

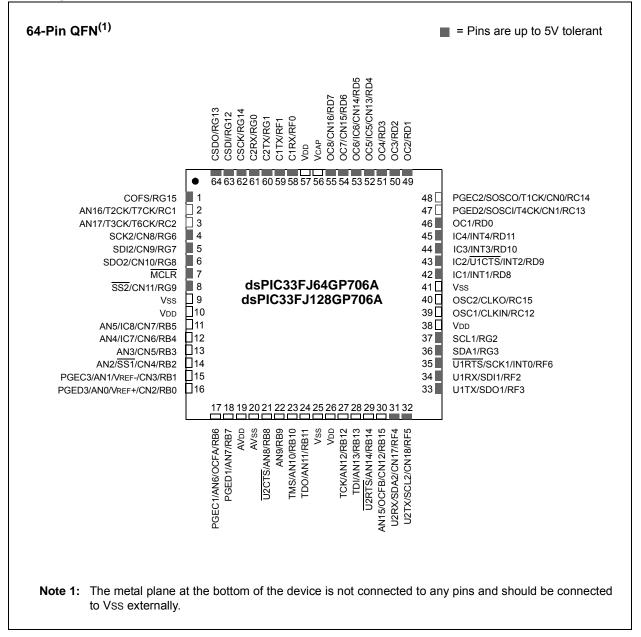
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp206at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value which is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the Most Significant bit (MSb) is defined as a sign bit. Generally speaking, the range of an N-bit two's complement integer is -2^{N-1} to 2^{N-1} - 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0. For a 32-bit integer, the data is -2,147,483,648 (0x8000 0000) range to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518×10^{-5} . In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product which has a precision of 4.65661×10^{-10} .

The same multiplier is used to support the MCU multiply instructions which include integer 16-bit signed, unsigned and mixed sign multiplies.

The MUL instruction may be directed to use byte or word sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true, or complement data into the other input. In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented), whereas in the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described above and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits have been provided to support saturation and overflow; they are:

- OA: AccA overflowed into guard bits
- OB: AccB overflowed into guard bits
- SA: AccA saturated (bit 31 overflow and saturation) or

AccA overflowed into guard bits and saturated (bit 39 overflow and saturation)

 SB: AccB saturated (bit 31 overflow and saturation) or

AccB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register (refer to **Section 7.0 "Interrupt Controller"**) are set. This allows the user to take immediate action, for example, to correct system gain.

NOTES:

TABLE 4-15: ADC1 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300				ADC Data Buffer 0 x							xxxx						
AD1CON1	0320	ADON	_	ADSIDL	ADDMABM	_	AD12B	FOR	И<1:0>	:	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	١	/CFG<2:0>	>	_	CSCNA CHPS<1:0>			BUFS	_		SMPI<3:0>				ALTS	0000	
AD1CON3	0324	ADRC		—		SAMC<4:0>					ADCS<7:0>					0000		
AD1CHS123	0326	—		—	_		CH123N	NB<1:0>	CH123SB				—	—	CH123N	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB		—		CI	H0SB<4:0>	>		CH0NA			CH0SA<4:0>				0000	
AD1PCFGH(1)	032A	PCFG31	PCFG30	PCFG29	PCFG28	PCFG27	PCFG26	PCFG25	PCFG24	PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16	0000
AD1PCFGL	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSH(1)	032E	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	_	_	—	_	_	_	_	_	_	_	_	_	[DMABL<2:()>	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Not all ANx inputs are available on all devices. See the device pin diagrams for available ANx inputs.

