

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 $= K \in$

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp306at-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-9: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_	—	_	_	_	—	_	Receive Register 00							0000	
I2C1TRN	0202	_	_	_	_	_	_	_	Transmit Register 00F								00FF	
I2C1BRG	0204	_	_	_	_	_	_	_	Baud Rate Generator Register 00							0000		
I2C1CON	0206	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	—	—	_	_	—		Address Register 000								0000		
I2C1MSK	020C	_	_	_	_	_	_	Address Mask Register 00000								0000		
Lanandi																		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: I2C2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C2RCV	0210	_	_	_	_	_		—	Receive Register 000							0000		
I2C2TRN	0212	—	—	—	_	—		_	Transmit Register 00E							00FF		
I2C2BRG	0214	_	_	_	_	_	_	_		Baud Rate Generator Register 00							0000	
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	_	_	Address Register 000							0000			
I2C2MSK	021C	_	_	_		_	_	Address Mask Register 000/							0000			

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E			•					See defini	tion when V	VIN = x	•			•	•		
C1BUFPNT1	0420		F3BF	><3:0>			F2BF	P<3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BF	><3:0>			F6BF	><3:0>		F5BP<3:0>			F4BP<3:0>			0000		
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP<3:0>			0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>		F13BP<3:0>				F12BP<3:0>			0000	
C1RXM0SID	0430				SID	<10:3>				SID<2:0> —			MIDE	MIDE — EID<17:16>			xxxx	
C1RXM0EID	0432				EID	<15:8>				EID<7:0			7:0>	0>			xxxx	
C1RXM1SID	0434				SID	<10:3>				SID<2:0> —			MIDE	_	EID<	17:16>	xxxx	
C1RXM1EID	0436				EID	<15:8>				EID<7:0>					•		xxxx	
C1RXM2SID	0438				SID	<10:3>				SID<2:0> — MIDE — E					EID<	17:16>	xxxx	
C1RXM2EID	043A				EID	<15:8>				EID<7:0>							xxxx	
C1RXF0SID	0440				SID	<10:3>				SID<2:0> — EXIDE — EID<17:16>						17:16>	xxxx	
C1RXF0EID	0442		EID<15:8>								EID<	7:0>				xxxx		
C1RXF1SID	0444		SID<10:3>						SID<2:0>		_	EXIDE	—	EID<	17:16>	xxxx		
C1RXF1EID	0446		EID<15:8>								EID<	7:0>				xxxx		
C1RXF2SID	0448				SID	<10:3>					SID<2:0>		_	EXIDE	—	EID<	17:16>	xxxx
C1RXF2EID	044A				EID	<15:8>				EID<7:0>							xxxx	
C1RXF3SID	044C				SID	<10:3>				SID<2:0> —			EXIDE	—	EID<'	17:16>	xxxx	
C1RXF3EID	044E				EID	<15:8>				EID<7:0>							xxxx	
C1RXF4SID	0450				SID	<10:3>				SID<2:0> — EXIDE — F				EID<	17:16>	xxxx		
C1RXF4EID	0452				EID	<15:8>				EID<7:0>						xxxx		
C1RXF5SID	0454				SID	<10:3>				SID<2:0> — EXIDE — EID<17:16					17:16>	xxxx		
C1RXF5EID	0456				EID	<15:8>							EID<	7:0>		_		xxxx
C1RXF6SID	0458				SID	<10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID	<15:8>							EID<	7:0>	-			xxxx
C1RXF7SID	045C				SID	<10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID	<15:8>							EID<	7:0>		_		xxxx
C1RXF8SID	0460		SID<10:3>						SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx		
C1RXF8EID	0462		EID<15:8>									EID<	7:0>				xxxx	
C1RXF9SID	0464		SID<10:3>						SID<2:0> — EXIDE — EID<17:10					17:16>	xxxx			
C1RXF9EID	0466		EID<15:8>						EID<7:0>					xxxx				
C1RXF10SID	0468				SID	<10:3>				SID<2:0> — EXIDE — EID<17:16>					17:16>	xxxx		
C1RXF10EID	046A		EID<15:8>							EID<7:0>					xxxx			

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJXXXGPX06A/X08A/X10A architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJXXXGPX06A/X08A/X10A architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-37 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.

