit 6-4	INT2IP<2:0>	: External Interru	upt 2 Priority	bits			
	111 = Interru	upt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1	abled				
bit 3	Unimpleme	nted: Read as '0	,				
bit 2-0	T5IP<2:0>:	Timer5 Interrupt I	Priority bits				
	111 = Interru	upt is priority 7 (h	ighest priorit	y interrupt)			
	•		• • •				
	•						
	- 001 = Interri	upt is priority 1					
	000 = Interru	upt source is disa	abled				

EQUATION 9-3:

XT WITH PLL MODE

= 40 MIPS

EXAMPLE

 $FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 \cdot 32}{2 \cdot 2} \right)$

For example, suppose a 10 MHz crystal is being used, with "XT with PLL" being the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz range needed.

If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

FIGURE 9-2: dsPIC33FJXXXGPX06A/X08A/X10A PLL BLOCK DIAGRAM

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (Sosc)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	—
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	-
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	—
Primary Oscillator (XT)	Primary	01	010	—
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	OC4MD: Output Compare 4 Module Disable bit
	1 = Output Compare 4 module is disabled0 = Output Compare 4 module is enabled
bit 2	OC3MD: Output Compare 3 Module Disable bit
	1 = Output Compare 3 module is disabled0 = Output Compare 3 module is enabled
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled
	0 = Output Compare 1 module is enabled

REGISTER	13-1: TXCO	N (12CON, T	4CON, T6C	UN UR T8CO	N) CONTRO	L REGISTER					
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL	—	—	_	—	—				
bit 15							bit 8				
	DAM 0			D/M/ O							
0-0			R/W-U S<1:0>	T32	0-0		0-0				
bit 7	TOAL	TOR	01.02	152		100	bit 0				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ıd as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15	TON: Timerx	On bit									
	<u>When T32 = :</u> 1 = Storte 22	<u>1:</u> hit Timony/y									
	1 = Starts 32 = 0 = Storts 32 = 0	bit Timerx/y									
	When $T32 = 0$	0:									
	1 = Starts 16-	bit Timerx									
	0 = Stops 16-	bit Timerx									
bit 14	Unimplemen	ted: Read as	'0'								
bit 13	TSIDL: Stop i	in Idle Mode bi	it								
	1 = Discontinue module operation when device enters Idle mode										
	0 = Continue	module opera	tion in Idle mo	ode							
bit 12-7	Unimplemen	ted: Read as	'0'								
bit 6	TGATE: Time	GATE: Timerx Gated Time Accumulation Enable bit									
	$\frac{\text{When TCS} = 1}{\text{This his is accord}}$										
	1 = Gated tim	1 = Gated time accumulation enabled									
	0 = Gated time accumulation disabled										
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Presca	ale Select bits							
	11 = 1:256										
	10 = 1:64										
	01 = 1:8	01 = 1:8									
hit 3	00 = 1.1 T22: 32 bit Ti	mar Mada Sal	oct hit								
DIT 3	1 - Timery ar	d Timery form	cul Dil La single 32-h	nit timer							
	0 = Timerx ar	nd Timery act a	as two 16-bit f	timers							
bit 2	Unimplemen	ted: Read as	ʻ0'								
bit 1	TCS: Timerx	Clock Source	Select bit ⁽¹⁾								
	1 = External o	clock from pin	TxCK (on the	rising edge)							
	0 = Internal c	lock (Fcy)	`								
bit 0	Unimplemen	ted: Read as	'0'								

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

NOTES:

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The dsPIC33FJXXXGPX06A/X08A/X10A devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C Port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and will arbitrate accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I^2C module can operate either as a slave or a master on an I^2C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, please refer to the "*dsPIC33F/PIC24H Family Reference Manual*".

21.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/ X08A/X10A family of devices. However, it is not intended to be a comprereference source. То hensive complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A devices have up to 32 ADC input channels. These devices also have up to 2 ADC modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

21.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device.

A block diagram of the ADC is shown in Figure 21-1.

