

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Active
dsPIC
16-Bit
40 MIPs
I ² C, IrDA, LINbus, SPI, UART/USART
AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
85
64KB (64K × 8)
FLASH
-
16K x 8
3V ~ 3.6V
A/D 32x10b/12b
Internal
-40°C ~ 85°C (TA)
Surface Mount
100-TQFP
100-TQFP (12x12)
https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp310at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 CPU Control Registers

CPU control registers include:

- SR: CPU Status Register
- CORCON: Core Control Register

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽²⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> (2)		RA	N	OV	Z	С
bit 7							bit 0
Legend:							
C = Clear only	y bit	R = Readable	e bit	U = Unimpler	mented bit, read	as '0'	
S = Set only b	oit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown		
bit 15	OA: Accumul	ator A Overflow	v Status bit				
	1 = Accumula	ator A overflowe	ed				
bit 14		ator P Ovorflov					
DIL 14		ator B overflow	v Status Dit				
	0 = Accumula	tor B has not c	verflowed				
bit 13	SA: Accumula	ator A Saturatio	on 'Sticky' Sta	itus bit ⁽¹⁾			
	1 = Accumula	ator A is satura	ted or has bee	en saturated at	some time		
	0 = Accumula	tor A is not sat	urated				
bit 12	SB: Accumula	ator B Saturation	on 'Sticky' Sta	tus bit ⁽¹⁾			
	1 = Accumula 0 = Accumula	tor B is saturation bit is not sat	ted or has bee urated	en saturated at	some time		
bit 11		B Combined A	ccumulator C	verflow Status	bit		
	1 = Accumula	tors A or B hav	ve overflowed		2.1		
	0 = Neither A	ccumulators A	or B have ove	erflowed			
bit 10	SAB: SA SI	B Combined A	ccumulator 'S	ticky' Status bit			
	1 = Accumula	tors A or B are	saturated or	have been sat	urated at some	time in the past	t
	0 = Neither A	ccumulator A c	or B are satura	ated			
	Note: TI	his bit may be i	read or cleare	ed (not set). Cle	earing this bit wi	I clear SA and	SB.
bit 9	DA: DO Loop	Active bit					
	1 = DO loop in	n progress					
	υ = DO loop n	ot in progress					
Note 1: Th	is bit may be rea	ad or cleared (r	not set).				
			/				

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

TABLE 4-31: PORTG REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02E4	TRISG15	TRISG14	TRISG13	TRISG12	_	—	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PORTG	02E6	RG15	RG14	RG13	RG12	_	_	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	xxxx
LATG	02E8	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
ODCG	06E4	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-32: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	—	—	—	—	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)
OSCCON	0742	_	(COSC<2:0	>	_	1	NOSC<2:0	>	CLKLOCK	_	LOCK	_	CF	_	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI	I	DOZE<2:0>	>	DOZEN	F	RCDIV<2:0)>	PLLPOS	ST<1:0>	_		F	PLLPRE<4:	:0>		3040
PLLFBD	0746	_	_	_	_	_	—	_					PLLDIV<8:0)>				0030
OSCTUN	0748	_	_	_	_	_	—	_	_	_				TUN	l<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-33: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	_	—	—	_	_	ERASE	—	-	NVMOP<3:0>			0000(1)	
NVMKEY	0766	_	_	_	_	_	—	—	_	NVMKEY<7:0>					0000			

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-34: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	—	_	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	T9MD	T8MD	T7MD	T6MD	_	-		_	_	_	_	_	—	_	I2C2MD	AD2MD	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset
	Addressi	ng mode	is only	available	for W9
	(in X spa	ce) and W	/11 (in	Y space).	

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can only be configured to operate in one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word sized data (LSb of every EA is always clear).

