

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp706a-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Diagrams (Continued)

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the *"dsPIC33F/PIC24H Flash Programming Specification"* (DS70152) for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICETM.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and, thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic which typically uses both the accumulators.

The device supports three Saturation and Overflow modes:

• Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFF), or maximally negative 9.31 value (0x800000000), into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as 'super saturation' and provides protection against errone-ous data or unexpected algorithm problems (e.g., gain calculations).

 Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF), or maximally negative 1.31 value (0x008000000), into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set).

Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.2.2 Accumulator 'Write Back'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.2.3 Round Logic

The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined. If it is '1', ACCxH is incremented. If it is '0', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.2.4 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will

operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 CNIE: Input Change Notification Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IE: I2C1 Master Events Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 SI2C1IE: I2C1 Slave Events Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

- 1 = Interrupt request enabled
- 0 = Interrupt request not enabled
- bit 1 SPI2IE: SPI2 Event Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 SPI2EIE: SPI2 Error Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
DSADR<15:8>										
bit 15							bit 8			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			DSA	DR<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bi	t	W = Writable bi	t	U = Unimplemented bit, read as '0'						
-n = Value at PC	R	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
_	—	OCSIDL	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—	OCFLT	OCTSEL		OCM<2:0>		
bit 7	•		•	•			bit 0	
Legend:		HC = Hardware	Clearable bit					
R = Readable	e bit	W = Writable bit		U = Unimple	mented bit, re	ad as '0'		
-n = Value at	POR	'1' = Bit is set			eared	x = Bit is unk	nown	
bit 15-14	Unimpleme	nted: Read as '0'						
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit							
	1 = Output (Compare x halts in	CPU Idle mode	;				
	0 = Output (Compare x continu	les to operate in	CPU Idle mo	de			

- bit 12-5 Unimplemented: Read as '0'
- bit 4 OCFLT: PWM Fault Condition Status bit
 - 1 = PWM Fault condition has occurred (cleared in hardware only)
 - 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
- bit 3 OCTSEL: Output Compare Timer Select bit
 - 1 = Timer3 is the clock source for Compare x
 - 0 = Timer2 is the clock source for Compare x

bit 2-0 OCM<2:0>: Output Compare Mode Select bits

- 111 = PWM mode on OCx, Fault pin enabled
 - 110 = PWM mode on OCx, Fault pin disabled
 - 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low, generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high, compare event forces OCx pin low
 - 001 = Initialize OCx pin low, compare event forces OCx pin high
 - 000 = Output compare channel is disabled

NOTES:

18.3 UART Control Registers

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	_	USIDL	IREN ⁽²⁾	RTSMD		UEN	<1:0>
bit 15		•		•	•		bit 8
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL
bit 7					1		bit (
Legend:		HC = Hardwa	re cleared				
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown
bit 15	UARTEN: UA	ARTx Enable bit	(1)				
	1 = UARTx is	s enabled; all U	ARTx pins a	e controlled by	UARTx as def	ined by UEN<1	:0>
	0 = UARTx is	s disabled; all U	IARTx pins a	re controlled by	/ port latches; l	JARTx power co	onsumption
	minimal						
bit 14	Unimplemen	ted: Read as ')'				
bit 13	USIDL: Stop	in Idle Mode bit					
	1 = Discontir	nue module ope	eration when	device enters lo	dle mode		
h# 40		Finodule operation	ion in idie me	bae			
DIT 12	IREN: IrDA ^{\circ}	Encoder and D	ecoder Enab				
	$0 = IrDA^{\mathbb{R}} en$	coder and deco	oder disabled	l			
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin b	oit			
	$1 = U \times RTS p$	oin in Simplex m	node				
	$0 = \overline{\text{UxRTS}} p$	oin in Flow Cont	rol mode				
bit 10	Unimplemen	ted: Read as ')'				
bit 9-8	UEN<1:0>: U	IARTx Pin Enat	ole bits				
	11 = UxTX, L	JxRX and BCLK	Cpi <u>ns are e</u> na	abled and used	; UxCTS pin co	ontrolled by port	latches
	10 = UxTX, L	JxRX, UxCTS a	nd UxRTS pi	ns are enabled	and used		
	01 = UXIX, U	JXRX and UXR I nd LlyRX nins a	S pins are el re enabled a	nabled and use	s and UxRTS/	controlled by po	rt latches
	port latc	hes				DOLIT PING CON	olica by
bit 7	WAKE: Wake	e-up on Start bit	Detect Durir	ng Sleep Mode	Enable bit		
	1 = UARTx v	vill continue to s	sample the U	xRX pin; interru	upt generated o	on falling edge; I	bit cleared
	in hardwa	are on following	rising edge	-			
	0 = No wake	-up enabled					
bit 6	LPBACK: UA	ARTx Loopback	Mode Selec	t bit			
	1 = Enable L	oopback mode	lod				
bit 5			hit				
DIL D	1 - Enable h		uromont on t	ho novt charac	tor roquiros r	ocontion of a St	une field (55h
	before ot	her data: cleare	ed in hardwa	re upon comple	tion		
	0 = Baud rate	e measurement	t disabled or	completed			
Note 1: Re	efer to Section 1	7. "UART" (DS	570188) in th	e "dsPIC33F/P	IC24H Family	Reference Man	ual" for
inf	ormation on ena	abling the UAR I	module for	receive or trans	smit operation.		