21.2 ADC Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>).
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>).
 - Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>).
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>).
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>).
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>).
 - g) Turn on ADC module (ADxCON1<15>).
- 2. Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit.
 - b) Select ADC interrupt priority.

21.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

REGISTER 21-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2)

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM	Л<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0

				HC,HS	HC, HS
SSRC<2:0>	—	SIMSAM	ASAM	SAMP	DONE
pit 7					bit 0

Legend:	HC = Cleared by hardware	HS = Set by hardware	C = Clear only bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 14 Unimplemented: Read as '0' bit 13 ADSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide as actter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer set written in Scatter/Gather mode. The module will provide as actter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer bit 11 Unimplemented: Read as '0' bit 12 ADDMASH: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation 0 = 10-bit, 4-channel ADC operation 0 = 10-bit, 4-channel ADC operation 11 = Signed fractional (Dour = scatter scatter date add. ddo0 0000, where s = .NOT.d<9>) 00 = Integer (Dour = scatter scatter date add. dddd. where s = .NOT.d<9>) 0 = Integer (Dour = adda dddd. dddd. 0000, where s = .NOT.d<11>) 10 = Fractional (Dour = adda dddd. dddd. 0000, where s = .NOT.d<11>) 11 = Signed fractional (Dour = scatter date addd. dddd. where s = .NOT.d<11>) 10 = Fractional (Dour = addd. ddddd. 0000) 11 = Signed I	bit 15	ADON: ADC Operating Mode bit 1 = ADC module is operating 0 = ADC is off
bit 13 ADSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel, based on the index of the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer bit 11 Unimplemented: Read as '0' bit 10 AD12B: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 0 = 10-bit, 4-channel ADC operation 0 0 = 10-bit, 4-channel ADC operation 0 11 = Signed fractional (Dout = sddd dddd dd00 0000), where s = .NOT.d<9>) 10 = Fractional (Dout = addd dddd dd00 0000) 0 11 = Signed fractional (Dout = sddd dddd ddd0 0000), where s = .NOT.d<1>) 11 = Signed fractional (Dout = addd dddd dddd 0000) 0 11 = Signed fractional (Dout = addd dddd dddd 0000) 0 11 = Signed fractional (Dout = addd ddddd dddd 0000) 0 1	bit 14	Unimplemented: Read as '0'
1 = Discontinue module operation in Idle mode 0 = Continue module operation in Idle mode bit 12 ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffers to the DMA channel, based on the index of the analog input and the size of the DMA buffer bit 11 Unimplemented: Read as '0' bit 10 AD12B: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation 0 = 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = addd dddd dddd 0000, where s = .NOT.d<9>) 0 = Integer (Dout = 0000 0dd dddd dddd) 11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>) 0 = Fractional (Dout = sddd dddd dddd) 11 = Signed Integer (Dout = sss ssdd dddd dddd, where s = .NOT.d<11>) 0 = Fractional (Dout = sddd dddd dddd) 12 = Signed Integer (Dout = sss sddd dddd dddd, where s = .NOT.d<11>) 0 = Integer (Dout = 0000 dddd dddd dddd) 12 = Signed Integer (Dout = sss sddd dddd dddd, where s = .NOT.d<11>) 0 = Integer (Dout = 0000 dddd dddd dddd)	bit 13	ADSIDL: Stop in Idle Mode bit
bit 12 ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer bit 11 Unimplemented: Read as '0' bit 10 AD12E: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation bit 9-8 FORM<1:0>: Data Output Format bits For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = dddd dddd ddd0 0000) 01 = Signed Integer (Dout = ssss ssdd dddd dddd) 0 = Integer (Dout = 0000 00dd dddd dddd 0000, where s = .NOT.d<1>) 0 = Integer (Dout = sddd dddd dddd 0000) 0 = Integer (Dout = addd dddd dddd 0000) 01 = Signed Integer (Dout = sss sddd dddd dddd) 0 = Integer (Dout = sss ssdd dddd dddd) 000 0 = Integer (Dout = sompling and starts conversion (auto-convert) 11 = Signed Integer (Dout = sss sadd dddd dddd) 000 0 = Reserved 10 = Reserved 10 = Reserved 101 = Reserved 10 = Reserved 101 = Reserved		1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer bit 11 Unimplemented: Read as '0' bit 10 AD12B: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation 0 = 10-bit, 4-channel ADC operation 