

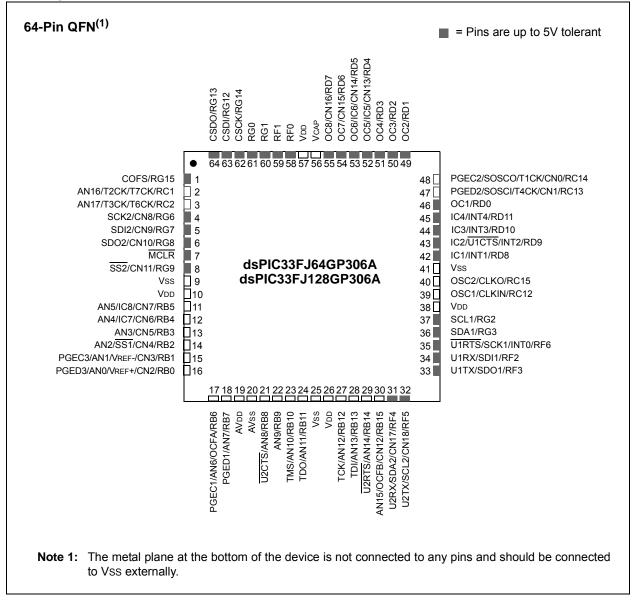
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	30K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256gp710at-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/ PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJXXXGPX06A/ X08A/X10A family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section
 2. "CPU" (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJXXXGPX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The dsPIC33FJXXXGPX06A/X08A/X10A instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJXXXGPX06A/X08A/X10A is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1. The programmer's model for the dsPIC33FJXXXGPX06A/ X08A/X10A is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own indepen-

dent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space. The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value, up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.3 Special MCU Features

The dsPIC33FJXXXGPX06A/X08A/X10A features a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJXXXGPX06A/X08A/X10A supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit, left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT ⁽¹⁾		DL<2:0>	
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3(2)	PSV	RND	IF
bit 7	·			·		·	bit
Legend:		C = Clear onl	y bit				
R = Readable	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is cle	ared	'x = Bit is unk	nown	U = Unimpler	nented bit, rea	d as '0'	
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	US: DSP Mul	tiply Unsigned	Signed Contr	ol bit			
	Ų	ne multiplies a	U U				
	•	ne multiplies a	•	(1)			
bit 11	-	D Loop Termina					
	 ⊥ = Terminate 0 = No effect 	e executing DO	loop at end o	f current loop it	eration		
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	oits			
	111 = 7 DO lo	ops active					
	•						
	001 = 1 DO lo	op active					
	000 = 0 DO lo	ops active					
bit 7		Saturation Ena					
		ator A saturatio ator A saturatio					
bit 6		Saturation Ena					
bit o		ator B saturatio					
	0 = Accumula	ator B saturatio	n disabled				
bit 5		-	-	gine Saturation	Enable bit		
	•	ce write saturatice write saturatice write saturatice write saturatice saturatice write w					
bit 4	-	cumulator Satu		Select hit			
		ration (super s					
		ration (normal					
bit 3	IPL3: CPU In	terrupt Priority	Level Status	bit 3 ⁽²⁾			
		rupt priority lev rupt priority lev					
bit 2		n Space Visibil					
		space visible ir					
	0 = Program	space not visib	le in data spa	се			
bit 1		ng Mode Seleo					
	,	onventional) ro (convergent) r	0				
bit 0		Fractional Mul	-				
		ode enabled fo					
	∩ = Fractiona	I mode enable	d for DSP mul	Itinly ons			

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

Note 1: This bit will always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

TABLE 4	I-17:	DMA	REGIS	TER M	AP (CO	NTINUE	D)											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
DMA5CNT	03C6	_	_	_	_	_	— — CNT<9:0>										0000	
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA6REQ	03CA	FORCE	_	_	_	_	_	—	_	_				RQSEL<6:0	>			0000
DMA6STA	03CC								S	TA<15:0>								0000
DMA6STB	03CE		STB<15:0>									0000						
DMA6PAD	03D0		PAD<15:0>								0000							
DMA6CNT	03D2	_	_	_	_	_	— — CNT<9:0>							0000				
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	_		_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA7REQ	03D6	FORCE	—	_	_	_	_		_	_			I	RQSEL<6:0	>			0000
DMA7STA	03D8		•	•	•				S	TA<15:0>	•							0000
DMA7STB	03DA								S	TB<15:0>								0000
DMA7PAD	03DC								P	AD<15:0>								0000
DMA7CNT	03DE	_	_		_	_	—					CNT	<9:0>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1	03E2	—	_	_	_		LSTCH	1<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4											0000						
امعمماه						a abour in												

