

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp310a-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33F PRODUCT FAMILIES

The dsPIC33F General Purpose Family of devices are ideal for a wide variety of 16-bit MCU embedded applications. The controllers with codec interfaces are well-suited for speech and audio processing applications.

The device names, pin counts, memory sizes and peripheral availability of each family are listed below, followed by their pinout diagrams.

dsPIC33F	General	Purpose	Family	Controllers
----------	---------	---------	--------	--------------------

Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	16-bit Timer	Input Capture	Output Compare Std. PWM	Codec Interface	ADC	UART	IdS	I²C™	Enhanced CAN™	VO Pins (Max) ⁽²⁾	Packages
dsPIC33FJ64GP206A	64	64	8	9	8	8	1	1 ADC, 18 ch	2	2	1	0	53	PT, MR
dsPIC33FJ64GP306A	64	64	16	9	8	8	1	1 ADC, 18 ch	2	2	2	0	53	PT, MR
dsPIC33FJ64GP310A	100	64	16	9	8	8	1	1 ADC, 32 ch	2	2	2	0	85	PF, PT
dsPIC33FJ64GP706A	64	64	16	9	8	8	1	2 ADC, 18 ch	2	2	2	2	53	PT, MR
dsPIC33FJ64GP708A	80	64	16	9	8	8	1	2 ADC, 24 ch	2	2	2	2	69	PT
dsPIC33FJ64GP710A	100	64	16	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT
dsPIC33FJ128GP206A	64	128	8	9	8	8	1	1 ADC, 18 ch	2	2	1	0	53	PT, MR
dsPIC33FJ128GP306A	64	128	16	9	8	8	1	1 ADC, 18 ch	2	2	2	0	53	PT, MR
dsPIC33FJ128GP310A	100	128	16	9	8	8	1	1 ADC, 32 ch	2	2	2	0	85	PF, PT
dsPIC33FJ128GP706A	64	128	16	9	8	8	1	2 ADC, 18 ch	2	2	2	2	53	PT, MR
dsPIC33FJ128GP708A	80	128	16	9	8	8	1	2 ADC, 24 ch	2	2	2	2	69	PT
dsPIC33FJ128GP710A	100	128	16	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT
dsPIC33FJ256GP506A	64	256	16	9	8	8	1	1 ADC, 18 ch	2	2	2	1	53	PT, MR
dsPIC33FJ256GP510A	100	256	16	9	8	8	1	1 ADC, 32 ch	2	2	2	1	85	PF, PT
dsPIC33FJ256GP710A	100	256	30	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT

Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.

2: Maximum I/O pin count includes pins shared by the peripheral functions.

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will

operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (e.g., [W7+W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing).
- 2. The BREN bit is set in the XBREV register.
- 3. The addressing mode used is Register Indirect with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is only executed for Register Indirect with Pre-Increment or Post-Increment Addressing and word sized data writes. It will not function for any other addressing mode or for byte sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed Addressing should not be enabled
	together. In the event that the user
	attempts to do so, Bit-Reversed Address-
	ing will assume priority when active for the
	X WAGU and X WAGU Modulo Addressing
	will be disabled. However, Modulo
	Addressing will continue to function in the X
	RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN bit (XBREV<15>), a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

5.0 FLASH PROGRAM MEMORY

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Familv Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJXXXGPX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and

Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	 Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		T1IP<2:0>		_		OC1IP<2:0>						
bit 15							bit 8					
		DAMA	DAALO			DAMO	DAMA					
0-0	R/W-1	R/W-U	R/W-0	0-0	R/W-1		R/VV-0					
— bit 7		ICTIF \2.0>		_		INTOF \$2.02	bit 0					
Legend:												
R = Readabl	le bit	W = Writable I	oit	U = Unimple	mented bit, re	ad as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own					
bit 15	Unimplom	ntod. Dood oo '	,									
bit 14 12		Timor1 Interrupt) Driority bite									
DIL 14-12	111 = Interrupt is priority 7 (highest priority interrupt)											
	•			()								
	•											
	001 = Inter	rupt is priority 1										
	000 = Inter	rupt source is disa	abled									
bit 11	Unimplemented: Read as '0'											
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits											
	111 = Inter •	rupt is priority 7 (f	nighest priori	ty interrupt)								
	•											
	• 001 - Intor	runt in priority 1										
	001 = Inter 000 = Inter	rupt source is disa	abled									
bit 7	Unimplem	ented: Read as 'o)'									
bit 6-4	IC1IP<2:0>	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits										
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>											
	•											
	•											
	001 = Inter	rupt is priority 1	ablad									
hit 3		nted: Read as '	ableu									
bit 2-0	INT0IP<2:0	>: External Interr	, upt 0 Prioritv	, bits								
Sit 2 0	111 = Inter	rupt is priority 7 (h	nighest priori	ty interrupt)								
	•			- • *								
	•											
	001 = Inter	rupt is priority 1										
	000 = Inter	rupt source is disa	abled									