FIGURE 4-9: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

TRAPR IOPUWR — — — VF bit 15 </th <th></th>	
bit 15	1200
	bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 F	R/W-1
EXTR SWR SWDTEN ⁽²⁾ WDTO SLEEP IDLE BOR	POR
bit 7	bit 0
Legend:	
R = Readable bit $W = Writable bit II = Unimplemented bit read as '0'$	
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown)	
bit 15 TRAPR: Trap Reset Flag bit	
1 = A Trap Conflict Reset has occurred	
bit 14 IOPLINE: Illegel Opende er Uninitialized W Assess Repet Flag bit	
1 = An illegal opcode detection, an illegal address mode or uninitialized W register use	ed as an
Address Pointer caused a Reset	
0 = An illegal opcode or uninitialized W Reset has not occurred	
bit 13-9 Unimplemented: Read as '0'	
bit 8 VREGS: Voltage Regulator Standby During Sleep bit ⁽³⁾	
1 = Voltage Regulator goes into standby mode during Sleep	
bit 7 EXTR: External Reset (MCLR) Pin bit	
1 = A Master Clear (pin) Reset has occurred	
0 = A Master Clear (pin) Reset has not occurred	
bit 6 SWR: Software Reset (Instruction) Flag bit	
1 = A RESET INSTRUCTION has been executed 0 = A RESET instruction has not been executed	
bit 5 SWDTEN: Software Enable/Disable of WDT bit ⁽²⁾	
1 = WDT is enabled	
0 = WDT is disabled	
bit 4 WDTO: Watchdog Timer Time-out Flag bit	
1 = WDT time-out has occurred	
bit 3 SI FEP: Wake-up from Sleep Flag bit	
1 = Device has been in Sleep mode	
0 = Device has not been in Sleep mode	
bit 2 IDLE: Wake-up from Idle Flag bit	
1 = Device was in Idle mode	
bit 1 BOB: Brown out Depet Fleg bit	
1 = A Brown-out Reset has occurred	
0 = A Brown-out Reset has not occurred	
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software of a device Reset	does not
2: If the FWDTEN Configuration bit is '1' (unprogrammed) the WDT is always enabled regardless of	of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

SWDTEN bit setting.
3: For dsPIC33FJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed value.

SR: CPU STATUS REGISTER⁽¹⁾

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0
Legend:							
C = Clear only	bit	R = Readable	bit	U = Unimpler	mented bit, read	1 as '0'	
S = Set only bi	t	W = Writable I	bit	-n = Value at	POR		

x = Bit is unknown

bit 7-5

1' = Bit is set

REGISTER 7-1:

IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

'0' = Bit is cleared

- 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_	—	—	US	EDT		DL<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
Legend:		C = Clear only	/ bit				
R = Readable b	oit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is cleare	ed	'x = Bit is unk	nown	U = Unimpler	mented bit, read	as '0'	
				(2)			
bit 3	IPL3: CPU Inf	terrupt Priority	Level Status b	bit 3 ⁽²⁾			
	1 = CPU inter	rupt priority lev	el is greater t	han 7			

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T2IP<2:0>		_		OC2IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		IC2IP<2:0>		—		DMA0IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	bit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn
<u> </u>							
bit 15	Unimpleme	nted: Read as '0	,				
bit 14-12	T2IP<2:0>:	Timer2 Interrupt	Priority bits				
	111 = Interru	upt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1	blad				
hit 11	UUU = Intern	upt source is disa	, ,				
DIL II		• Output Compa	channel 2	Interrupt Drier	ity hito		
DIL TU-0	111 = Interr	unt is priority 7 (h	iabest priorit	v interrunt)	ity bits		
	•		ignest priorit	y menupt)			
	•						
	• 001 = Interr	unt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '0	,				
bit 6-4	IC2IP<2:0>:	Input Capture C	hannel 2 Inte	errupt Priority b	its		
	111 = Interro	upt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Interro	upt is priority 1					
	000 = Interru	upt source is disa	abled				
bit 3	Unimpleme	nted: Read as '0	,				
bit 2-0	DMA0IP<2:0	0>: DMA Channe	el 0 Data Trar	nsfer Complete	Interrupt Price	ority bits	
	 ⊥⊥⊥ = Interru 	upt is priority 7 (n	ignest priorit	y interrupt)			
	•						
	•	and the method of the A					
	001 = Interro	upt is priority 1	abled				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U1RXIP<2:0>		—		SPI1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		SPI1EIP<2:0>		—		T3IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimple	mented bit, re	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkn	own
bit 15	Unimplem	ented: Read as '0)' • • •				
bit 14-12	U1RXIP<2	:0>: UARI1 Rece	iver Interrup	t Priority bits			
	111 = Inter •	rupt is priority 7 (r	lignest priori	ity interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1	phlod				
bit 11		anted: Pead as '	ableu v				
bit 10_8		SPI1 Event Int	, orrunt Priori	ty hite			
bit 10-0	111 = Inter	rupt is priority 7 (h	nighest priori	ity interrupt)			
	•		ingineer priori				
	•						
	• 001 - Intor	rupt is priority 1					
	001 - Inter	rupt is priority i rupt source is disa	abled				
bit 7	Unimplem	ented: Read as '0)'				
bit 6-4	SPI1EIP<2	::0>: SPI1 Error In	terrupt Prior	ity bits			
	111 = Inter	rupt is priority 7 (h	nighest priori	ity interrupt)			
	•						
	•						
	001 = Inte r	rupt is priority 1					
	000 = Inter	rupt source is disa	abled				
bit 3	Unimplem	ented: Read as '0)'				
bit 2-0	T3IP<2:0>:	: Timer3 Interrupt	Priority bits				
	111 = Inter	rupt is priority 7 (h	nighest priori	ity interrupt)			
	•						
	•						
	001 = Inter	rrupt is priority 1					
	000 = Inter	rupt source is disa	abled				