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

dsPIC33FJXXXGPX06A/X08A/X10A

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

- bit 2 OC1IE: Output Compare Channel 1 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 INTOIE: External Interrupt 0 Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 CNIE: Input Change Notification Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IE: I2C1 Master Events Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 SI2C1IE: I2C1 Slave Events Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		DCIEIP<2:0>		_		—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	—	_	_		C2IP<2:0>	
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as 'o)'				
bit 14-12	DCIEIP<2:0>	. DCI Error Inte	rrupt Priority	bits			
	111 = Interru	pt is priority 7 (h	nighest priorit	ty interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
		pt source is disa	abled				
bit 11-3	Unimplemer	ted: Read as '0)'				
bit 2-0	C2IP<2:0>: [ECAN2 Event In	terrupt Priori	tv bits			
		ipt is priority 7 (h	•				
	•	, , ,	0				
	•						
	• 001 - Interry	unt in priority 1					
		pt is priority 1	ahlad				

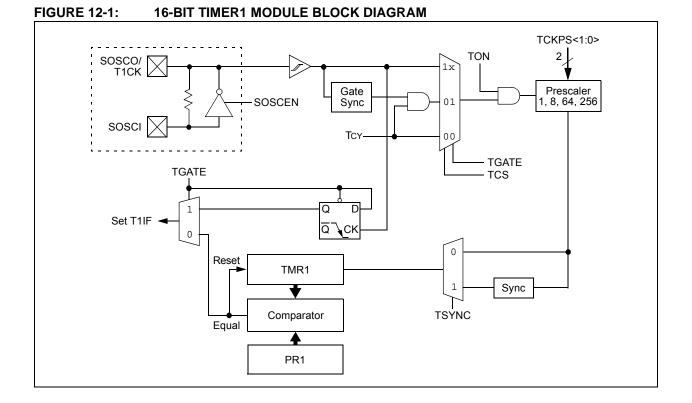
000 = Interrupt source is disabled

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter


Timer1 also supports these features:

- Timer gate operation
- · Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1) in the T1CON register.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
—	—	ICSIDL	_	_	—	—	_				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0				
ICTMR ⁽¹⁾	ICI	<1:0>	ICOV	ICBNE		ICM<2:0>					
bit 7							bit (
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15-14	Unimplemer	nted: Read as '	0'								
bit 13	ICSIDL: Inpu	t Capture Mod	ule Stop in Idle	e Control bit							
		ture module wi									
		ture module wi		operate in CPU	I Idle mode						
bit 12-8	-	nted: Read as '									
bit 7	-	t Capture Time									
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event 										
bit 6-5		lect Number of									
		t on every four									
		t on every third	•								
		t on every seco t on every capt		/ent							
bit 4	-	Capture Overflo		i bit (read-only)							
	=	oture overflow o	-	, - · (· · J)							
	0 = No input	capture overflo	w occurred								
bit 3	•	t Capture Buffe	1,2	. ,	,						
		ture buffer is n		ast one more o	capture value o	an be read					
h H O O		oture buffer is e	. ,	_							
bit 2-0		put Capture M			dovice is in SI	eep or Idle mode	,				
		g edge detect o					;				
	110 = Unuse	d (module disa	bled)			,					
		re mode, every									
	•	re mode, every re mode, every		e							
		re mode, every re mode, every									
	001 = Captur	re mode, every	edge (rising a								
		:0> bits do not		pt generation	for this mode.)						
	000 = input c	capture module	turnea oπ								

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0>(2	-)	PPRE<	<1:0> ⁽²⁾
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	nted: Read as '	0'				
bit 12		able SCKx pin	-				
		SPI clock is disa SPI clock is ena		ctions as I/O			
bit 11		able SDOx pin					
		-		functions as I/O)		
		is controlled b			,		
bit 10	MODE16: Wo	ord/Byte Comm	nunication Sel	ect bit			
		ication is word- ication is byte-					
bit 9		ata Input Sam					
	Master mode						
		a sampled at e					
	Slave mode:	a sampled at m		Sulput lime			
		e cleared when	SPIx is used	in Slave mode.			
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽¹⁾				
					clock state to Id		
bit 7		Select Enable			ock state to activ	e clock state (see bit 0)
		used for Slave		ue).			
				rolled by port fu	unction		
bit 6	CKP: Clock F	Polarity Select	oit				
			•	ve state is a lov e state is a higł			
bit 5	MSTEN: Mas	ster Mode Enat	ole bit				
	1 = Master m 0 = Slave mo						
	The CKE bit is not		amed SPI mo	des. The user s	should program	this bit to '0' fo	or the Frame
	SPI modes (FRME	$\pm in = \pm j.$					