0 = 10-bit, 4-channel ADC operation 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 0 = Integer (Dout = 0000 00dd dddd dddd 0000, where s = .NOT.d<9>) 0 = Integer (Dout = oddd dddd dddd 0000, where s = .NOT.d<9>) 0 = Integer (Dout = addd dddd dddd 0000, where s = .NOT.d<1>>) 10 = Fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<1>) 10 = Fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<1>>) 00 = Integer (Dout = sss sdd dddd dddd 0000) 11 = Signed fractional (Dout = sss sddd dddd dddd, where s = .NOT.d<1>>) 00 = Integer (Dout = sss sdd dddd dddd, where s = .NOT.d<1>) 10 = Fractional (Dout = sdsd dddd dddd dddd, where s = .NOT.d<1>>) 00 = Integer (Dout = sss sdd ddd dddd, where s = .NOT.d<1>) 10 = Reserved 11 = Internal counter ends sampling and starts conversion	bit 12	ADDMABM: DMA Buffer Build Mode bit
bit 11Unimplemented: Read as '0'bit 10AD12B: 10-Bit or 12-Bit Operation Mode bit1 = 12-bit, 1-channel ADC operation0 = 10-bit, 4-channel ADC operationbit 9-8FORM<1:0>: Data Output Format bitsFor 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = dddd dddd dddd) 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd 0000, where s = .NOT.d<9>) 00 = Integer (Dout = sss sdd dddd dddd 0000, where s = .NOT.d<1>) 10 = Fractional (Dout = sddd dddd dddd 0000) 		 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 10 AD12B: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation bit 9-8 FORM<1:0>: Data Output Format bits For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = sddd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd) For 12-bit operation: 11 = Signed fractional (Dout = sddd dddd dddd, where s = .NOT.d<1>>) 00 = Integer (Dout = 0000 00dd dddd dddd, where s = .NOT.d<1>>) 10 = Fractional (Dout = sddd dddd dddd 0000) 01 = Signed fractional (Dout = sddd dddd dddd) 00 = Integer (Dout = 0000 dddd dddd dddd) 00 = Integer (Dout = 0000 dddd dddd dddd) 00 = Integer (Dout = 0000 ddd dddd dddd) 00 = Integer (Dout = 0000 ddd dddd dddd) 11 = Signed Integer (Dout = ess sddd dddd dddd) 10 = Reserved 101 = GP timer (Timer3 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts	bit 11	Unimplemented: Read as '0'
1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation bit 9-8 FORM-1:0>: Data Output Format bits For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = addd dddd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd) For 12-bit operation: 11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<9>) 00 = Integer (Dout = addd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (Dout = sddd dddd dddd 0000) 01 = Signed fractional (Dout = sddd dddd dddd, where s = .NOT.d<11>) 10 = Fractional (Dout = addd dddd dddd, where s = .NOT.d<11>) 10 = Fractional (Dout = addd dddd dddd) 00 = Integer (Dout = asss sddd dddd dddd, where s = .NOT.d<11>) 01 = Signed Integer (Dout = asss sddd dddd, where s = .NOT.d<11>) 01 = Reserved 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = GP timer (Timer3 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion </td <td>bit 10</td> <td>AD12B: 10-Bit or 12-Bit Operation Mode bit</td>	bit 10	AD12B: 10-Bit or 12-Bit Operation Mode bit
bit 9-8 FORM<1:0>: Data Output Format bits For 10-bit operation: 11 = Signed fractional (DoUT = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (DoUT = sddd dddd dd00 0000) 01 = Signed integer (DoUT = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (DoUT = 0000 00dd dddd dddd 0000, where s = .NOT.d<9>) 00 = Integer (DoUT = sddd dddd dddd 0000, where s = .NOT.d<1>>) 11 = Signed fractional (DOUT = sddd dddd dddd 0000, where s = .NOT.d<1>>) 10 = Fractional (DOUT = sddd dddd dddd 0000) 01 = Fractional (DOUT = sddd dddd dddd 0000) 01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>) 10 = Fractional (DOUT = sddd dddd dddd 0000) 01 = Signed Integer (DOUT = ssss sddd dddd dddd) 00 = Integer (DOUT = 0000 dddd dddd dddd) 00 = Integer (DOUT = 0000 dddd dddd dddd) bit 7-5 SSRC<2:0>: Sample Clock Source Select bits 11 = Internal counter ends sampling and starts conversion (auto-convert) 10 = Reserved 101 = Reserved 102 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 011 = Reserved 012 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 013 = Clearing sample bit ends sampling		1 = 12-bit, 1-channel ADC operation
