

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

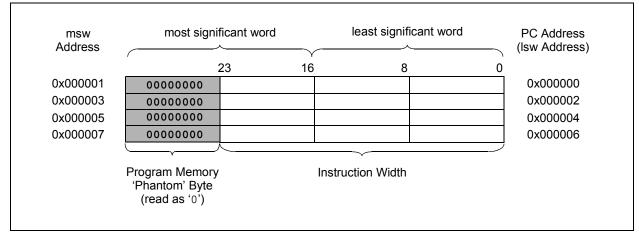
E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp206a-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJXXXGPX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJXXXGPX06A/X08A/X10A devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

5.0 FLASH PROGRAM MEMORY

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Familv Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

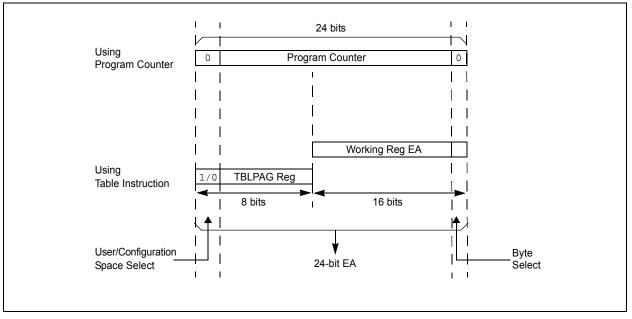
Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJXXXGPX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and

Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

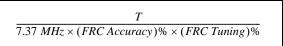
FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

5.2 RTSP Operation

The dsPIC33FJXXXGPX06A/X08A/X10A Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 25-12 illustrates typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers in sequential order. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.


All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 25-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 25-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 5\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 ms$$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

The two SFRs that are used to read and write the program Flash memory are:

NVMCON: Flash Memory Control Register

• NVMKEY: Non-Volatile Memory Key Register

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-2) is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		C2RXIP<2:0>		_		INT4IP<2:0>	
oit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		INT3IP<2:0>		—		T9IP<2:0>	
bit 7	·						bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as '0)'				
bit 14-12	-	0>: ECAN2 Rece		ady Interrupt Pr	iority bits		
		upt is priority 7 (ł			2		
	•						
	•						
	001 = Interr	upt is priority 1					
		upt source is disa	abled				
bit 11	Unimpleme	nted: Read as '0)'				
bit 10-8	INT4IP<2:0	External Interr	upt 4 Priority	bits			
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '0)'				
bit 6-4	INT3IP<2:0	: External Interr	upt 3 Priority	bits			
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is disa					
bit 3	-	nted: Read as '0					
oit 2-0		Timer9 Interrupt	-				
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
	000 - Interr	upt source is disa					

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer
- Single 32-bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.

Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags.

To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word.
- If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contains the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1 and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.

Note: Only Timer2 and Timer3 can trigger a DMA data transfer.

© 2009-2012 Microchip Technology Inc.

NOTES:

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
		ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0	
IVRIF	WAKIF	ERRIF	0-0	FIFOIF	RBOVIF	RBIF	TBIF	
bit 7	WAKIF	ERRIF		FIFUIF	RBOVIE	RBIF	bit	
							DIL	
Legend:		C = Clear on	y bit					
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-14	Unimplemen	nted: Read as '	0'					
bit 13	-	smitter in Error		bit				
		ter is in Bus Of						
	0 = Transmitt	ter is not in Bus	Off state					
bit 12	TXBP: Trans	mitter in Error	State Bus Pas	sive bit				
		ter is in Bus Pa ter is not in Bus		-				
bit 11								
	RXBP: Receiver in Error State Bus Passive bit 1 = Receiver is in Bus Passive state							
		is not in Bus P						
bit 10	TXWAR: Transmitter in Error State Warning bit							
	1 = Transmitter is in Error Warning state							
	0 = Transmitt	ter is not in Erro	or Warning sta	ate				
bit 9		ceiver in Error	•	bit				
		is in Error War						
L:1 0		is not in Error			L:4			
bit 8		nsmitter or Rec ter or receiver i			DIT			
		ter or receiver i		•				
bit 7		d Message Rec		•				
		request has oc		5				
	0 = Interrupt	request has no	t occurred					
bit 6		Wake-up Activ		ag bit				
		request has oc						
6:4 <i>5</i>	-	request has no						
bit 5				ources in Clin	F<13:8> regist	er)		
		request has oc request has no						
bit 4	-	nted: Read as '						
bit 3	-) Almost Full In		it				
		request has oc						
	•	request has no						
bit 2	RBOVIF: RX	Buffer Overflo	w Interrupt Fla	ag bit				
		request has oc						
		request has no						
bit 1		Iffer Interrupt Fl	-					
	•	request has oc request has no						
		i oquest nas nu						
hit ()	TRIF. TY Duf	ffor Interrupt El	aa hit					
bit 0		ffer Interrupt Fla request has oc	-					