TABLE 4-37: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access		0							
(Code Execution)									
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>				
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx xxxx							
	Configuration	TBLPAG<7:0>			Data EA<15:0>				
		1xxx xxxx xxxx			xxxx xxxx xxxx				
Program Space Visibility	User	0	PSVPAG<7	7:0> Data EA<14:0> ⁽¹⁾					
(Block Remap/Read)		0	xxxx xxxx	2	xxx xxxx xxxx xxxx				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit		nented bit, read	I as '0'					
-n = Value at P	OR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkn	iown				
h:: 45											
DIT 15		rrupt Nesting L	visable bit								
	0 = Interrupt r	nesting is usat	led								
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	laq bit							
	1 = Trap was	caused by ove	rflow of Accun	nulator A							
	0 = Trap was	not caused by	overflow of Ac	ccumulator A							
bit 13	OVBERR: Ac	cumulator B O	verflow Trap F	lag bit							
	1 = Trap was	caused by ove	rflow of Accun	nulator B							
bit 10	U = 1 rap was not caused by overflow of Accumulator B										
DIL 12	1 = Trap was	caused by cat	strophic over	flow of Accum	lator A						
	0 = Trap was not caused by catastrophic overflow of Accumulator A										
bit 11	COVBERR: A	Accumulator B	Catastrophic C	Overflow Trap F	lag bit						
	1 = Trap was	caused by cata	astrophic over	flow of Accumu	lator B						
	0 = Trap was	not caused by	catastrophic c	overflow of Acc	umulator B						
bit 10	OVATE: Accu	mulator A Ove	rflow Trap Ena	able bit							
	1 = Trap over 0 = Trap disal	flow of Accumı bled	ulator A								
bit 9		imulator B Ove	erflow Trap En	able bit							
Site	1 = Trap over	flow of Accum	ulator B								
	0 = Trap disal	bled									
bit 8	COVTE: Cata	strophic Overf	low Trap Enab	ole bit							
	1 = Trap on c 0 = Trap disal	atastrophic ove bled	erflow of Accur	mulator A or B	enabled						
bit 7	SFTACERR:	Shift Accumula	tor Error Statu	ıs bit							
	1 = Math erro	r trap was caus	sed by an inva	ilid accumulato	r shift lator shift						
bit 6	DIVOFRR: Ari	ithmetic Error S	Status bit								
	1 = Math erro	r trap was caus	sed by a divide	e by zero							
	0 = Math erro	r trap was not	caused by a d	ivide by zero							
bit 5	DMACERR: [OMA Controller	Error Status b	bit							
	1 = DMA cont	troller error trap	has occurred	 rrod							
hit 4			Status bit	neu							
	1 = Math erro	r tran has occu	irred								
	0 = Math erro	r trap has not o	occurred								

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IE	IC7IE	AD2IE	INT1IE	CNIE		MI2C1IE	SI2C1IE
bit 7		1					bit 0
L							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 15	U2TXIE: UAF	RT2 Transmitte	r Interrupt Ena	able bit			
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
DIT 14	U2RXIE: UAP		nterrupt Enab	Ie dit			
	0 = Interrupt	request enable	u abled				
bit 13	INT2IE: Exter	rnal Interrupt 2	Enable bit				
	1 = Interrupt i	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 12	T5IE: Timer5	Interrupt Enab	le bit				
	1 = Interrupt	request enable	d				
bit 11	0 = Interrupt 1	Interrupt Engl	abled Io bit				
	1 = Interrunt	request enable	d				
	0 = Interrupt I	request not enable	abled				
bit 10	OC4IE: Output	ut Compare Ch	annel 4 Interr	upt Enable bit	t		
	1 = Interrupt	request enable	d				
hit Q		ut Compare Ch	ionnel 3 Interr	unt Enable bit	÷		
Dit 9	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer (Complete Inter	rrupt Enable bit		
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 7	IC8IE: Input (Capture Chann	el 8 Interrupt d	Enable bit			
	1 = Interrupt I 0 = Interrupt I	request enable	u abled				
bit 6	IC7IE: Input (Capture Chann	el 7 Interrupt	Enable bit			
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 5	AD2IE: ADC2	2 Conversion C	omplete Inter	rupt Enable b	it		
	1 = Interrupt	request enable	d				
hit 4		request not ena	IDIEU Enable bit				
	1 = nterrunt	request enable	d				
	0 = Interrupt	request not enable	abled				