TABLE 4-16: ADC2 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC2BUF0	0340								ADC Data	Buffer 0								xxxx
AD2CON1	0360	ADON	_	ADSIDL	ADDMABM	BM - AD12B FORM<1:0> SSRC<2:0> - SIMSAM ASAM SAMP DONE					0000							
AD2CON2	0362	Ň	VCFG<2:0>	>	_	— CSCNA CHPS<1:0> BUFS — SMPI<3:0> BUFM ALTS					0000							
AD2CON3	0364	ADRC	_	_		SAMC<4:0>				ADCS<7:0>						0000		
AD2CHS123	0366	_	_	_	_	_	CH123N	IB<1:0>	CH123SB	_	_	_	_	_	CH123N	IA<1:0>	CH123SA	0000
AD2CHS0	0368	CH0NB	_	_	_		CH0S	B<3:0>		CH0NA	_	_	— CH0SA<3:0>				0000	
Reserved	036A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
AD2PCFGL	036C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
Reserved	036E	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
AD2CSSL	0370	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD2CON4	0372	_	_	_	_		_	_	_	_	_	_	_	_		DMABL<2:	0>	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7	'-8: IFS3: I	INTERRUPT	FLAG STAT	US REGIST	ER 3		
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
_	_	DMA5IF	DCIIF	DCIEIF	_	—	C2IF
bit 15				•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at I		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	DMA5IF: DM	A Channel 5 D	ata Transfer (Complete Inter	rupt Flag Status	bit	
		request has oc request has no					
bit 12	DCIIF: DCI E	vent Interrupt I	-lag Status bit				
	1 = Interrupt	request has oc	curred				
	•	request has no					
bit 11		Error Interrupt	U	it			
		request has oc request has no					
bit 10-9	Unimplemen	ted: Read as '	0'				
bit 8	C2IF: ECAN2	2 Event Interrup	ot Flag Status	bit			
	•	request has oc request has no					
bit 7	C2RXIF: ECA	AN2 Receive D	ata Ready Int	errupt Flag Sta	atus bit		
		request has oc request has no					
bit 6	•	rnal Interrupt 4		it			
	1 = Interrupt i	request has oc request has no	curred				
bit 5	INT3IF: Exter	rnal Interrupt 3	Flag Status b	it			
	•	request has oc request has no					
bit 4	-	Interrupt Flag					
	1 = Interrupt i	request has oc	curred				
	-	request has no					
bit 3		Interrupt Flag					
		request has oc					
bit 2	-	request has no 2 Master Even		ag Status bit			
SIL Z		request has oc	•	ug oluluo bit			
		request has no					
bit 1	SI2C2IF: 12C	2 Slave Events	Interrupt Flag	g Status bit			
		request has oc					
	-	request has no					
bit 0		Interrupt Flag					
		request has oc request has no					
		iequest nas no					

REGISTER 7	-13: IEC3:	INTERRUPT		ONTROL RE	GISTER 3				
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0		
—	_	DMA5IE	DCIIE	DCIEIE	—	—	C2IE		
bit 15			1	1			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown		
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13	DMA5IE: DM	A Channel 5 D	ata Transfer (Complete Interi	rupt Enable bit				
		request enable request not ena							
bit 12	DCIIE: DCI E	vent Interrupt E	Enable bit						
		request enable							
	-	request not ena							
bit 11		Error Interrupt							
		request enable request not ena							
bit 10-9	Unimplemen	Unimplemented: Read as '0'							
bit 8	C2IE: ECAN2	2 Event Interrup	ot Enable bit						
	•	request enable request not ena							
bit 7	C2RXIE: ECA	AN2 Receive D	ata Ready Int	errupt Enable I	bit				
		request enable request not ena							
bit 6	•	rnal Interrupt 4							
bit o	1 = Interrupt r	request enable request not ena	d						
bit 5	•	nal Interrupt 3							
	1 = Interrupt r	request enable request not ena	d						
bit 4	-	Interrupt Enab							
	1 = Interrupt r	request enable	d						
bit 3	-	request not ena							
DIL 3	1 = Interrupt r	Interrupt Enab	d						
bit 2		request not ena 2 Master Even		nahla hit					
		request enable							
		request not ena							
bit 1	-	2 Slave Events		able bit					
		request enable							
	-	request not ena							
bit 0		Interrupt Enab							
	•	request enable request not ena							

