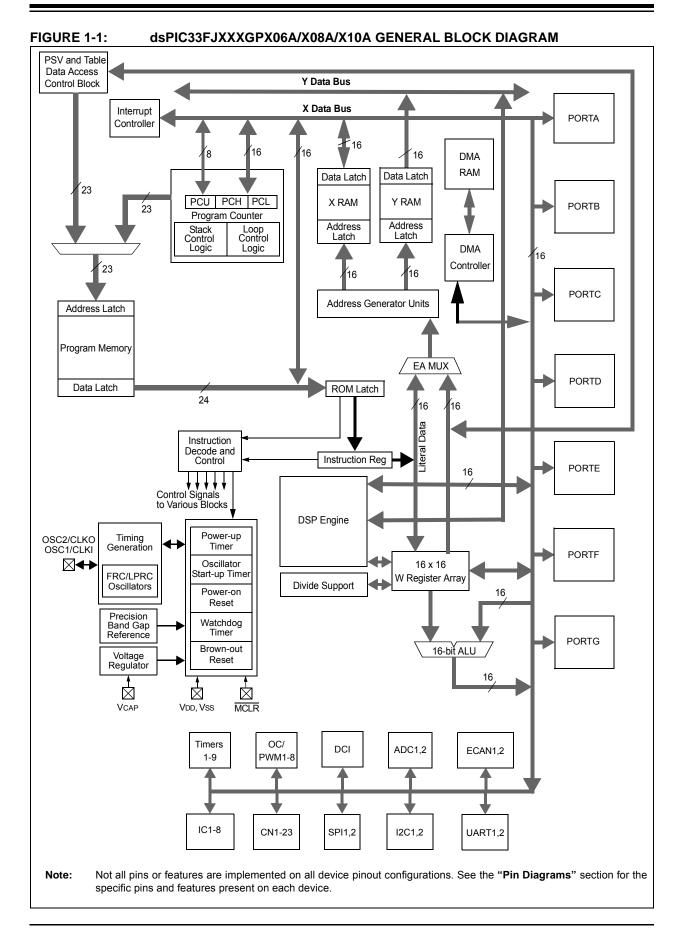


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp306at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0						
—	—	—	US	EDT ⁽¹⁾		DL<2:0>							
bit 15							bit						
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0						
SATA	SATB	SATDW	ACCSAT	IPL3(2)	PSV	RND	IF						
bit 7	·			·		·	bit						
Legend:		C = Clear onl	y bit										
R = Readable	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set							
0' = Bit is cle	ared	'x = Bit is unk	nown	U = Unimpler	nented bit, rea	d as '0'							
bit 15-13	Unimplemen	ted: Read as '	0'										
bit 12	US: DSP Mul	tiply Unsigned	Signed Contr	ol bit									
	Ų	1 = DSP engine multiplies are unsigned											
	•	ne multiplies a	•	(1)									
bit 11	-	D Loop Termina											
	 ⊥ = Terminate 0 = No effect 	e executing DO	loop at end o	f current loop it	eration								
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	oits									
	111 = 7 DO loops active												
	•												
	001 = 1 DO lo	001 = 1 DO loop active											
	000 = 0 DO loops active												
bit 7	SATA: AccA Saturation Enable bit												
		ator A saturatio											
bit 6	0 = Accumulator A saturation disabled SATB: AccB Saturation Enable bit												
bit o	1 = Accumulator B saturation enabled												
	0 = Accumulator B saturation disabled												
bit 5	SATDW: Data Space Write from DSP Engine Saturation Enable bit												
	1 = Data space write saturation enabled 0 = Data space write saturation disabled												
bit 4	 0 = Data space write saturation disabled ACCSAT: Accumulator Saturation Mode Select bit 												
		ration (super s											
		ration (normal											
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾												
	 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less 												
bit 2		n Space Visibil											
		space visible ir											
	0 = Program	space not visib	le in data spa	се									
bit 1		ng Mode Seleo											
	,	onventional) ro (convergent) r	0										
bit 0		Fractional Mul	-										
		ode enabled fo											
	∩ = Fractiona	I mode enable	d for DSP mul	Itinly ons									

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

Note 1: This bit will always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJXXXGPX06A/X08A/X10A ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJXXXGPX06A/X08A/X10A CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJXXXGPX06A/X08A/X10A is a single-cycle, instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations which require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has various options selected through various bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- · Conventional or convergent rounding (RND)
- Automatic saturation on/off for AccA (SATA)
- Automatic saturation on/off for AccB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