bit 9-8 FORM<1:D>: Data Output Format bits For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = dddd dddd ddd0 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd 0000, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd) For 12-bit operation: 11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (Dout = dddd dddd dddd 0000) 01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 10 = Fractional (Dout = o000 dddd dddd dddd) 000) 01 = Signed Integer (Dout = ssss sddd dddd dddd) 00 = Integer (Dout = 0000 dddd dddd dddd) 00 = Integer (Dout = 0000 dddd dddd dddd) 00 = Integer (Dout = 0000 dddd dddd dddd) 00 = Integer (Dout = o000 dddd dddd dddd) 00 = Integer (Dout = o000 dddd dddd dddd) 01 = Reserved 101 = Reserved 102 = Reserved 103 = Reserved 104 = Reserved 105 = GP timer (Timer3 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Active transition on INT0 pin ends sampling and starts conversion 001 = Clearing sample bit ends sampling and starts conversion 000 = Clea		0 = 10-bit, 4-channel ADC operation
For 10-bit operation: 11 = Signed fractional (DouT = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (DouT = dddd dddd dd00 0000) 01 = Signed integer (DouT = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (DouT = 0000 00dd dddd dddd) For 12-bit operation: 11 = Signed fractional (DouT = sddd dddd dddd 0000, where s = .NOT.d<1>) 00 = Fractional (DouT = sddd dddd dddd 0000) 01 = Fractional (DouT = sddd dddd dddd 0000) 01 = Signed Integer (DouT = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 00 = Integer (DouT = 0000 dddd dddd dddd) 01 = Reserved 101 = Reserved 101 = Reserved 101 = Reserved 102 = GP timer (Timer3 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 011 = Active transition on INT0 pin ends sampling and start	bit 9-8	FORM<1:0>: Data Output Format bits
For 12-bit operation: 11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (Dout = dddd dddd dddd 0000) 01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd) bit 7-5 SSRC<2:0>: Sample Clock Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Reserved 100 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = Clearing sample bit ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion bit 4 Unimplemented: Read as '0'		<u>For 10-bit operation:</u> 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd)
11 = Signed fractional (DouT = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (DouT = dddd dddd dddd 0000) 01 = Signed Integer (DouT = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (DouT = 0000 dddd dddd dddd) bit 7-5 SSRC<2:0>: Sample Clock Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = Clearing sample bit ends sampling and starts conversion 011 = Reserved 012 = Active transition on INT0 pin ends sampling and starts conversion 013 = Clearing sample bit ends sampling and starts conversion 014 = Unimplemented: Read as '0'		For 12-bit operation:
10 = Flactional (DOUT = addd dddd dddd 0000) 01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (DOUT = 0000 dddd dddd dddd) bit 7-5 SSRC<2:0>: Sample Clock Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = Clearing sample bit ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion bit 4 Unimplemented: Read as '0'		11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)
bit 7-5SSRC<2:0>: Sample Clock Source Select bits111 = Internal counter ends sampling and starts conversion (auto-convert)110 = Reserved101 = Reserved100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion011 = Reserved010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion011 = Reserved010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion010 = Clearing sample bit ends sampling and starts conversion000 = Clearing sample bit ends sampling and starts conversionbit 4		01 = Signed Integer (Dout = adda dada dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd)
 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion bit 4 	bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
100 = GP timer (Timers for ADC1, Timers for ADC2) compare ends sampling and starts conversion011 = Reserved010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion001 = Active transition on INT0 pin ends sampling and starts conversion000 = Clearing sample bit ends sampling and starts conversionbit 4Unimplemented: Read as '0'		<pre>111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 102 = CD times (Times ADC1 Times 2 for ADC2) compare and complian and starts conversion</pre>
010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion001 = Active transition on INT0 pin ends sampling and starts conversion000 = Clearing sample bit ends sampling and starts conversionbit 4Unimplemented: Read as '0'		011 = Reserved
bit 4 Unimplemented: Read as '0'		 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion
	bit 4	Unimplemented: Read as '0'

