

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	30K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp710a-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

dsPI	C33F Product Families	2
1.0	Device Overview	19
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	23
3.0	CPU	27
4.0	Memory Organization	39
5.0	Flash Program Memory	
6.0	Reset	83
7.0	Interrupt Controller	89
8.0	Direct Memory Access (DMA)	135
9.0	Oscillator Configuration	145
10.0	Power-Saving Features	155
11.0	I/O Ports	163
12.0	Timer1	167
13.0	Timer2/3, Timer4/5, Timer6/7 and Timer8/9	169
14.0	Input Capture	175
15.0	Output Compare	177
16.0	Serial Peripheral Interface (SPI)	181
17.0	Inter-Integrated Circuit™ (I ² C™)	187
18.0	Universal Asynchronous Receiver Transmitter (UART)	195
19.0	Enhanced CAN (ECAN™) Module	201
20.0	Data Converter Interface (DCI) Module	229
21.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	237
22.0	Special Features	251
23.0	Instruction Set Summary	259
24.0	Development Support	267
25.0	Electrical Characteristics	271
26.0	High Temperature Electrical Characteristics	321
27.0	DC and AC Device Characteristics Graphs	331
28.0	Packaging Information	335
Appe	ndix A: Migrating from dsPIC33FJXXXGPX06/X08/X10 Devices to dsPIC33FJXXXGPX06A/X08A/X10A Devices	347
Appe	ndix B: Revision History	348
Index	(353
The I	Vicrochip Web Site	357
Custo	omer Change Notification Service	357
Custo	omer Support	357
Read	ler Response	358
Prod	uct Identification System	359

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section
 2. "CPU" (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJXXXGPX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The dsPIC33FJXXXGPX06A/X08A/X10A instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJXXXGPX06A/X08A/X10A is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1. The programmer's model for the dsPIC33FJXXXGPX06A/ X08A/X10A is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own indepen-

dent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space. The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value, up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.3 Special MCU Features

The dsPIC33FJXXXGPX06A/X08A/X10A features a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJXXXGPX06A/X08A/X10A supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit, left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E			•					See defini	tion when V	VIN = x	•			•	•		
C1BUFPNT1	0420		F3BF	><3:0>			F2BF	P<3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BF	><3:0>			F6BF	><3:0>		F5BP<3:0>				F4BP	<3:0>		0000	
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>		F9BP<3:0>				F8BP	<3:0>		0000	
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13B	P<3:0>			F12BF	P<3:0>		0000
C1RXM0SID	0430				SID	<10:3>					SID<2:0>		—	MIDE	_	EID<'	17:16>	xxxx
C1RXM0EID	0432				EID	<15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID	<10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM1EID	0436				EID	<15:8>							EID<	7:0>		•		xxxx
C1RXM2SID	0438				SID	<10:3>				SID<2:0> —			MIDE	_	EID<	17:16>	xxxx	
C1RXM2EID	043A				EID	<15:8>					EID<			7:0>				xxxx
C1RXF0SID	0440				SID	<10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx
C1RXF0EID	0442		EID<15:8>								EID<	7:0>				xxxx		
C1RXF1SID	0444		SID<10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx			
C1RXF1EID	0446		EID<15:8>								EID<	7:0>				xxxx		
C1RXF2SID	0448		SID<10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx			
C1RXF2EID	044A				EID	<15:8>				EID<7:0>					xxxx			
C1RXF3SID	044C				SID	<10:3>				SID<2:0> —			EXIDE	—	EID<'	17:16>	xxxx	
C1RXF3EID	044E				EID	<15:8>				EID<7:0>					xxxx			
C1RXF4SID	0450				SID	<10:3>				SID<2:0> — EXIDE — EID<1			17:16>	xxxx				
C1RXF4EID	0452				EID∙	<15:8>				EID<7:0>					xxxx			
C1RXF5SID	0454				SID	<10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF5EID	0456				EID	<15:8>							EID<	7:0>		_		xxxx
C1RXF6SID	0458				SID	<10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID	<15:8>							EID<	7:0>	-			xxxx
C1RXF7SID	045C				SID	<10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID	<15:8>							EID<	7:0>		_		xxxx
C1RXF8SID	0460				SID	<10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF8EID	0462				EID	<15:8>							EID<	7:0>				xxxx
C1RXF9SID	0464				SID	<10:3>					SID<2:0>		-	EXIDE	—	EID<	17:16>	xxxx
C1RXF9EID	0466				EID	<15:8>							EID<	7:0>				xxxx
C1RXF10SID	0468				SID	<10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF10EID	046A				EID	<15:8>							EID<	7:0>				xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Vector	Interrupt Request (IRQ)	IVT Address	AIVT Address	Interrupt Source	
Number	Number				
54	46	0x000070	0x000170	DMA4 – DMA Channel 4	
55	47	0x000072	0x000172	T6 – Timer6	
56	48	0x000074	0x000174	T7 – Timer7	
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events	
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events	
59	51	0x00007A	0x00017A	T8 – Timer8	
60	52	0x00007C	0x00017C	T9 – Timer9	
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3	
62	54	0x000080	0x000180	INT4 – External Interrupt 4	
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready	
64	56	0x000084	0x000184	C2 – ECAN2 Event	
65	57	0x000086	0x000186	Reserved	
66	58	0x000088	0x000188	Reserved	
67	59	0x00008A	0x00018A	DCIE – DCI Error	
68	60	0x00008C	0x00018C	DCID – DCI Transfer Done	
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5	
70	62	0x000090	0x000190	Reserved	
71	63	0x000092	0x000192	Reserved	
72	64	0x000094	0x000194	Reserved	
73	65	0x000096	0x000196	U1E – UART1 Error	
74	66	0x000098	0x000198	U2E – UART2 Error	
75	67	0x00009A	0x00019A	Reserved	
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6	
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7	
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request	
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request	
80-125	72-117	0x0000A4-0x0000FE	0x0001A4-0x0001FE	Reserved	