REGISTER 9- 2	2: CLKD	V: CLOCK D	IVISOR RE	GISTER ⁽²⁾			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOS	T<1:0>				PLLPRE<4:	0>	
bit 7							bit 0
Logondi		v = Value cot	from Configu	ration hits on D			
R - Readable h	t	y = value set	hit		on nonted hit reg	ad as '0'	
n = Value at P('1' = Bit is set	DIL	$0^{\circ} = \text{Bit is clear}$	ared	v – Bitisunkn	0.000
		I - DILIS SEL			aieu		OWIT
bit 15	ROI: Recover 1 = Interrupts 0 = Interrupts	on Interrupt bi will clear the I have no effec	it DOZEN bit ar t on the DOZ	nd the processo EN bit	r clock/periph	ieral clock ratio is	set to 1:1
bit 14-12	DOZE<2:0>: 111 = FcY/12 110 = FcY/64 101 = FcY/32 100 = FcY/16 011 = FcY/8 (010 = FcY/4 001 = FcY/2 000 = FcY/1	Processor Cloo 8 (default)	ck Reduction	Select bits			
bit 11	DOZEN: DOZ	ZE Mode Enabl	e bit ⁽¹⁾				
	1 = DOZE<2 0 = Processo	:0> field specifi or clock/periphe	ies the ratio b eral clock ratio	etween the period forced to 1:1	ipheral clocks	and the process	or clocks
bit 10-8	FRCDIV<2:0	Internal Fast	RC Oscillato	r Postscaler bit	S		
	111 = FRC di 110 = FRC di 101 = FRC di 100 = FRC di 011 = FRC di 010 = FRC di 001 = FRC di 000 = FRC di	vide by 256 vide by 64 vide by 32 vide by 16 vide by 8 vide by 4 vide by 2 vide by 1 (defa	ult)				
bit 7-6	PLLPOST<1: 11 = Output/8 10 = Reserve 01 = Output/2 00 = Output/2	: 0>: PLL VCO d (default) 2	Output Divide	r Select bits (al	so denoted a	s 'N2', PLL posts	:aler)
bit 5 bit 4-0	Unimplemen PLLPRE<4:0 11111 = Inpu	ted: Read as ' >: PLL Phase I t/33	^{0'} Detector Inpu	t Divider bits (a	lso denoted a	is 'N1', PLL presc	aler)
	• • 00001 = Inpu 00000 = Inpu	t/3 t/2 (default)					

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This is register is reset only on a Power-on Reset (POR).

REGIOTER											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD				
							DILU				
Legend:											
R = Readable	e bit	W = Writable b	bit	U = Unimpler	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	IC8MD: Input	Capture 8 Mod	ule Disable bi	t							
	1 = Input Cap	ture 8 module i	s disabled								
bit 14		Conture 7 Med	s enabled ulo Diochlo bit								
DIL 14	1 = Input Can	ture 7 module i	s disabled	L							
	0 = Input Cap	ture 7 module i	s enabled								
bit 13	IC6MD: Input	Capture 6 Mod	ule Disable bi	t							
	1 = Input Cap	ture 6 module i	s disabled								
hit 12	IC5MD: Input	Capture 5 Mod	s enableu ule Disable bit	ł							
	1 = Input Capture 5 module is disabled										
	0 = Input Capture 5 module is enabled										
bit 11	IC4MD: Input	Capture 4 Mod	ule Disable bit	t							
	1 = Input Cap	ture 4 module i ture 4 module i	s disabled								
bit 10	IC3MD: Input	Capture 3 Mod	s enableu ule Disable bit	ł							
bit TO	1 = Input Cap	ture 3 module i	s disabled	L							
	0 = Input Cap	ture 3 module i	s enabled								
bit 9	IC2MD: Input	Capture 2 Mod	ule Disable bi	t							
	1 = Input Cap	ture 2 module i ture 2 module i	s disabled								
bit 8	IC1MD: Input	Capture 1 Mod	ule Disable bi	ł							
bit o	1 = Input Cap	ture 1 module i	s disabled	L .							
	0 = Input Cap	ture 1 module i	s enabled								
bit 7	OC8MD: Out	put Compare 8	Module Disabl	le bit							
	1 = Output Co	ompare 8 modu ompare 8 modu	le is disabled								
bit 6	OC7MD: Out	out Compare 4	Module Disabl	le bit							
	1 = Output Co	ompare 7 modu	le is disabled								
	0 = Output Co	ompare 7 modu	le is enabled								
bit 5	OC6MD: Out	out Compare 6	Module Disabl	le bit							
	1 = Output Co $0 = Output Co$	ompare 6 modu ompare 6 modu	le is disabled								
bit 4	OC5MD: Out	out Compare 5	Module Disabl	le bit							
-	1 = Output Co	ompare 5 modu	le is disabled								
	0 = Output Co	ompare 5 modu	le is enabled								