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_		T8IP<2:0>				MI2C2IP<2:0>							
bit 15							bit 8						
			D 444 0			D M U O	D 444 0						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
		SI2C2IP<2:0>		—		17IP<2:0>							
DIT /							DIT						
Legend:													
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown						
bit 15	Unimplem	ented: Read as 'o	0'										
bit 14-12	T8IP<2:0>	: Timer8 Interrupt	Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)												
	•												
	•												
	001 = Interrupt is priority 1												
	000 = Inte	rrupt source is dis	abled										
bit 11	Unimplemented: Read as '0'												
bit 10-8	MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits												
	111 = Inte	rrupt is priority 7 (I	highest priori	ity interrupt)									
	•												
	•												
	001 = Inte	rrupt is priority 1											
	000 = Inte	rrupt source is dis	abled										
bit 7	Unimplem	ented: Read as 'o	0'										
bit 6-4	SI2C2IP<2:0>: I2C2 Slave Events Interrupt Priority bits												
	111 = Inter	rrupt is priority 7 (I	highest priori	ity interrupt)									
	•												
	•												
	001 = Inte	rrupt is priority 1											
1.11.0		rrupt source is als											
bit 3	Unimplem	ented: Read as '											
bit 2-0	17IP<2:0>	: limer/ interrupt	Priority bits	(h, i i i i i i i i i i i i i i i i i i i									
	⊥⊥⊥ = Intel •	rrupt is priority 7 (1	nignest priori	ity interrupt)									
	•												
	•												
	001 = Inter	rrupt is priority 1	ablad										

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-v	R/W-v
_		COSC<2:0>	-	_	,	NOSC<2:0> ⁽²⁾	,
bit 15							bit 8
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOC	к —	LOCK	_	CF	<u> </u>	LPOSCEN	OSWEN
bit 7							bit 0
Levende			fram Canfigur	ration hita an D			and thit
D - Doode	bla bit	y = value set	hit		'UR montod hit, road		only bit
		41' = Rit is set	DIL	$0^{\circ} = 0$	mented bit, read	uas u v - Ritis unkno	WD
		I - DILIS SEL			aleu		VVII
bit 15	Unimplemen	ted: Read as '	D '				
bit 14-12	COSC<2:0>:	Current Oscilla	tor Selection	bits (read-only	()		
	111 = Fast R	C oscillator (FF	RC) with Divid	le-bv-N			
	110 = Fast R	C oscillator (FF	RC) with Divid	le-by-16			
	101 = Low-Po	ower RC oscilla	tor (LPRC)	, -			
	100 = Second	dary oscillator (Sosc)				
	011 = Primary	y oscillator (XT	HS, EC) with	h PLL			
	010 = Primary	y oscillator (XT	HS, EC)				
	001 = Fast R	C Oscillator (FI	RC) with Divid	de-by-N and PL	L (FRCDIVN +	PLL)	
hit 11	Unimplement	tod. Bood on "	, ,				
		Now Oppillator	Soloction bit	_c (2)			
DIL IU-O	111 = Fast P(Selection bit	s, ,			
	111 - Fast R(C oscillator (FF	C) with Divid	le-by-in le-by-16			
	101 = 1 ow-Pc	ower RC oscilla	tor (I PRC)				
	100 = Second	dary oscillator (Sosc)				
	011 = Primary	y oscillator (XT	HS, EC) with	h PLL			
	010 = Primary	y oscillator (XT	HS, EC)				
	001 = Fast R	C Oscillator (FI	RC) with Divid	de-by-N and Pl	_L (FRCDIVN +	PLL)	
hit 7		C OSCIIIAIOI (FF	(C) bla hit				
	1 = If (FCKS)	M0 = 1) then c	lock and PLI	configurations	are locked		
	If (FCKS	M0 = 1), then a $M0 = 0$). then a	lock and PLL	. configurations	s may be modifi	ed	
	0 = Clock and	d PLL selectior	is are not loc	ked, configurat	ions may be mo	odified	
bit 6	Unimplemen	ted: Read as '	כ'				
bit 5	LOCK: PLL L	ock Status bit (read-only)				
	1 = Indicates	that PLL is in I	ock, or PLL s	start-up timer is	satisfied	is disabled	
hit 4		ted: Read as '	י טו וטכא, אנמו נ ז'				
hit 3	CF: Clock Fai	il Detect hit (re:	, ad/clear by ar	onlication)			
bit 0	1 = FSCM ha	as detected clo	nk failura	oplication)			
	0 = FSCM ha	as not detected	clock failure				
bit 2	Unimplemen	ted: Read as '	כי				
Note 1:	Writes to this regis	ter require an ι Η Family Refor	Inlock sequel	nce. Refer to S "for details	ection 7. "Osc	illator" (DS7018	6) in the
2.	Direct clock switch	es between an	v primary oso	illator mode wit	th PLL and FRC	PII mode are no	t permitted
۷.	This applies to cloc	ck switches in e	either directio	n. In these inst	ances, the appl	ication must swite	ch to FRC
	mode as a transitio	on clock source	between the	two PLL mode	es.		-