25.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33FJXXXGPX06A/X08A/X10A AC characteristics and timing parameters.

TABLE 25-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
	-40°C \leq TA \leq +125°C for Extended
	Operating voltage VDD range as described in Table 25-1.

FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 25-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In l ² C™ mode

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	_	μS	_
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μS	—
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	_
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	100	_	ns	
IS26	THD:DAT	Data Input	100 kHz mode	0	_	μS	_
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	—	μs	Start condition
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first
		Hold lime	400 kHz mode	0.6	—	μS	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μS	
		Setup Time	400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.6	—	μS	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	—
		Hold lime	400 kHz mode	600	—	ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40 TAA	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	<u> </u>	μS	perore a new transmission
			1 MHz mode ⁽¹⁾	0.5		μS	Can Start
IS50	Св	Bus Capacitive Lo	bading	—	400	pF	—

TABLE 25-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

NOTES:

26.1 High Temperature DC Characteristics

TABLE 26-1: OPERATING MIPS VS. VOLTAGE

Charactoristic	VDD Range	Temperature Range	Max MIPS
Characteristic	(in Volts)	(in °C)	dsPIC33FJXXXGPX06A/X08A/X10A
HDC5	VBOR to 3.6V ⁽¹⁾	-40°C to +150°C	20

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 25-11 for the minimum and maximum BOR values.

TABLE 26-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit		
High Temperature Devices							
Operating Junction Temperature Range	TJ	-40	—	+155	°C		
Operating Ambient Temperature Range	TA	-40	—	+150	°C		
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma ({VDD - VOH} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O			W		
Maximum Allowed Power Dissipation	PDMAX	(TJ - TA)/θJ	A	W		

TABLE 26-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No. Symbol Characteristic		Min	Тур	Мах	Units	Conditions	
Operating V	Voltage						
HDC10	Supply Voltage						
	Vdd		3.0	3.3	3.6	V	-40°C to +150°C

TABLE 26-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARA	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Parameter No.	Typical	Мах	Units	Conditions					
Power-Down Current (IPD)									
HDC60e	250	2000	μA	+150°C 3.3V Base Power-Down Current ^(1,3)					
Note 1. Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and									