- 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
—				FBP<5	:0>		
pit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	—			FNRB<	5:0>		
oit 7							bit C
L egend: R = Readable	e bit	W = Writable b	it	U = Unimplemer	ited bit, re	ad as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unkr	nown
oit 15-14	Unimpleme	ented: Read as '0'					
oit 13-8	FBP<5:0>:	FIFO Write Buffer	Pointer bits				
	011111 = F						
	011110 = F	RB30 buffer					
	•						
	•						
	000001 = T 000000 = T						
oit 7-6		ented: Read as '0'					
oit 5-0	-	: FIFO Next Read		tor bite			
л 5-0	011111 = F						
	011111 – F						
	•						
	•						
	• 000001 = T	DD1 huffor					
	$\cdots \cdots \cdots = 1$						

REGISTER 19-5: CiFIFO: ECAN™ FIFO STATUS REGISTER

REGISTER 19-22: CiRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

RXFUL15:RXFUL0: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 19-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | • | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXFUL31:RXFUL16:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 19-31: CiTRBnSTAT: ECAN™ RECEIVE BUFFER n STATUS (n = 0, 1, ..., 31)

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	—			FILHIT<4:0>			
						bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—	—	
						bit 0	
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
	— U-0 —	— — — U-0 U-0 — — —	 U-0 U-0 U-0 it W = Writable bit	 U-0 U-0 U-0 U-0 it W = Writable bit U = Unimpler	— — FILHIT<4:0> U-0 U-0 U-0 — — — it W = Writable bit U = Unimplemented bit, read	— — FILHIT<4:0> U-0 U-0 U-0 U-0 — — — — it W = Writable bit U = Unimplemented bit, read as '0'	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

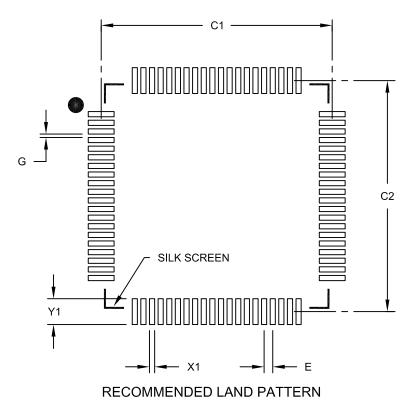
U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0			
		_	—	BLEN	\<1:0>		COFSG3			
bit 15							bit			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
	COFSG<2:0>				WS	<3:0>				
bit 7							bit			
Legend:										
R = Readab		W = Writable			nented bit, read					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown			
bit 15-12	-	ted: Read as '								
bit 11-10	BLEN<1:0>:	BLEN<1:0>: Buffer Length Control bits								
	11 = Four data words will be buffered between interrupts									
	10 = Three data words will be buffered between interrupts									
	 01 = Two data words will be buffered between interrupts 00 = One data word will be buffered between interrupts 									
				een interrupts						
bit 9	-	ted: Read as '								
bit 8-5	COFSG<3:0>: Frame Sync Generator Control bits									
	1111 = Data frame has 16 words									
	•									
	•									
	• 0010 = Data :	frame has 3 wo	orde							
		frame has 2 wo								
		frame has 1 wo								
bit 4	Unimplemen	ted: Read as '	0'							
bit 3-0	WS<3:0>: DO	I Data Word S	ize bits							
	1111 = Data	word size is 16	bits							
	•									
	•									
	•									
		word size is 5 k								
	0011 = Data	word size is 4 b	oits		40					
	0011 = Data 0010 = Inval	word size is 4 t d Selection. D	oits Io not use. U	nexpected resul nexpected resul						

REGISTER 20-2: DCICON2: DCI CONTROL REGISTER 2

NOTES:

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No. Symbol		Charact	teristic	Min ⁽¹⁾	Max	Units	Conditions	
IM10 TLO:SCL		Clock Low Time	100 kHz mode Tcy/2 (BRG + 1)		—	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	—	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	—	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	_	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
		1 MHz mode ⁽²⁾	_	300	ns			
IM25 TSU:DAT	Data Input Setup Time	100 kHz mode	250	_	ns	_		
		400 kHz mode	100	_	ns			
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μS	_	
			400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0.2	—	μS		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	Only relevant for	
	Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	condition	
IM31	THD:STA	HD:STA Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period the	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	generated	
IM33	Tsu:sto	SU:STO Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	—	
	Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS			
		1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS			
IM34	THD:STO	O Stop Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	ns	—	
			400 kHz mode	Tcy/2 (BRG + 1)	—	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns	1	
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—	
		From Clock	400 kHz mode	_	1000	ns	_	
			1 MHz mode ⁽²⁾	—	400	ns	—	

TABLE 25-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "*dsPIC33F/PIC24H Family Reference Manual*".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

[-
	Units		MILLIMETER	S
Dimensi	MIN	NOM	MAX	
Contact Pitch			0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B