REGISTER 19-6: CIINTF: ECAN™ INTERRUPT FLAG REGISTER

REGISTER 19-8: CiEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

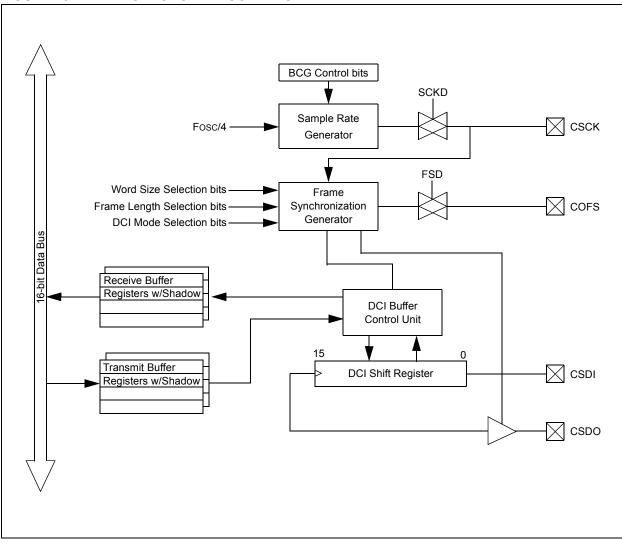
R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		TERRO	CNT<7:0>				
						bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		RERR	CNT<7:0>				
						bit 0	
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is		x = Bit is unkr	nown	
	R-0	R-0 R-0 bit W = Writable b	R-0 R-0 R-0 RERRO bit W = Writable bit	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> bit W = Writable bit U = Unimplement	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0>	R-0 R-0 R-0 R-0 R-0 R-0 Bit W = Writable bit U = Unimplemented bit, read as '0' U = Unimplemented bit, read as '0'	

bit 15-8 **TERRCNT<7:0>:** Transmit Error Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			SID	<10:3>					
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
	SID<2:0>			MIDE		EID<1	7:16>		
bit 7							bit C		
Legend:									
R = Readable bit W = Writable bit		oit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-5	SID<10:0>:	Standard Identif	ier bits						
	1 = Include	bit SIDx in filter c	omparison						
	0 = Bit SIDx	is don't care in fi	ilter comparis	son					
bit 4	Unimpleme	nted: Read as '0)'						
bit 3	MIDE: Iden	tifier Receive Mo	de bit						
	0 = Match e	only message typ either standard or (Filter SID) = (Me	extended a	ddress messag	e if filters match	י. ו	DE bit in filter		
bit 2	Unimpleme	nted: Read as 'o)'						
bit 1-0	EID<17:16>	: Extended Ident	ifier bits						
	1 = Include	EID<17:16>: Extended Identifier bits 1 = Include bit EIDx in filter comparison 0 = Bit EIDx is don't care in filter comparison							

REGISTER 19-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER


R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

FIGURE 20-1: DCI MODULE BLOCK DIAGRAM

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0				
	—	_		BLEN	l<1:0>		COFSG3				
bit 15	·						bit				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	COFSG<2:0>				WS	<3:0>					
bit 7							bit				
Legend:											
R = Readab		W = Writable			nented bit, read						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown				
bit 15-12	-	ted: Read as '									
bit 11-10	BLEN<1:0>:	Buffer Length (Control bits								
				ween interrupts							
		 10 = Three data words will be buffered between interrupts 01 = Two data words will be buffered between interrupts 									
		a word will be t		een interrupts							
bit 9	Unimplemented: Read as '0'										
bit 8-5	COFSG<3:0>	: Frame Sync	Generator Co	ontrol bits							
	1111 = Data 1	frame has 16 w	vords								
	•										
	•										
	• 0010 = Data :	frame has 3 wo	orde								
		frame has 2 wo									
		frame has 1 wo									
bit 4	Unimplemen	ted: Read as '	0'								
bit 3-0	WS<3:0>: DC	I Data Word S	ize bits								
	1111 = Data	word size is 16	bits								
	•										
	•										
	•										
		word size is 5 l									
	0011 = Data	word size is 4 b	oits								
	0011 = Data 0010 = Inval i	word size is 4 l d Selection.	oits)o not use. U	nexpected resul nexpected resul							