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

IPC7 (Interrupt Priority Control 7)121
IPC8 (Interrupt Priority Control 8) 122
IPC9 (Interrupt Priority Control 9) 123
NVMCOM (Flash Memory Control)79, 80
OCxCON (Output Compare x Control) 179
OSCCON (Oscillator Control) 148
OSCTUN (FRC Oscillator Tuning)152
PLLFBD (PLL Feedback Divisor)151
PMD1 (Peripheral Module Disable Control
Register 1) 157
PMD1 (Peripheral Module Disable
Control Register 1)157
PMD2 (Peripheral Module Disable Control
Register 2) 159
PMD3 (Peripheral Module Disable Control
Register 3) 161
PMD3 (Peripheral Module Disable
Control Register 3)161
RCON (Reset Control)84
RSCON (DCI Receive Slot Control)235
SPIxCON1 (SPIx Control 1)184
SPIxCON2 (SPIx Control 2)186
SPIxSTAT (SPIx Status and Control) 183
SR (CPU Status)94
T1CON (Timer1 Control)168
TSCON (DCI Transmit Slot Control)
TxCON (T2CON, T4CON, T6CON or
T8CON Control)172
TyCON (T3CON, T5CON, T7CON or
T9CON Control)173
UxMODE (UARTx Mode)197
UxSTA (UARTx Status and Control)199
Reset
Clock Source Selection
Special Function Register Reset States
Times
Reset Sequence
Resets
S
Sarial Parinharal Interface (SDI)
Serial Felipheral Interface (SFI)
Software Stack Pointer Frame Pointer
CALLE Stack Frame 67
Special Features of the CDU 251
SPI Module
CDI1 Decision Man 54

SPI1 Register Map	54
SPI2 Register Map	
Symbols Used in Opcode Descriptions	
System Control	
Register Map	

т

Temperature and Voltage Specifications	
AC	25
Timer116	67
Timer2/3, Timer4/5, Timer6/7 and Timer8/9	39
Timing Characteristics	
CLKO and I/O28	35
Timing Diagrams	
10-bit A/D Conversion (CHPS<1:0> = 01, SIMSAM = 0),
ASAM = 0, SSRC<2:0> = 000)	7
10-bit A/D Conversion (CHPS<1:0> = 01, SIMSAM = 0),
ASAM = 1, SSRC<2:0> = 111,	
SAMC<4:0> = 00001)31	9

12-bit A/D Conversion (ASAM = 0, SSRC = 000)	315
CAN I/O	311
DCI AC-Link Mode	310
DCI Multi -Channel, I ² S Modes	308
External Clock	283
I2Cx Bus Data (Master Mode)	304
I2Cx Bus Data (Slave Mode)	306
I2Cx Bus Start/Stop Bits (Master Mode)	304
I2Cx Bus Start/Stop Bits (Slave Mode)	306
Input Capture (CAPx)	290
OC/PWM	291
Output Compare (OCx)	290
Reset, Watchdog Timer, Oscillator Start-up Timer	
and Power-up Timer	286
Timer1 2 3 4 5 6 7 8 9 External Clock	288
Timing Requirements	
ADC Conversion (10-bit mode)	329
ADC Conversion (12-bit Mode)	329
CLKO and I/O	285
DCLAC-Link Mode 310	312
DCI Multi-Channel I^2 S Modes 309	312
External Clock	283
Input Capture	290
SPIx Master Mode (CKF = 0)	326
SPIx Module Master Mode (CKF = 1)	326
SPIx Module Slave Mode (CKE = 0)	327
SPlx Module Slave Mode (CKE = 1)	327
Timing Specifications	021
10-bit A/D Conversion Requirements	319
12-bit A/D Conversion Requirements	316
CAN I/O Requirements	311
I2Cx Bus Data Requirements (Master Mode)	305
I2Cx Bus Data Requirements (Slave Mode)	307
Output Compare Requirements	290
PLL Clock 284	325
Reset Watchdog Timer Oscillator Start-up Timer	525
Power-up Timer and Brown-out	
Reset Requirements	287
Simple OC/PWM Mode Poquiromente	201
Timer1 External Clock Requirements	281
Timer 2 Timer 4 Timer 6 and Timer 8 External	200
Clock Requirements	280
Timer3 Timer5 Timer7 and Timer0 External	209
Clock Requirements	280
	209
11	

U

UART Module	
UART1 Register Map	54
UART2 Register Map	54

۷

Voltage Regulator (On-Chip)	6
-----------------------------	---

w

Watchdog Timer (WDT)	251, 257
Programming Considerations	257
WWW Address	357
WWW, On-Line Support	16