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

REGISTER	7-6: IFS1: I	INTERRUPT	FLAG STAT	US REGISTE	ER 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21IF
bit 15						·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IF	IC7IF	AD2IF	INT1IF	CNIF	—	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	U2TXIF: UAF 1 = Interrupt 1 0 = Interrupt 1	RT2 Transmitte request has oc request has no	r Interrupt Flag curred t occurred	g Status bit			
DIL 14	1 = Interrupt	request has oc request has no	curred t occurred				
bit 13	INT2IF: Exter	mal Interrupt 2	Flag Status bi	it			
	1 = Interrupt I 0 = Interrupt I	request has oc request has no	curred t occurred				
bit 12	T5IF: Timer5	Interrupt Flag	Status bit				
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 11	T4IF: Timer4	Interrupt Flag	Status bit				
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 10	OC4IF: Output 1 = Interrupt I 0 = Interrupt I	ut Compare Ch request has oc request has no	annel 4 Interr curred t occurred	upt Flag Status	s bit		
bit 9	OC3IF: Outpu	ut Compare Ch	annel 3 Interr	upt Flag Status	bit		
	1 = Interrupt	request has oc request has no	curred t occurred	1 0			
bit 8	DMA21IF: DM	MA Channel 2	Data Transfer	Complete Inter	rrupt Flag Stat	us bit	
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 7	IC8IF: Input C	Capture Chann	el 8 Interrupt l	Flag Status bit			
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 6	IC7IF: Input C	Capture Chann	el 7 Interrupt l	Flag Status bit			
	1 = Interrupt	request has oc request has no	curred t occurred				
bit 5	AD2IF: ADC2	2 Conversion C	complete Inter	rupt Flag Statu	s bit		
	1 = Interrupt	request has oc	curred				
1.11.4	0 = Interrupt	request has no	t occurred	•			
dit 4	INITIF: Exter	nai interrupt 1	Fiag Status bi	IT			
	1 = 1 interrupt 0 = Interrupt i	request has oc request has no	t occurred				