3: This is register is reset only on a Power-on Reset (POR).

OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽²⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			TUN	<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared				x = Bit is unkr	nown		
bit 15-6	Unimplemen	ted: Read as 'o)'				
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾				
	111111 = Ce	enter frequency	- 0.375% (7.3	345 MHz)			
	•						
	•						
	•						
	100001 = Ce	enter frequency	- 11.625% (6	.52 MHz)			
	100000 = Ce	enter frequency	- 12% (6.491 + 11 625% (8	VIHZ) 3 23 MHz)			
	011110 = Ce	enter frequency	+ 11.25% (8.1	20 MHz)			
	•		·	·			
	•						
	•						
	000001 = Ce 000000 = Ce	enter frequency enter frequency	+ 0.375% (7. (7.37 MHz no	40 MHz) ominal)			

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

2: This is register is reset only on a Power-on Reset (POR).

REGISTER 9-4:

NOTES:

14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
_	—	ICSIDL	—	—	_	_	—			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0			
ICTMR ⁽¹⁾	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value at P	POR	1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkr	nown			
		tad. Dead as f	<u>,</u> ,							
DIT 15-14		Conture Mode) ula Otana ina India	Control hit						
DIL 13			lie Stop in luie							
	0 = Input capt	ure module wil	I continue to c	operate in CPL	J Idle mode					
bit 12-8	Unimplement	ted: Read as '	o'							
bit 7	ICTMR: Input	Capture Timer	Select bits(1)							
	1 = TMR2 cor	ntents are capt	ured on captu	re event						
	0 = TMR3 cor	ntents are capt	ured on captu	re event						
bit 6-5	ICI<1:0>: Sele	ect Number of	Captures per	Interrupt bits						
	11 = Interrupt	on every fourt	h capture eve	nt •						
	10 = Interrupt 01 = Interrupt	on every seco	nd capture even	i rent						
	00 = Interrupt	on every capt	ure event							
bit 4	ICOV: Input C	apture Overflo	w Status Flag	bit (read-only))					
	1 = Input capt	ure overflow o	ccurred							
	0 = No input c	apture overflo	w occurred							
bit 3	ICBNE: Input	Capture Buffe	r Empty Status	s bit (read-only	/)					
	 1 = Input capt 0 = Input capt 	ure buffer is no ure buffer is er	npty at lea	ast one more c	capture value ca	an de read				
bit 2-0	ICM<2:0>: Inp	out Capture Mo	de Select bits	3						
	111 = Input ca	apture function	s as interrupt	pin only when	device is in Sle	ep or Idle mode	e			
	(Rising	edge detect o	nly, all other c	control bits are	not applicable.)				
	 110 = Unused (module disabled) 101 = Capture mode, every 16th rising edge 100 = Capture mode, every 4th rising edge 011 = Capture mode, every rising edge 									
	010 = Capture	e mode, every	falling edge	nd folling)						
		0> bits do not	control interru	nu raining) pt generation f	for this mode)					
	000 = Input ca	000 = Input capture module turned off								