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		T1IP<2:0>				OC1IP<2:0>					
bit 15							bi				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		IC1IP<2:0>				INT0IP<2:0>					
bit 7							bi				
Legend:											
R = Readabl	e bit	W = Writable I	bit	U = Unimple	mented bit, rea	id as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
bit 15	Unimpleme	ented: Read as 'o)'								
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits								
	111 = Interr	rupt is priority 7 (ł	nighest priori	ty interrupt)							
	•										
	•										
		upt is priority 1 upt source is dis	abled								
bit 11		ented: Read as '									
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is priority 1										
		upt source is dis	abled								
bit 7	Unimpleme	ented: Read as 'o)'								
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits										
	111 = Interr	rupt is priority 7 (I	nighest priori	ty interrupt)							
	•										
	•										
		upt is priority 1	ablad								
bit 3		upt source is disa ented: Read as 'o									
bit 2-0	-			, bite							
DIL 2-0		External Interr upt is priority 7 (I)									
	•		gricot priori	, monuply							
	•										
	• 001 - Interr	upt is priority 1									

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

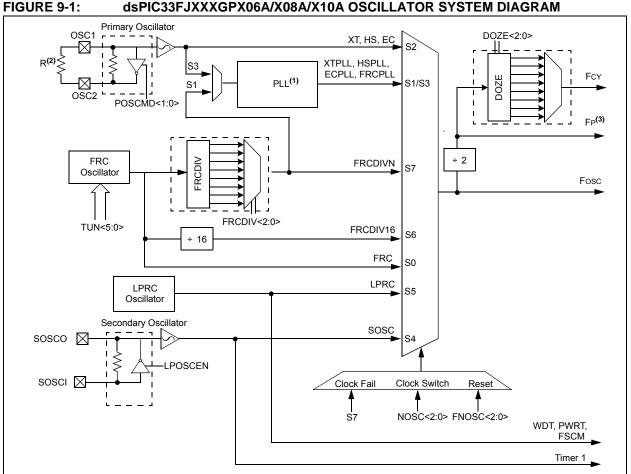
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			STA	<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			ST/	\<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STB	<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STE	3<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	id as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)


9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/ X08A/X10A family of devices. However, not intended to it is be а comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A oscillator system provides:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection

A simplified diagram of the oscillator system is shown in Figure 9-1.

Note 1: See Figure 9-2 for PLL details.

- 2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 M Ω must be connected.
- **3:** The term, FP refers to the clock source for all the peripherals, while Fcy refers to the clock source for the CPU. Throughout this document FP and Fcy are used interchangeably, except in the case of Doze mode. FP and Fcy will be different when Doze mode is used in any ratio other than 1:1, which is the default.

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the "**Pin Diagrams**" section for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The use of the ADxPCFGH, ADxPCFGL and TRIS registers control the operation of the ADC port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

Clearing any bit in the ADxPCFGH or ADxPCFGL register configures the corresponding bit to be an analog pin. This is also the Reset state of any I/O pin that has an analog (ANx) function associated with it.

Note:	In devices with two ADC modules, if the
	corresponding PCFG bit in either
	AD1PCFGH(L) and AD2PCFGH(L) is
	cleared, the pin is configured as an analog
	input.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

Note:	The voltage on an analog input pin can be
	between -0.3V to (VDD + 0.3 V).

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJXXXGPX06A/X08A/X10A devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 24 external signals (CN0 through CN23) that can be selected (enabled) for generating an interrupt request on a change-of-state.

There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the CN interrupt enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the weak pull-up enable (CNxPUE) bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

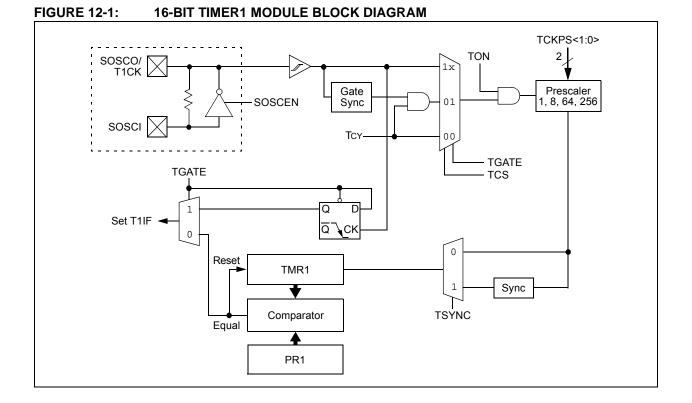
MOV	0xFF00, W0	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
btss	PORTB, #13	i	Next Instruction