Table 3-1 provides a summary of DSP instructions. A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	A = A + x2	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE 4-2	1: E	CAN2 R	EGISTE	R MAP	WHEN (1.WIN =	0 OR 1		dsPIC33F	JXXXC	GP706A	\/708A	/710A D	EVICE	<u>S ONL'</u>	Y	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	_	_	CSIDL	ABAT	_	RI	EQOP<2:0	>	OPN	/IODE<2:0	∧		CANCAP	_	_	WIN	0480
C2CTRL2	0502	_	_	_	_	_	_	—	_	_	_	_		C	NCNT<4:)>		0000
C2VEC	0504	_	_	_		FI	LHIT<4:0>			—				ICODE<6:0)>			0000
C2FCTRL	0506	C	MABS<2:0>	>	_	_	-	_	_	—	_	—			FSA<4:0>			0000
C2FIFO	0508	_	_			FBP<5	:0>			_	_			FNRE	3<5:0>			0000
C2INTF	050A	_	_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	_	_	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E				TERRCN	Γ<7:0>							RERRC	NT<7:0>				0000
C2CFG1	0510	_	_	_	_	_	_	_	_	SJW<1	1:0>			BRP	<5:0>			0000
C2CFG2	0512	_	WAKFIL	_	_	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	SE	EG1PH<2	2:0>	P	RSEG<2:0	0>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C2FMSKSEL1	0518	F7MSł	<<1:0>	F6MSI	<<1:0>	F5MSk	<1:0>	F4MS	< <1:0>	F3MSK<	<1:0>	F2MSH	<1:0>	F1MS	< <1:0>	F0MS	K<1:0>	0000
C2FMSKSEL2	051A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSł	<<1:0>	F8MS	K<1:0>	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 FOR dsPIC33FJXXXGP706A/708A/710A DEVICES ONLY **TABLE 4-22:**

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							See	definition	when WIN	= x							
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TX ABAT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PF	RI<1:0>	0000
C2TR23CON	0532	TXEN3	TX ABAT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	RI<1:0>	0000
C2TR45CON	0534	TXEN5	TX ABAT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	RI<1:0>	0000
C2TR67CON	0536	TXEN7	TX ABAT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C2RXD	0540								Recieved [Data Word								xxxx
C2TXD	0542								Transmit D	ata Word								xxxx

dsPIC33FJXXXGPX06A/X08A/X10A

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (e.g., [W7+W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing).
- 2. The BREN bit is set in the XBREV register.
- 3. The addressing mode used is Register Indirect with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is only executed for Register Indirect with Pre-Increment or Post-Increment Addressing and word sized data writes. It will not function for any other addressing mode or for byte sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed Addressing should not be enabled
	together. In the event that the user
	attempts to do so, Bit-Reversed Address-
	ing will assume priority when active for the
	X WAGU and X WAGU Modulo Addressing
	will be disabled. However, Modulo
	Addressing will continue to function in the X
	RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN bit (XBREV<15>), a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
54	46	0x000070	0x000170	DMA4 – DMA Channel 4
55	47	0x000072	0x000172	T6 – Timer6
56	48	0x000074	0x000174	T7 – Timer7
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59	51	0x00007A	0x00017A	T8 – Timer8
60	52	0x00007C	0x00017C	T9 – Timer9
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready
64	56	0x000084	0x000184	C2 – ECAN2 Event
65	57	0x000086	0x000186	Reserved
66	58	0x000088	0x000188	Reserved
67	59	0x00008A	0x00018A	DCIE – DCI Error
68	60	0x00008C	0x00018C	DCID – DCI Transfer Done
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	62	0x000090	0x000190	Reserved
71	63	0x000092	0x000192	Reserved
72	64	0x000094	0x000194	Reserved
73	65	0x000096	0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	U2E – UART2 Error
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request
80-125	72-117	0x0000A4-0x0000FE	0x0001A4-0x0001FE	Reserved