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3												
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0					
_	—	DMA5IE	DCIIE	DCIEIE	—	_	C2IE					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
C2RXIE			T9IF	TRIE	MI2C2IE	SI2C2IE	T7IF					
bit 7		INTOIL	TUL	TOLE	WIZOZIE	OIZOZIL	bit C					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkn	iown					
bit 15-14	Unimpleme	nted: Read as '	0'									
bit 13	DMA5IE: DN	IA Channel 5 D	ata Transfer (Complete Inter	rupt Enable bit							
	1 = Interrupt	request enable	d									
hit 12			Enablo bit									
	1 = Interrupt	request enable										
	0 = Interrupt	request not en	abled									
bit 11	DCIEIE: DCI	Error Interrupt	Enable bit									
	1 = Interrupt	request enable	d									
	0 = Interrupt	request not en	abled									
bit 10-9	Unimpleme	nted: Read as '	0'									
oit 8	C2IE: ECAN	C2IE: ECAN2 Event Interrupt Enable bit										
	1 = Interrupt 0 = Interrupt	request enable request not ena	d abled									
bit 7	C2RXIE: EC	AN2 Receive D	ata Ready Inf	errupt Enable	bit							
	1 = Interrupt	request enable	d abled	·								
bit 6	INTAIE: Exte	requeet not en	Enable hit									
bit o	1 = Interrupt	request enable	d									
hit 5	0 = Interrupt	request not ena	ableo Enable bit									
	1 = Interrupt	request enable	d									
	0 = Interrupt	request not en	abled									
bit 4	T9IE: Timer9	Interrupt Enab	le bit									
	1 = Interrupt	request enable	d abled									
hit 3	TRIF: Timer8	Interrunt Enab	le hit									
bit 5	1 = Interrupt	request enable	d									
	0 = Interrupt	request not en	abled									
bit 2	MI2C2IE: 120	C2 Master Ever	nts Interrupt E	nable bit								
	1 = Interrupt 0 = Interrupt	request enable request not ena	d abled									
bit 1	SI2C2IE: 120	2 Slave Events	s Interrupt Ena	able bit								
	1 = Interrupt	request enable	d									
	0 = Interrupt	request not ena	abled									
bit 0	T7IE: Timer7	Interrupt Enab	le bit									
	1 = Interrupt 0 = Interrupt	request enable request not enable	d abled									

REGISTER 7	-30: IPC15:	INTERRUPT	PRIORITY	CONTROL	REGISTER 15		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		_	—	_	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		DMA5IP<2:0>				DCIIP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplement	ted: Read as '	כ'				
bit 6-4	DMA5IP<2:0>	>: DMA Chann	el 5 Data Trar	nsfer Complete	e Interrupt Priori	ty bits	
	111 = Interrup	ot is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interrur	ot is priority 1					
	000 = Interrup	ot source is dis	abled				
bit 3	Unimplement	ted: Read as '	כ'				
bit 2-0	DCIIP<2:0>: [DCI Event Inter	rrupt Priority b	oits			
	111 = Interrup	ot is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

REGISTER 7	-33: INTTR	EG: INTERRU	JPT CONT	ROL AND ST	ATUS REGIS	TER						
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0					
	_	—			ILR<	<3:0>						
bit 15		•					bit 8					
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
				VECNUM<6:0	>							
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, read	l as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	iown					
bit 15-12	Unimplemer	ted: Read as '0	3									
bit 11-8	ILR<3:0>: No	ew CPU Interrup	t Priority Lev	vel bits								
	1111 = CPU	Interrupt Priority	/ Level is 15									
	•											
	•											
	0001 = CPU	Interrupt Priority	/ Level is 1									
	0000 = CPU	Interrupt Priority	Level is 0									
bit 7	Unimplemer	ted: Read as '0	,									
bit 6-0	VECNUM<6:	0>: Vector Numl	ber of Pendi	ing Interrupt bits								
	0111111 = Interrupt Vector pending is number 135											
	•		C C									
	•											
	•	nterrunt Vector n	ondina is nu	umber 0								
	0000001 = 1	menupi vector p	renaing is ht									

0000000 = Interrupt Vector pending is number 8

REGISTER 8-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAC)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	CNT<9:8> ⁽²⁾	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> (2)			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/ X08A/X10A family of devices. However, not intended to it is be а comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A oscillator system provides:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection

A simplified diagram of the oscillator system is shown in Figure 9-1.

Note 1: See Figure 9-2 for PLL details.

- 2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 M Ω must be connected.
- **3:** The term, FP refers to the clock source for all the peripherals, while Fcy refers to the clock source for the CPU. Throughout this document FP and Fcy are used interchangeably, except in the case of Doze mode. FP and Fcy will be different when Doze mode is used in any ratio other than 1:1, which is the default.