REGISTE	ER 16-2:	SPIXC	ON1: SPIx C	ONTROL RI	EGISTER 1								
U-0		U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
		_	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾					
bit 15								bit 8					
R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
SSEN	(3)	CKP	MSTEN		SPRE<2:0>(2) PPRE<1:								
bit 7								bit 0					
Legend:													
R = Read	able bit		W = Writable	bit	U = Unimple	emented bit, read	d as '0'						
-n = Value	e at POR		'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown					
bit 15-13	Uni	mplemen	ted: Read as '	0'									
bit 12	DIS	DISSCK: Disable SCKx pin bit (SPI Master modes only)											
	1 =	Internal S	PI clock is disa	bled, pin func	tions as I/O								
bit 11	- 0 פוס		PI CIUCK IS EIIA	bit									
	1 =	1 = SDOx pin is not used by module; pin functions as I/O											
	0 =	SDOx pin	is controlled b	y the module		0							
bit 10	MO	MODE16: Word/Byte Communication Select bit											
	1 = 0 =	Communi Communi	cation is word- cation is byte-v	wide (16 bits) vide (8 bits)									
bit 9	SMI	P: SPIx Da	ata Input Samp	le Phase bit									
	Mas	ter mode:											
	1 =	Input data	sampled at er	nd of data out	out time								
	∪ – Slav	input data /e mode:	i sampieu al m		utput time								
	SMI	^{>} must be	cleared when	SPIx is used i	in Slave mode	Э.							
bit 8	CKI	E: SPIx CI	ock Edge Sele	ct bit ⁽¹⁾									
	1 = 0 =	Serial out Serial out	put data chang put data chang	es on transitiones	on from active on from Idle c	e clock state to lo lock state to acti	lle clock state (ve clock state (see bit 6) see bit 6)					
bit 7	SSE	N: Slave	Select Enable	bit (Slave mo	de) ⁽³⁾								
	1 =	1 = SSx pin used for Slave mode											
	0 =	SSx pin n	ot used by mo	dule. Pin cont	rolled by port	function							
bit 6	CKI	P: Clock P	olarity Select b	pit									
	1 = 0 =	Idle state	for clock is a h for clock is a lo	igh level; activo w level; activo	/e state is a lo e state is a hig	ow level gh level							
bit 5	MS	FEN: Mas	ter Mode Enab	le bit									
	1 = 0 =	Master mo Slave mo	ode de										
Note 1:	The CKE SPI mod	bit is not es (FRME	used in the Fraction $N = 1$).	amed SPI mo	des. The user	should program	this bit to '0' fo	or the Framed					

- 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note:	For more de	etails on the	instruction set,
	refer to th	e "16-bit N	ICU and DSC
	Programmer	's Refere	nce Manual"
	(DS70157).		

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, may be blank
OA, OB, SA, SB	DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description			
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions \in {W4 * W4,W5 * W5,W6 * W6,W7 * W7}			
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}			
Wn	One of 16 working registers ∈ {W0W15}			
Wnd	One of 16 destination working registers ∈ {W0W15}			
Wns	One of 16 source working registers ∈ {W0W15}			
WREG	W0 (working register used in file register instructions)			
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }			
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }			
Wx	X data space prefetch address register for DSP instructions ∈ {[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2, [W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2, [W9 + W12], none}			
Wxd	X data space prefetch destination register for DSP instructions \in {W4W7}			
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2, [W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2, [W11 + W12], none}			
Wyd	Y data space prefetch destination register for DSP instructions \in {W4W7}			

TABLE 23-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD Acc		Add Accumulators	1	1	OA,OB,SA,SB
		ADD f		f = f + WREG	1	1	C,DC,N,OV,Z
		ADD f,WREG		WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = Iit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA GT, Expr Branch if greater than		Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA LE, Expr Branch if less		Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal		1 (2)	None
		BRA	LT,Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA,Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA,Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ $40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	I Characteristic		Min ⁽¹⁾	Max	Units	Conditions	
IM10	TLO:SCL	SCL Clock Low Time 100 kHz mode TCY/2		Tcy/2 (BRG + 1)	_	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)		μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	—	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	—	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—	
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μS	—	
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0.2	—	μS		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	_	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—	
		From Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode ⁽²⁾	_	400	ns		

TABLE 25-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "*dsPIC33F/PIC24H Family Reference Manual*".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N	80		
Lead Pitch	е		0.50 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0° 3.5° 7°		
Overall Width	E		14.00 BSC	
Overall Length	D	14.00 BSC		
Molded Package Width	E1	12.00 BSC		
Molded Package Length	D1	12.00 BSC		
Lead Thickness	С	0.09 – 0.20		
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		0.50 BSC	
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B