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

REGISTER /	-3: INTCC	INT: INTERR	UPICONTR	COL REGISTE	:K 1						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE				
bit 15							bit 8				
											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—				
bit 7							bit 0				
Legend:	L :4		L :4			d = = (0)					
R = Readable		W = Writable		U = Unimplem							
-n = Value at F	'UR	'1' = Bit is set		'0' = Bit is clea	irea	x = Bit is unkr	IOWN				
bit 15		errupt Nesting D)isabla hit								
bit 15		nesting is disat									
	•	nesting is enab									
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit							
		caused by ove									
	•	not caused by									
bit 13	OVBERR: Accumulator B Overflow Trap Flag bit										
	 1 = Trap was caused by overflow of Accumulator B 0 = Trap was not caused by overflow of Accumulator B 										
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit										
Sit 12	1 = Trap was caused by catastrophic overflow of Accumulator A										
				overflow of Accu							
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit										
	 1 = Trap was caused by catastrophic overflow of Accumulator B 0 = Trap was not caused by catastrophic overflow of Accumulator B 										
bit 10	-	-	-								
	OVATE: Accumulator A Overflow Trap Enable bit 1 = Trap overflow of Accumulator A										
	0 = Trap disa										
bit 9	OVBTE: Acc	umulator B Ove	erflow Trap En	able bit							
	1 = Trap over 0 = Trap disa	rflow of Accum bled	ulator B								
bit 8	COVTE: Cata	astrophic Overf	low Trap Enat	ole bit							
	 1 = Trap on catastrophic overflow of Accumulator A or B enabled 0 = Trap disabled 										
bit 7	•	Shift Accumula	tor Error Statu	us bit							
	1 = Math erro	or trap was cau	sed by an inva	lid accumulator							
hit C			•	invalid accumul	ator shift						
bit 6	-	rithmetic Error S or trap was caus		a by zero							
		or trap was cau	•	•							
bit 5		DMA Controller	-	-							
	1 = DMA con	troller error trap	has occurred	1							
	0 = DMA con	troller error trap	o has not occu	rred							
bit 4	MATHERR: A	Arithmetic Error	Status bit								
		or trap has occu									
	v = wath error	or trap has not o	occurred								

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 3 CNIF: Input Change Notification Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
FORCE ⁽¹⁾	—	—	-	—	—	—	—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	IRQSEL6 ⁽²⁾	IRQSEL5 ⁽²⁾	IRQSEL4 ⁽²⁾	IRQSEL3(2)	IRQSEL2 ⁽²⁾	IRQSEL1(2)	IRQSEL0(2)		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15	FORCE: Force	e DMA Transfe	er bit ⁽¹⁾						
		ingle DMA tran	•	,					
		DMA transfer	-	MA request					
bit 14-7	Unimplemen	ted: Read as '	0'						
bit 6-0	IRQSEL<6:0>	DMA Periph	eral IRQ Numl	ber Select bits	(2)				
	1111111 = D	MAIRQ127 se	lected to be C	hannel DMARI	EQ				
	•								
	•								
	•								
	0000000 = DN	MAIRQ0 select	ed to be Chan	nel DMAREQ					

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.
 - 2: Please see Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator

bit 0 OSWEN: Oscillator Switch Enable bit

bit 1

- 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual" for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: This is register is reset only on a Power-on Reset (POR).

10.2.2 IDLE MODE

Idle mode has these features:

- The CPU stops executing instructions
- · The WDT is automatically cleared
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLK-DIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLK-DIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLK-DIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

REGISTER 19-27: CITRBnSID: ECAN™ BUFFER n STANDARD IDENTIFIER (n = 0, 1, ..., 31)

	N-x						
	bit 8						
U-0 U-0 U-0 R/W-X R/W-X R/W-X R/W-X R/	SID<10:6>						
	N-x						

SID<5:0>	SRR	IDE
bit 7		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-2	SID<10:0>: Standard Identifier bits
bit 1	SRR: Substitute Remote Request bit
	 1 = Message will request remote transmission 0 = Normal message
bit 0	IDE: Extended Identifier bit
	1 = Message will transmit extended identifier

0 = Message will transmit standard identifier

REGISTER 19-28: CITRBnEID: ECAN™ BUFFER n EXTENDED IDENTIFIER (n = 0, 1, ..., 31)

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
	_				EID<	17:14>		
bit 15				·			bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EID	<13:6>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