REGISTER 20-2: DCICON2: DCI CONTROL REGISTER 2

REGISTER 20-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RSE7 | RSE6 | RSE5 | RSE4 | RSE3 | RSE2 | RSE1 | RSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 RSE<15:0>: Receive Slot Enable bits

1 = CSDI data is received during the individual time slot n

0 = CSDI data is ignored during the individual time slot n

REGISTER 20-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TSE7 | TSE6 | TSE5 | TSE4 | TSE3 | TSE2 | TSE1 | TSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0', during the individual time slot, depending on the state of the CSDOM bit

21.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning.
 - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

21.5 ADC Resources

Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browner:
	this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en546064

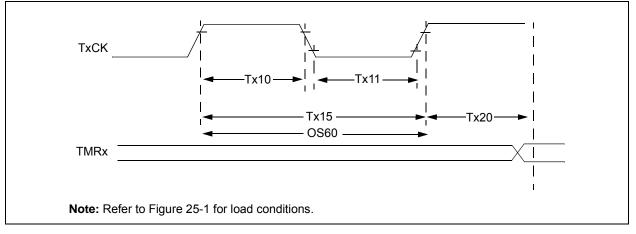
21.5.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 21-2: ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2)

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
VCFG<2:0>			_		CSCNA	CHPS<1:0>					
bit 15				•			bit 8				
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
BUFS	—	– SMPI<3:0>			BUFM	ALTS					
bit 7							bit (
Legend:											
R = Readabl	e bit	W = Writabl	e bit	U = Unimple	emented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is s	et	'0' = Bit is cl	eared	x = Bit is unki	nown				
bit 15-13	VCFG<2:0>	: Converter Vo	oltage Reference	Configuration	n bits						
		VREF+	VREF-								
	000	Avdd	Avss								
	001 Exte	ernal VREF+	Avss								
	010	Avdd	External VREF-								
	011 Exte	ernal VREF+	External VREF-								
	1xx	Avdd	Avss								
bit 12-11	Unimpleme	nted: Read as	s 'O'								
bit 10	CSCNA: Sca	an Input Selec	tions for CH0+ d	uring Sample	A bit						
	1 = Scan inputs										
	0 = Do not s	•									
bit 9-8	CHPS<1:0>: Selects Channels Utilized bits										
	When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as '0' 1x = Converts CH0, CH1, CH2 and CH3										
	1x = Converts CH0, CH1, CH2 and CH301 = Converts CH0 and CH1										
	00 = Conve	rts CH0									
bit 7	BUFS: Buffe	er Fill Status bi	t (only valid whe	n BUFM = 1)							
			g second half of b g first half of buffe								
bit 6		nted: Read as									
bit 5-2			ment Rate for DN	/A Addresses	s bits or number	of sample/conv	version				
	operations per interrupt 1111 = Increments the DMA address or generates interrupt after completion of every 16th sample/										
	conversion operation 1110 = Increments the DMA address or generates interrupt after completion of every 15th sample/										
		ements the DI version operat	•	enerates inte	rrupt after comp	etion of every	15th sample				
	•										
	•										
	0001 = Increments the DMA address or generates interrupt after completion of every 2nd sample/ conversion operation										
		ements the DN operation	/IA address or ge	enerates interr	rupt after comple	etion of every sa	ample/conver				
bit 1	BUFM: Buffe	er Fill Mode Se	elect bit								
		-	of buffer on first ir		econd half of the	e buffer on nex	t interrupt				
bit 0	ALTS: Alterr	nate Input San	nple Mode Selec	t bit							
	1 = Uses ch	annel input se	elects for Sample input selects for	A on first sar	mple and Sampl	e B on next sa	mple				
			-								

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.


Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note:	For more details on the instruction set,
	refer to the "16-bit MCU and DSC
	Programmer's Reference Manual"
	(DS70157).

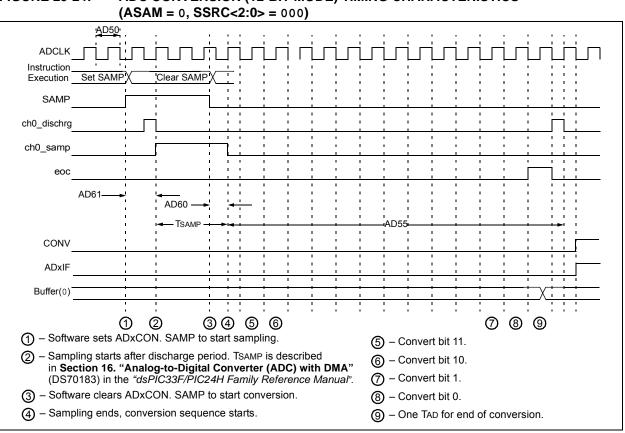
Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, may be blank
OA, OB, SA, SB	DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