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

NOTES:

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read - indicates data transfer is output from slave
	0 = Write - indicates data transfer is input to slave
	Hardware set of clear after reception of the device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit complete, I2CxTRN is empty
	Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

REGISTER 20-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RSE7 | RSE6 | RSE5 | RSE4 | RSE3 | RSE2 | RSE1 | RSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 RSE<15:0>: Receive Slot Enable bits

1 = CSDI data is received during the individual time slot n

0 = CSDI data is ignored during the individual time slot n

REGISTER 20-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TSE7 | TSE6 | TSE5 | TSE4 | TSE3 | TSE2 | TSE1 | TSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0', during the individual time slot, depending on the state of the CSDOM bit

24.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

24.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

24.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

24.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

24.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

TABLE 25-11:	ELECTRICAL CHARACTERISTICS: BOR
--------------	---------------------------------

DC CHARACTERISTICS		Standard Opera (unless otherwise Operating tempe	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteris	stic ⁽¹⁾	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10 VBOR BOR Event on VDD transiti		sition high-to-low	2.40	_	2.55	V	Vdd	
Mate 4.	to A. Developmentary and far design suideness only and are not tested in manufacturing							

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 25-12: DC CHARACTERISTICS: PROGRAM MEMORY

				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
DC CHA	RACIER	151105	Öperat	ing temp	erature	\leq TA \leq +85°C for Industrial \leq TA \leq +125°C for Extended				
Param.	Symbol	Characteristic ⁽³⁾	Min	Typ ⁽¹⁾	Max	Units	Conditions			
		Program Flash Memory								
D130	Eр	Cell Endurance	10,000	—	—	E/W				
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage			
D132b	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage			
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated			
D135	IDDP	Supply Current during Programming	—	10	—	mA				
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2			
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, TA = +150°C, See Note 2			
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2			
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +150°C, See Note 2			
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, Ta = +85°C, See Note 2			
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +150°C, See Note 2			

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b '011111 (for Min), TUN<5:0> = b '100000 (for Max). This parameter depends on the FRC accuracy (see Table 25-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

3: These parameters are assured by design, but are not characterized or tested in manufacturing.

TABLE 25-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Standar (unless Operation	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
_	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10	1	μF	Capacitor must be low series resistance (< 5 ohms)		

Note 1: Typical VCORE voltage = 2.5V when $VDD \ge VDDMIN$.

FIGURE 25-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS

TABLE 25-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

АС СНА	RACTERIST	ICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industri $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	—		10	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—		ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_			ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time				ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

26.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXGPX06A/X08A/X10A electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 25.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in **Section 25.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33FJXXXGPX06A/X08A/X10A high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias ⁽⁴⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁵⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(5)}$	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 3.0V^{(5)}$	0.3V to 5.6V
Voltage on VCAP with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	60 mA
Maximum current into VDD pin ⁽²⁾	60 mA
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	2 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	4 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	8 mA
Maximum current sunk by all ports combined	10 mA
Maximum current sourced by all ports combined ⁽²⁾	10 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
- **3:** Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGECx, and PGEDx pins.
- 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
- 5: Refer to the "Pin Diagrams" section for 5V tolerant pins.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N		80		
Lead Pitch	е		0.50 BSC		
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45 0.60 0.75			
Footprint	L1	1.00 REF			
Foot Angle	φ	0° 3.5° 7°			
Overall Width	E		14.00 BSC		
Overall Length	D		14.00 BSC		
Molded Package Width	E1		12.00 BSC		
Molded Package Length	D1		12.00 BSC		
Lead Thickness	С	0.09 – 0.20			
Lead Width	b	0.17 0.22 0.27			
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11° 12° 13°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S		
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.40 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B