11.6 I/O Helpful Tips

- 1. In some cases, certain pins as defined in TABLE 25-9: "DC Characteristics: I/O Pin Input Specifications" under "Injection Current", have internal protection diodes to VDD and Vss. The term "Injection Current" is also referred to as "Clamp Current". On designated pins, with sufficient external current limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with nominal VDD with respect to the VSS and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- I/O pins that are shared with any analog input pin, 2. (i.e., ANx), are always analog pins by default after any reset. Consequently, any pin(s) configured as an analog input pin, automatically disables the digital input pin buffer. As such, any attempt to read a digital input pin will always return a '0' regardless of the digital logic level on the pin if the analog pin is configured. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the analog pin configuration registers in the ADC module, (i.e., ADxPCFGL, AD1PCFGH), by setting the appropriate bit that corresponds to that I/O port pin to a '1'. On devices with more than one ADC, both analog pin configurations for both ADC modules must be configured as a digital I/O pin for that pin to function as a digital I/O pin.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.

- 4. Each CN pin has a configurable internal weak pull-up resistor. The pull-ups act as a current source connected to the pin, and eliminates the need for external resistors in certain applications. The internal pull-up is to ~(VDD-0.8) not VDD. This is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of the data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 25.0 "Electrical Characteristics" for additional information.

11.7 I/O Resources

Many useful resources related to I/O are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546064

11.7.1 KEY RESOURCES

- Section 10. "I/O Ports" (DS70193)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (X = 1 OR 2)

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0
_	_	CSIDL	ABAT	—		REQOP<2:0>	
bit 15							bit 8
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
(OPMODE<2:0>		—	CANCAP	—	—	WIN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	r = Bit is Rese	rved
bit 15-14	Unimplement	ted: Read as '	0'				
bit 13	CSIDL: Stop	in Idle Mode b	it				
	1 = Discontinu 0 = Continue	ue module ope module operati	ration when d ion in Idle mo	evice enters Id de	lle mode		
bit 12	ABAT: Abort A	All Pending Tra	nsmissions b	it			
	1 = Signal all 1 0 = Module wi	transmit buffer ill clear this bit	s to abort tran when all trans	smission	aborted		
bit 11	Reserved: Do	o not use					
bit 10-8	REQOP<2:0>	Request Op	eration Mode	bits			
	10-8 REGORZION: Request Operation Mode bits 111 = Set Listen All Messages mode 110 = Reserved - do not use 101 = Reserved - do not use 100 = Set Configuration mode 011 = Set Listen Only Mode 010 = Set Loopback mode 001 = Set Disable mode 000 = Set Normal Operation mode						
bit 7-5	OPMODE<2:0	0>: Operation I	Mode bits				
<pre>111 = Module is in Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Loopback mode 001 = Module is in Disable mode 000 = Module is in Normal Operation mode</pre>							
bit 4	Unimplement	ted: Read as '	0'				
bit 3	CANCAP: CA	AN Message R	eceive Timer	Capture Event	t Enable bit		
	1 = Enable inp 0 = Disable C	out capture bas AN capture	sed on CAN m	nessage receiv	/e		
bit 2-1	Unimplement	ted: Read as '	0'				
bit 0	WIN: SFR Ma	ap Window Sel	lect bit				
	1 = Use filter v 0 = Use buffer	window r window					

REGISTER 19-1: CiCTRL1: ECAN™ CONTROL REGISTER 1

REGISTER 19-2: CiCTRL2: ECAN™ CONTROL REGISTER 2

U-0 — bit 8 — R-0 — bit 0						
R-0 bit 0						
R-0						
R-0 bit 0						
bit 0						
bit 0						
U = Unimplemented bit, read as '0'						
unknown						
-						

00000 = Do not compare data bytes

REGISTER 19-8: CiEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
TERRCNT<7:0>									
bit 15 bit 8									
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
	RERRCNT<7:0>								
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at PO	OR	'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unknown	1		

bit 15-8 **TERRCNT<7:0>:** Transmit Error Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

REGISTER 19-27: CITRBnSID: ECAN™ BUFFER n STANDARD IDENTIFIER (n = 0, 1, ..., 31)