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter


Timer1 also supports these features:

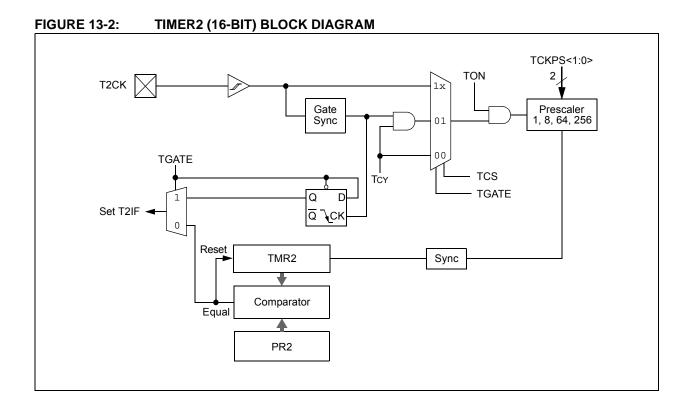

- Timer gate operation
- · Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

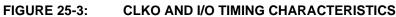
- 1. Set the TON bit (= 1) in the T1CON register.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

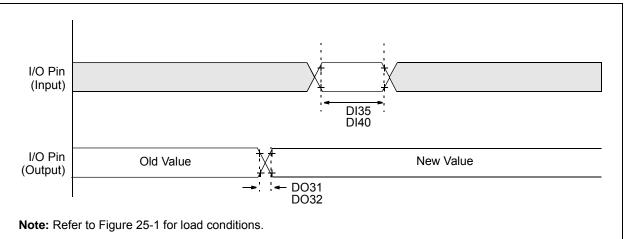
TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X data space prefetch address register for DSP instructions ∈ {[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2, [W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2, [W9 + W12], none}
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2, [W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2, [W11 + W12], none}
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}

TABLE 23-2:		INSTRU	UCTION SET OVERVIE	-			
Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm, Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None

1110

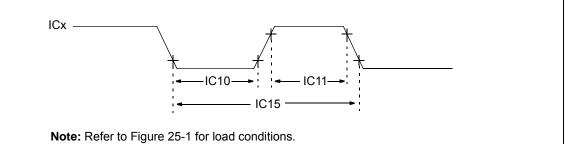

				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions			
	VIL	Input Low Voltage								
DI10		I/O pins	Vss	—	0.2 VDD	V				
DI15		MCLR	Vss	_	0.2 VDD	V				
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 VDD	V				
DI18		I/O Pins with I ² C	Vss	_	0.3 VDD	V	SMBus disabled			
DI19		I/O Pins with I ² C	Vss	—	0.8 V	V	SMBus enabled			
	Vih	Input High Voltage								
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd 0.7 Vdd	_	Vdd 5.5	V V				
DI28		SDAx, SCLx	0.7 Vdd	_	5.5	V	SMBus disabled			
DI29		SDAx, SCLx	2.1	—	5.5	V	SMBus enabled			
	ICNPU	CNx Pull-up Current								
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS			
DI50	lı∟	Input Leakage Current ^(2,3) I/O Pins 5V Tolerant ⁽⁴⁾	_	_	±2	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance			
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +85°C			
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±2	μA	Shared with external reference pins, -40°C \leq TA \leq +85°C			
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±3.5	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +125°C			
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±8	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$			
DI55		MCLR	—	_	±2	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
DI56		OSC1	—	—	±2	μA	$\label{eq:VSS} \begin{split} &Vss \leq V PIN \leq V DD, \\ &XT \text{ and } HS \text{ modes} \end{split}$			


TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (VSS 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.



AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Character	istic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DO31	TioR	Port Output Rise Tim		10	25	ns			
DO32	TIOF	Port Output Fall Time		_	10	25	ns	_	
DI35	TINP	INTx Pin High or Low Time (input)		20			ns	—	
DI40	Trbp	CNx High or Low Tim	2			TCY	_		

	TABLE 25-20:	I/O TIMING REQUIREMENTS
--	--------------	--------------------------------

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

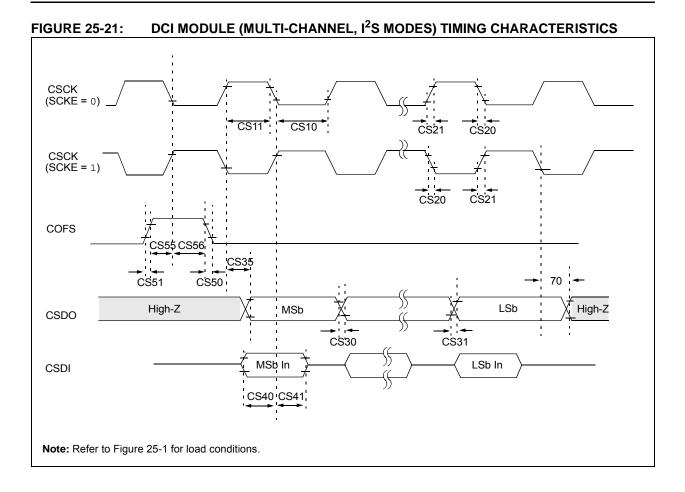

FIGURE 25-6: **INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS**

TABLE 25-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Character	ristic ⁽¹⁾	Мах	Units	Conditions				
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns	—			
			With Prescaler	10	_	ns				
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	_	ns	—			
			With Prescaler	10	_	ns				
IC15	TccP	ICx Input Period		(Tcy + 40)/N	—	ns	N = prescale value (1, 4, 16)			
Note 1: These parameters are characterized but not tested in manufacturing.										

FIGURE 25-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 25-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
OC10	TccF	OCx Output Fall Time	—	_	_	ns	See parameter D032		
OC11	TccR	OCx Output Rise Time	—	—	—	ns	See parameter D031		

Note 1: These parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No. Symbo		Charact	Min	Max	Units	Conditions			
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	—	μS	—		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	_	μS			
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	100	ns			
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾		300	ns			
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns			
		Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽¹⁾	100		ns			
IS26	THD:DAT	Data Input	100 kHz mode	0		μS			
		Hold Time	400 kHz mode	0	0.9	μS	-		
			1 MHz mode ⁽¹⁾	0	0.3	μS			
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated		
		Setup Time	400 kHz mode	0.6		μS	Start condition		
			1 MHz mode ⁽¹⁾	0.25		μS			
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first		
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated		
			1 MHz mode ⁽¹⁾	0.25		μS			
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μS			
		Setup Time	400 kHz mode	0.6		μS			
			1 MHz mode ⁽¹⁾	0.6		μS	-		
IS34	THD:STO	Stop Condition	100 kHz mode	4000		ns			
		Hold Time	400 kHz mode	600		ns			
			1 MHz mode ⁽¹⁾	250		ns	-		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	_		
		From Clock	400 kHz mode	0	1000	ns	1		
			1 MHz mode ⁽¹⁾	0	350	ns	1		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free		
			400 kHz mode	1.3		μS	before a new transmission		
			1 MHz mode ⁽¹⁾	0.5		μS	can start		
IS50	Св	Bus Capacitive Lo			400	pF			

TABLE 25-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

CHARA	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No. Symbol		Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		_	35	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2		

TABLE 26-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 26-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions			
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge			35	ns	—			
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	_	_	ns	—			
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25			ns	_			
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	_	55	ns	See Note 2			
HSP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_		55	ns	—			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.