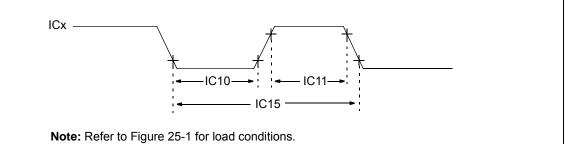
REGISTER 21-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_			—		CH123	NB<1:0>	CH123SB
bit 15	·						bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	_			CH123	VA<1:0>	CH123SA
bit 7							bit C
Legend:			.,				
R = Readable		W = Writable b	it	U = Unimplen			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15-11	•	ted: Read as '0					
bit 10-9		0>: Channel 1,	•	•	•	S	
		s = 1, CHxNB is					
		ative input is A					
		ative input is Al			N7, CH3 negat	ive input is AN	8
		I2, CH3 negativ	•				
bit 8		nannel 1, 2, 3 P	-	-			
		= 1, CHxSB is					
		ive input is AN3	, CH2 positive		CH3 positive	nout is AN5	
	0 = CH1 posit	iva input is ANC					
hit 7-3	•	•	, CH2 positive	e input is AN4, e input is AN1,			
bit 7-3 bit 2-1	Unimplemen	ted: Read as '0	, CH2 positive	e input is AN1,	CH3 positive	nput is AN2	
bit 7-3 bit 2-1	Unimplemen CH123NA<1:	ted: Read as '0 0>: Channel 1,	, CH2 positive 2, 3 Negative	e input is AN1, Input Select fo	CH3 positive	nput is AN2	
	Unimplemen CH123NA<1: When AD12E	ted: Read as '0 0>: Channel 1, 5 = 1, CHxNA is	, CH2 positive 2, 3 Negative :: U-0, Unimp	e input is AN1, Input Select fo Iemented, Rea	CH3 positive r Sample A bi ad as '0'	nput is AN2	N11
	Unimplemen CH123NA<1: When AD12E 11 = CH1 neg	ted: Read as '0 0>: Channel 1, 3 = 1, CHxNA is jative input is Al	, CH2 positive 2, 3 Negative :: U-0, Unimp N9, CH2 nega	e input is AN1, Input Select fo Ilemented, Rea ative input is AN	CH3 positive r Sample A bi ad as '0' N10, CH3 nega	nput is AN2 is ative input is A	
	Unimplemen CH123NA<1: When AD12E 11 = CH1 neg 10 = CH1 neg	ted: Read as '0 0>: Channel 1, 5 = 1, CHxNA is	, CH2 positive 2, 3 Negative :: U-0, Unimp N9, CH2 nega N6, CH2 nega	e input is AN1, Input Select fo Iemented, Rea ative input is AN ative input is AN	CH3 positive r Sample A bi ad as '0' N10, CH3 nega	nput is AN2 is ative input is A	
	Unimplemen CH123NA<1: When AD12E 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH	ted: Read as '0 0>: Channel 1, b = 1, CHxNA is pative input is Al pative input is Al	, CH2 positive 2, 3 Negative :: U-0, Unimp N9, CH2 nega N6, CH2 nega e input is VRE	e input is AN1, Input Select fo Ilemented, Rea ative input is AN ative input is AN F-	CH3 positive r Sample A bi ad as '0' N10, CH3 nega N7, CH3 negat	nput is AN2 is ative input is A	
bit 2-1	Unimplemen CH123NA<1: When AD12E 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SA: Ch	ted: Read as '0 0>: Channel 1, B = 1, CHxNA is pative input is Al pative input is Al 12, CH3 negativ	, CH2 positive 2, 3 Negative :: U-0, Unimp N9, CH2 nega N6, CH2 nega e input is VRE psitive Input S	e input is AN1, Input Select fo Ilemented, Rea ative input is AN ative input is AN F- Select for Samp	CH3 positive r Sample A bi ad as 'o' N10, CH3 nega N7, CH3 negat	nput is AN2 is ative input is A	
bit 2-1	Unimplemen CH123NA<1: When AD12E 11 = CH1 neg 0x = CH1 neg 0x = CH1, CH CH123SA: CH	ted: Read as '0 0>: Channel 1, 3 = 1, CHxNA is pative input is Al pative input is Al 12, CH3 negativ nannel 1, 2, 3 P	, CH2 positive 2, 3 Negative :: U-0, Unimp N9, CH2 nega N6, CH2 nega e input is VRE psitive Input S :: U-0, Unimp	e input is AN1, Input Select fo Ilemented, Rea ative input is AN ative input is AN F- Select for Samp Ilemented, Rea	CH3 positive r Sample A bi ad as '0' N10, CH3 nega N7, CH3 negat ble A bit ad as '0'	nput is AN2 is ative input is A ive input is AN	

25.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXGPX06A/X08A/X10A electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJXXXGPX06A/X08A/X10A family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.


Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when $V_{DD} < 3.0V^{(4)}$	0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
 - 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.