FIGURE 25-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 25-22: TIME	R1 EXTERNAL CLOCK TIMING REQUIREMENTS ⁽¹⁾
-------------------	--

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic			Min	Тур	Мах	Units	Conditions	
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler		Tcy + 20	—	_	ns	Must also meet parameter TA15	
			Synchronous, with prescaler		(Tcy + 20)/N	—	_	ns		
			Asynchr	onous	20	—	_	ns		
		Synchro no preso		(Tcy + 20)/N	_	—	ns	Must also meet parameter TA15		
			Synchronous, with prescaler		20	—	_	ns	N = prescale value	
			Asynchronous		20	—	_	ns	(1,8,64,256)	
TA15	ΤτχΡ	TxCK Input Period	Synchronous, no prescaler		2Tcy + 40		_	ns	—	
			Synchro with pres		Greater of 40 ns or (2Tcy + 40)/N	_	_	—	N = prescale value (1, 8, 64, 256)	
			Asynchr	onous	40	_	_	ns	—	
OS60	Ft1	SOSC1/T1CK Oscillator Input frequency Range (oscillator enabled by setting TCS bit (T1CON<1>))		or	DC	_	50	kHz	—	
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Incremen			0.75Tcy+40	—	1.75Tcy+40	ns	—	


Note 1: Timer1 is a Type A.

AC CHA	ARACTERI	STICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$									
Param No.	Symbol Characteristic		Min.	Тур	Max.	Units	Conditions					
	ADC Accuracy (12-bit Mode) - Measurements with external VREF+/VREF-											
AD20a	Nr	Resolution	1	2 data bi	ts	bits						
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD23a	Gerr	Gain Error	_	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD24a	EOFF	Offset Error	—	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD25a	—	Monotonicity ⁽¹⁾	_	_	_	_	Guaranteed					
ADC Accuracy (12-bit Mode) - Measurements with internal VREF+/VREF-												
AD20a	Nr	Resolution	1	2 data bi	ts	bits						
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD22a	DNL	Differential Nonlinearity	>-1	-	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD23a	Gerr	Gain Error	—	10.5	20	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD24a	EOFF	Offset Error	—	3.8	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD25a	—	Monotonicity ⁽¹⁾	_	—	_	_	Guaranteed					
		Dynamic	Performan	ce (12-bi	t Mode)							
AD30a	THD	Total Harmonic Distortion	_	—	-75	dB						
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB	_					
AD32a	SFDR	Spurious Free Dynamic Range	80	_	—	dB	—					
AD33a	Fnyq	Input Signal Band-Width	—	_	250	kHz	—					
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits	—					

TABLE 25-42: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽²⁾

Note 1: The ADC conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

FIGURE 25-24: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS

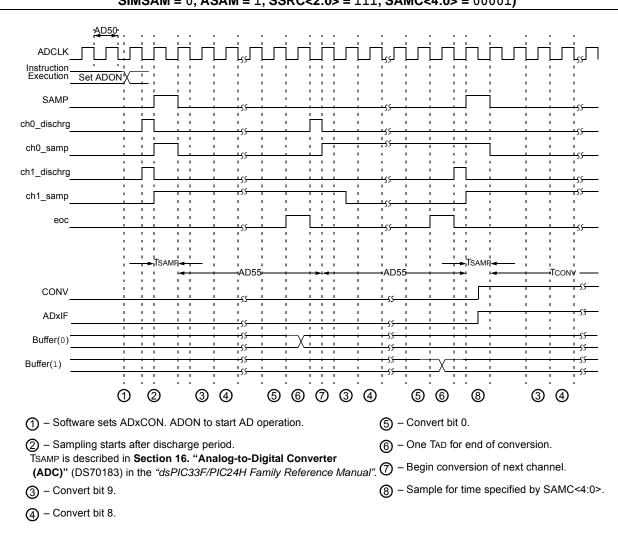

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Тур ⁽¹⁾	Max.	Units	Conditions		
Clock Parameters									
AD50a	Tad	ADC Clock Period	117.6			ns	—		
AD51a	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	_		
Conversion Rate									
AD55a	tCONV	Conversion Time	—	14 Tad		ns	_		
AD56a	FCNV	Throughput Rate	—	_	500	ksps	—		
AD57a	tSAMP	Sample Time	3 Tad		—	_	—		
		Timir	ng Parame	ters					
AD60a	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 TAD	—	3.0 Tad	—	Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61a	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 TAD	_	3.0 Tad	_	_		
AD62a	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad	—	_	_		
AD63a	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	_	20	μS	_		

TABLE 25-44: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

FIGURE 25-26:ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)