REGISTE	REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1								
U-0		U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾	
bit 15								bit 8	
R/W-0) I	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SSEN	(3)	CKP	MSTEN		SPRE<2:0>	.(2)	PPRE	<1:0> ⁽²⁾	
bit 7								bit 0	
Legend:									
R = Read	able bit		W = Writable	bit	U = Unimple	emented bit, read	d as '0'		
-n = Value	e at POR		'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown	
bit 15-13	Uni	mplemen	ted: Read as '	0'					
bit 12	DIS	SCK: Disa	able SCKx pin	bit (SPI Maste	er modes only	')			
	1 =	Internal S	PI clock is disa	bled, pin func	tions as I/O				
bit 11	- 0 פוס		PI CIUCK IS EIIA	bit					
	1 =	SDOx nin	is not used by	module: nin f	unctions as I/	0			
	0 =	0 = SDOx pin is controlled by the module							
bit 10	МО	DE16: Wo	ord/Byte Comm	unication Sele	ect bit				
	1 = 0 =	Communi Communi	cation is word- cation is byte-v	wide (16 bits) vide (8 bits)					
bit 9	SM	P: SPIx Da	ata Input Samp	le Phase bit					
	Mas	ster mode:							
	1 =	Input data	sampled at er	nd of data out iddle of data o	out time				
	0 = Slav	/e mode:	i sampieu al m		alput time				
	SM	P must be	cleared when	SPIx is used i	in Slave mode	э.			
bit 8	CKI	E: SPIx CI	ock Edge Sele	ct bit ⁽¹⁾					
	1 = 0 =	Serial out	put data chang put data chang	es on transitions on transition	on from active	e clock state to lo	lle clock state (see bit 6) see bit 6)	
bit 7	SSE	EN: Slave	Select Enable	bit (Slave mo	de) ⁽³⁾				
	1 =	SSx pin u	sed for Slave r	node					
	0 =	0 = SSx pin not used by module. Pin controlled by port function							
bit 6	CKI	P: Clock P	olarity Select b	pit					
	1 = 0 =	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level 							
bit 5	MS	TEN: Mas	ter Mode Enab	le bit					
	1 = 0 =	Master mo Slave mo	ode de						
Note 1:	The CKE SPI mod	E bit is not es (FRME	used in the Fraction $N = 1$).	amed SPI mo	des. The user	should program	n this bit to '0' fo	or the Framed	

- 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

1 = Frame sync pulse is active-high0 = Frame sync pulse is active-low

FRMDLY: Frame Sync Pulse Edge Select bit 1 = Frame sync pulse coincides with first bit clock 0 = Frame sync pulse precedes first bit clock

This bit must not be set to '1' by the user application.

Unimplemented: Read as '0'

Unimplemented: Read as '0'

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2								
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
	—	—	—	—	_	FRMDLY	_	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown	
bit 15	FRMEN: Fran 1 = Framed S 0 = Framed S	ned SPIx Supp PIx support en PIx support dis	ort bit abled (SSx pi sabled	n used as fram	ne sync pulse in	put/output)		
DIT 14	SPIFSD: Frame Sync Pulse Direction Control bit Frame sync pulse input (slave) Frame sync pulse output (master) EPMPOL: Frame Sync Pulse Polarity bit							

DS70593D-page 186

bit 12-2

bit 1

bit 0

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master) 1 = Enables Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence 0 = Repeated Start condition not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

FIGURE 19-1: ECAN™ MODULE BLOCK DIAGRAM

20.0 DATA CONVERTER INTERFACE (DCI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Data Converter Interface (DCI)" (DS70288) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

20.1 Module Introduction

The dsPIC33FJXXXGPX06A/X08A/X10A Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), ADC and D/A converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- · AC-Link Compliant mode

The DCI module provides the following general features:

- · Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

20.2 Module I/O Pins

There are four I/O pins associated with the module. When enabled, the module controls the data direction of each of the four pins.

20.2.1 CSCK PIN

The CSCK pin provides the serial clock for the DCI module. The CSCK pin may be configured as an input or output using the CSCKD control bit in the DCICON1 SFR. When configured as an output, the serial clock is provided by the dsPIC33FJXXXGPX06A/X08A/X10A. When configured as an input, the serial clock must be provided by an external device.