FIGURE 25-6: **INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS**

TABLE 25-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No. Symbol Characteristic ⁽¹⁾				Min	Мах	Units	Conditions
IC10 TccL ICx Input Low Time		No Prescaler	0.5 Tcy + 20	_	ns	—	
			With Prescaler	10	_	ns	
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20		ns	—
			With Prescaler		_	ns	
IC15 TccP ICx Input Period		(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)		
Note 1:	These p	arameters are charact	erized but not teste	d in manufacturing	g.	•	

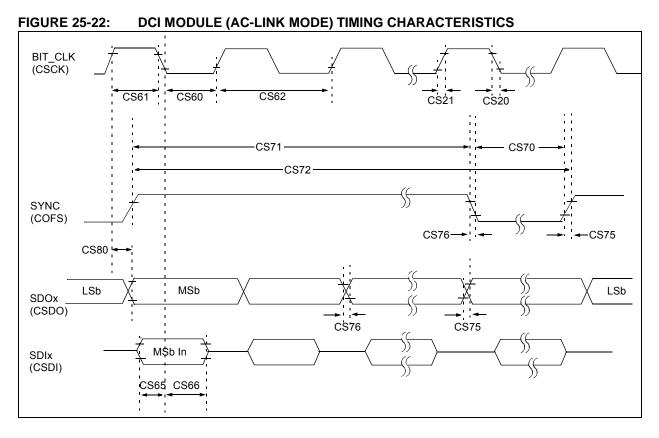

FIGURE 25-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 25-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
OC10	TccF	OCx Output Fall Time	—	_	- — ns See parameter D032			
OC11	TccR	OCx Output Rise Time	—	—	—	ns	See parameter D031	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-39: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.SymbolCharacteristic			Min	Typ ⁽³⁾	Max	Units	Conditions		
CS60	TBCLKL	BIT_CLK Low Time	36	40.7	45	ns	_		
CS61	TBCLKH	BIT_CLK High Time	36	40.7	45	ns	_		
CS62	TBCLK	BIT_CLK Period	_	81.4	_	ns	Bit clock is input		
CS65	TSACL	Input Setup Time to Falling Edge of BIT_CLK	—	—	10	ns	_		
CS66	THACL	Input Hold Time from Falling Edge of BIT_CLK	—	—	10	ns	_		
CS70	TSYNCLO	SYNC Data Output Low Time	—	19.5		μs	Note 1		
CS71	TSYNCHI	SYNC Data Output High Time	_	1.3	_	μs	Note 1		
CS72	TSYNC	SYNC Data Output Period	_	20.8	_	μs	Note 1		
CS75	TRACL	Rise Time, SYNC, SDATA_OUT	—	10	25	ns	CLOAD = 50 pF, VDD = 5V		
CS76	TFACL	Fall Time, SYNC, SDATA_OUT	_	10	25	ns	CLOAD = 50 pF, VDD = 5V		
CS77	TRACL	Rise Time, SYNC, SDATA_OUT	—	—	30	ns	CLOAD = 50 pF, VDD = 3V		
CS78	TFACL	Fall Time, SYNC, SDATA_OUT	—	—	30	ns	CLOAD = 50 pF, VDD = 3V		
CS80	TOVDACL	Output Valid Delay from Rising Edge of BIT_CLK	—		15	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

2: These values assume BIT_CLK frequency is 12.288 MHz.

3: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

26.1 High Temperature DC Characteristics

TABLE 26-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temperature Range	Max MIPS
Characteristic (in Volts)		(in °C)	dsPIC33FJXXXGPX06A/X08A/X10A
HDC5	VBOR to 3.6V ⁽¹⁾	-40°C to +150°C	20

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 25-11 for the minimum and maximum BOR values.

TABLE 26-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit			
High Temperature Devices								
Operating Junction Temperature Range	TJ	-40	—	+155	°C			
Operating Ambient Temperature Range	TA	-40	_	+150	°C			
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/o			W			
Maximum Allowed Power Dissipation	PDMAX	(TJ - TA)/θJ	A	W			

TABLE 26-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Parameter No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions		
Operating Voltage									
HDC10	Supply Voltage								
	Vdd	_	3.0	3.3	3.6	V	-40°C to +150°C		

TABLE 26-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARAC	TERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Parameter No.	Typical	Мах	Units	Conditions				
Power-Down Current (IPD)								
HDC60e	250	2000	μA	+150°C 3.3V Base Power-Down Current ^(1,3)				
Note 1. Base IPD is measured with all perioberals and clocks shut down. All I/Os are configured as inputs and								