- - SID<10:6> bit 15 bit bit	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
bit 15 bi	—	—	—	SID<10:6>					
	bit 15							bit 8	
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x									
	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	

	SID<5:0>	SRR	IDE
bit 7			bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-2	SID<10:0>: Standard Identifier bits
bit 1	SRR: Substitute Remote Request bit
	 1 = Message will request remote transmission 0 = Normal message
bit 0	IDE: Extended Identifier bit
	1 = Message will transmit extended identifier

0 = Message will transmit standard identifier

REGISTER 19-28: CITRBnEID: ECAN™ BUFFER n EXTENDED IDENTIFIER (n = 0, 1, ..., 31)

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—		—	—		EID<	17:14>	
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID<	:13:6>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

NOTES:

TABLE 25-11:	ELECTRICAL CHARACTERISTICS: BOR
--------------	---------------------------------

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low		2.40	_	2.55	V	Vdd
Mate 4.	Note 4. Decemptors are far decire suidened only and are not tested in many facturing							

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 25-12: DC CHARACTERISTICS: PROGRAM MEMORY

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
De characteristics			Operating temperature			-40°C $\leq~$ TA $\leq~$ +85°C for Industrial -40°C $\leq~$ TA $\leq~$ +125°C for Extended		
Param.	Symbol	Characteristic ⁽³⁾	Min	Typ ⁽¹⁾	Max	Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—	—	E/W		
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage	
D132b	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage	
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated	
D135	IDDP	Supply Current during Programming	—	10	—	mA		
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2	
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, TA = +150°C, See Note 2	
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2	
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +150°C, See Note 2	
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, Ta = +85°C, See Note 2	
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +150°C, See Note 2	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b '011111 (for Min), TUN<5:0> = b '100000 (for Max). This parameter depends on the FRC accuracy (see Table 25-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

3: These parameters are assured by design, but are not characterized or tested in manufacturing.

TABLE 25-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
_	CEFC External Filter Capacitor Value ⁽¹⁾		4.7	10	_	μF	Capacitor must be low series resistance (< 5 ohms)		

Note 1: Typical VCORE voltage = 2.5V when $VDD \ge VDDMIN$.

FIGURE 25-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 25-22:	TIMER1 EXTERNAL	CLOCK TIMING	REQUIREMENTS ⁽¹⁾
TADLE $2J^{-}22$.		CLOCK HMINO	

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Charact	Characteristic		Min	Тур	Мах	Units	Conditions		
TA10	ТтхН	TxCK High Time	me Synchronous, no prescaler		Synchronous, no prescaler		Tcy + 20		_	ns	Must also meet parameter TA15
			Synchronous, with prescaler		(Tcy + 20)/N			ns			
			Asynchronous		20	_	_	ns			
TA11	ΤτxL	TxCK Low Time	Synchronous, no prescaler		(Tcy + 20)/N	_	_	ns	Must also meet parameter TA15		
			Synchronous, with prescaler		20	_	—	ns	N = prescale value		
			Asynchronou		20	_	—	ns	(1,8,64,256)		
TA15	A15 TTXP TxCK Input Synchronous, Period no prescaler		onous, caler	2Tcy + 40		_	ns	_			
			Synchronous, with prescaler		Greater of 40 ns or (2Tcy + 40)/N				N = prescale value (1, 8, 64, 256)		
			Asynchronous		40			ns	—		
OS60	Ft1	SOSC1/T1CK O frequency Range enabled by settir (T1CON<1>))	scillator Input e (oscillator ng TCS bit		DC		50	kHz	_		
TA20	TCKEXTMRL	Delay from Exter Clock Edge to Ti	nal TxCK mer Increment		0.75Tcy+40		1.75Tcy+40	ns	—		

Note 1: Timer1 is a Type A.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No. Symbol		Characteristic	Min Typ		Max	Units	Conditions		
Clock Parameters									
HAD50 TAD A		ADC Clock Period ⁽¹⁾	147	—	—	ns	—		
Conversion Rate									
HAD56	HAD56 FCNV Throughput Rate ⁽¹⁾		_	_	400	Ksps	_		

TABLE 26-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 26-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No. Symbol		Characteristic	Min	Тур Мах		Units	Conditions		
Clock Parameters									
HAD50	TAD	ADC Clock Period ⁽¹⁾	104	_	_	ns	—		
Conversion Rate									
HAD56	FCNV	Throughput Rate ⁽¹⁾		_	800	Ksps	_		

Note 1: These parameters are characterized but not tested in manufacturing.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support