20.2.2 CSDO PIN

The Serial Data Output (CSDO) pin is configured as an output only pin when the module is enabled. The CSDO pin drives the serial bus whenever data is to be

transmitted. The CSDO pin is tri-stated, or driven to '0', during CSCK periods when data is not transmitted depending on the state of the CSDOM control bit. This allows other devices to place data on the serial bus during transmission periods not used by the DCI module.

20.2.3 CSDI PIN

The Serial Data Input (CSDI) pin is configured as an input only pin when the module is enabled.

20.2.3.1 COFS Pin

The Codec Frame Synchronization (COFS) pin is used to synchronize data transfers that occur on the CSDO and CSDI pins. The COFS pin may be configured as an input or an output. The data direction for the COFS pin is determined by the COFSD control bit in the DCICON1 register.

The DCI module accesses the shadow registers while the CPU is in the process of accessing the memory mapped buffer registers.

20.2.4 BUFFER DATA ALIGNMENT

Data values are always stored left justified in the buffers since most Codec data is represented as a signed 2's complement fractional number. If the received word length is less than 16 bits, the unused Least Significant bits in the Receive Buffer registers are set to '0' by the module. If the transmitted word length is less than 16 bits, the unused LSbs in the Transmit Buffer register are ignored by the module. The word length setup is described in subsequent sections of this document.

20.2.5 TRANSMIT/RECEIVE SHIFT REGISTER

The DCI module has a 16-bit shift register for shifting serial data in and out of the module. Data is shifted in/ out of the shift register, MSb first, since audio PCM data is transmitted in signed 2's complement format.

20.2.6 DCI BUFFER CONTROL

The DCI module contains a buffer control unit for transferring data between the shadow buffer memory and the Serial Shift register. The buffer control unit is a simple 2-bit address counter that points to word locations in the shadow buffer memory. For the receive memory space (high address portion of DCI buffer memory), the address counter is concatenated with a '0' in the MSb location to form a 3-bit address. For the transmit memory space (high portion of DCI buffer memory), the address counter is concatenated with a '1' in the MSb location.

Note: The DCI buffer control unit always accesses the same relative location in the transmit and receive buffers, so only one address counter is provided.

© 2009-2012 Microchip Technology Inc.

21.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning.
 - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

21.5 ADC Resources

Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en546064

21.5.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 21-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH^(1,2,3,4)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG31 | PCFG30 | PCFG29 | PCFG28 | PCFG27 | PCFG26 | PCFG25 | PCFG24 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG23 | PCFG22 | PCFG21 | PCFG20 | PCFG19 | PCFG18 | PCFG17 | PCFG16 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0

0 **PCFG<31:16>:** ADC Port Configuration Control bits

- 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss
- 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
- **Note 1:** On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 port Configuration register exists.
 - **3:** PCFGx = ANx, where x = 16 through 31.
 - **4:** PCFGx bits have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode.

REGISTER 21-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW^(1,2,3,4)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

PCFG<15:0>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss

0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

- **Note 1:** On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - **2:** On devices with two analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration of port pins multiplexed with AN0-AN15.
 - **3:** PCFGx = ANx, where x = 0 through 15.
 - 4: PCFGx bits have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode

NOTES:

22.5 JTAG Interface

dsPIC33FJXXXGPX06A/X08A/X10A devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on the interface will be provided in future revisions of the document.

22.6 Code Protection and CodeGuard™ Security

The dsPIC33F product families offer the advanced implementation of CodeGuard[™] Security. CodeGuard[™] Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IP are resident on the single chip. The code protection features vary depending on the actual dsPIC33F implemented. The following sections provide an overview of these features.

The code protection features are controlled by the Configuration registers: FBS, FSS and FGS.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70199) in the "dsPIC33F/ PIC24H Family Reference Manual" for further information on usage, configuration and operation of CodeGuard™ Security.

22.7 In-Circuit Serial Programming

dsPIC33FJXXXGPX06A/X08A/X10A family digital signal controllers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming sequence. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware, to be programmed. Please refer to the "*dsPIC33F/PIC24H Flash Programming Specification*" (DS70152) document for details about ICSP.

Any one out of three pairs of programming clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

22.8 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any one out of three pairs of debugging clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGEDx/PGECx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B