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

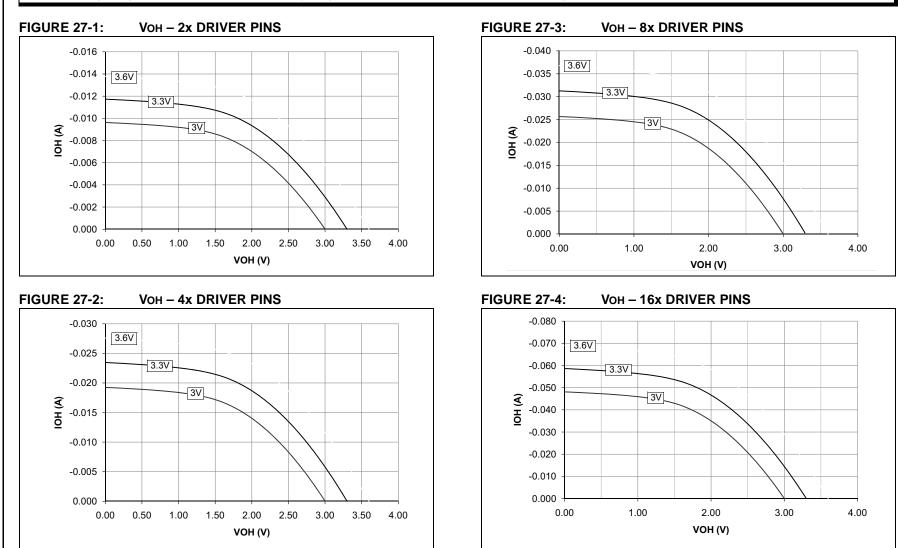
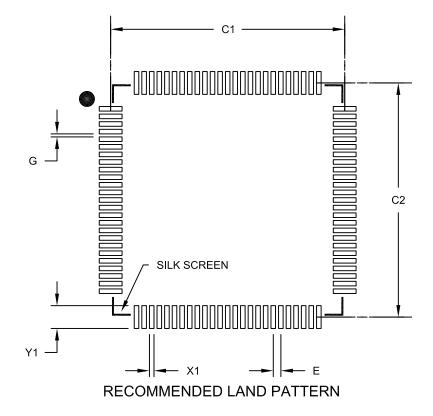

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 26-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V							ns: 3.0V to 3.6V	
DC CHARACTERISTICS			(unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for High					
Param. Symbol		Characteristic	Min. Typ. Max.			Temperature Units Conditions		
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins		_	0.4	V	IOL ≤ 1.8 mA, VDD = 3.3V See Note 1	
HDO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3		_	0.4	V	IOL ≤ 3.6 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15		_	0.4	V	Io∟ ≤ 6 mA, Vdd = 3.3V See Note 1	
HDO20 Vor		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	Io∟ ≥ -1.8 mA, Vod = 3.3V See Note 1	
	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	Io∟ ≥ -3 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	V	Io∟ ≥ -6 mA, VDD = 3.3V See Note 1	
HDO20A V	Vон1	Output High Voltage I/O Pins:	1.5	_	_	V	IOH ≥ -1.9 mA, VDD = 3.3V See Note 1	
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_	_		IOH ≥ -1.85 mA, VDD = 3.3V See Note 1	
			3.0	_	—		IOH ≥ -1.4 mA, VDD = 3.3V See Note 1	
		Output High Voltage 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3 Output High Voltage 8x Source Driver Pins - OSC2, CLKO,	1.5	_	_		IOH ≥ -3.9 mA, VDD = 3.3V See Note 1	
			2.0				IOH ≥ -3.7 mA, VDD = 3.3V See Note 1	
			3.0	_	—		IOH ≥ -2 mA, VDD = 3.3V See Note 1	
			1.5	_	_		$IOH \ge -7.5 \text{ mA}, VDD = 3.3V$ See Note 1	
		RC15	2.0				IOH ≥ -6.8 mA, VDD = 3.3V See Note 1	
Note 1: Param		ters are characterized, but not tested.	3.0	_	_		Іон ≥ -3 mA, VDD = 3.3V See Note 1	

TABLE 26-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS


27.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS				
Dimensior	MIN	NOM	MAX					
Contact Pitch	E		0.50 BSC					
Contact Pad Spacing	C1		15.40					
Contact Pad Spacing	C2		15.40					
Contact Pad Width (X100)	X1			0.30				
Contact Pad Length (X100)	Y1			1.50				
Distance Between Pads	G	0.20						

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B