2: This feature is only available for the 16x BRG mode (BRGH = 0).

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	—	—	_		SLOT	<3:0>	
bit 15	•						bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	ROV	RFUL	TUNF	TMPTY
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-12	Unimplement	ted: Read as 'd)'				
bit 11-8	SLOT<3:0>: [DCI Slot Status	bits				
	1111 = Slot #	15 is currently	active				
	•						
	•						
	0010 = Slot #	2 is currently a	ctive				
	0001 = Slot #	1 is currently a	ctive				
	0000 = Slot #	0 is currently a	ctive				
bit 7-4	Unimplement	ted: Read as ')'				
bit 3	ROV: Receive	e Overflow Stat	us bit				
	1 = A receive	overflow has o	ccurred for at	least one rece	eive register		
hit 2	0 - A leceive		totuo bit				
DIL Z	1 = New data	is available in :	the receive re	aistore			
	0 = The receiv	ve registers ha	ve old data	gisters			
bit 1	TUNF: Transr	nit Buffer Unde	rflow Status b	oit			
	1 = A transmit	t underflow has	occurred for	at least one tra	ansmit register		
	0 = A transmit	t underflow has	not occurred		·		
bit 0	TMPTY: Trans	smit Buffer Em	pty Status bit				
	1 = The transi 0 = The transi	mit registers ar mit registers ar	e empty e not empty				

REGISTER 20-4: DCISTAT: DCI STATUS REGISTER

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note:	For more de	etails on the	instruction set,
	refer to th	e "16-bit N	ICU and DSC
	Programmer	's Refere	nce Manual"
	(DS70157).		

Field	Description					
#text	Means literal defined by "text"					
(text)	Means "content of text"					
[text]	Means "the location addressed by text"					
{ }	Optional field or operation					
<n:m></n:m>	Register bit field					
.b	Byte mode selection					
.d	Double-Word mode selection					
.S	Shadow register select					
.W	Word mode selection (default)					
Acc	One of two accumulators {A, B}					
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}					
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$					
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero					
Expr	Absolute address, label or expression (resolved by the linker)					
f	File register address ∈ {0x00000x1FFF}					
lit1	1-bit unsigned literal ∈ {0,1}					
lit4	4-bit unsigned literal ∈ {015}					
lit5	5-bit unsigned literal ∈ {031}					
lit8	8-bit unsigned literal ∈ {0255}					
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode					
lit14	14-bit unsigned literal ∈ {016384}					
lit16	16-bit unsigned literal ∈ {065535}					
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'					
None	Field does not require an entry, may be blank					
OA, OB, SA, SB	DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate					
PC	Program Counter					
Slit10	10-bit signed literal ∈ {-512511}					
Slit16	16-bit signed literal ∈ {-3276832767}					
Slit6	6-bit signed literal ∈ {-1616}					
Wb	Base W register ∈ {W0W15}					
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }					
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }					
Wm,Wn	Dividend, Divisor working register pair (direct addressing)					

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	Conditions				
Operating Cur	rent (IDD) ⁽¹⁾							
DC20d	27	30	mA	-40°C				
DC20a	27	30	mA	+25°C	2 2)/			
DC20b	27	30	mA	+85°C	3.3V			
DC20c	27	35	mA	+125°C				
DC21d	36	40	mA	-40°C		16 MIPS		
DC21a	37	40	mA	+25°C	3.3V			
DC21b	38	45	mA	+85°C				
DC21c	39	45	mA	+125°C				
DC22d	43	50	mA	-40°C				
DC22a	46	50	mA	+25°C	2 2\/			
DC22b	46	55	mA	+85°C	5.5 V	20 WIF 3		
DC22c	47	55	mA	+125°C				
DC23d	65	70	mA	-40°C				
DC23a	65	70	mA	+25°C	2 2\/	30 MIDS		
DC23b	65	70	mA	+85°C	3.3V	30 MIF 3		
DC23c	65	70	mA	+125°C				
DC24d	84	90	mA	-40°C				
DC24a	84	90	mA	+25°C	2 2\/			
DC24b	84	90	mA	+85°C	5.5V	40 WIF 3		
DC24c	84	90	mA	+125°C				

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- · JTAG is disabled
- **2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

TABLE 25-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SY10	TMCL	MCLR Pulse-Width (low)	2	—	_	μS	-40°C to +85°C	
SY11	Tpwrt	Power-up Timer Period		2 4 8 16 32 64 128		ms	-40°C to +85°C User programmable	
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	_	
SY20	Twdt1	Watchdog Timer Time-out Period				_	See Section 22.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 25-19)	
SY30	Tost	Oscillator Start-up Timer Period	_	1024 Tosc		_	Tosc = OSC1 period	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS	-40°C to +85°C	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 25-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARA	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 25-29	—	—	0,1	0,1	0,1	
10 MHz	_	Table 25-30	—	1	0,1	1	
10 MHz	_	Table 25-31	—	0	0,1	1	
15 MHz	_	—	Table 25-32	1	0	0	
11 MHz	_	_	Table 25-33	1	1	0	
15 MHz	_	_	Table 25-34	0	1	0	
11 MHz	_	_	Table 25-35	0	0	0	

FIGURE 25-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

AC CHA	RACTER	ISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	—	
			400 kHz mode	Tcy/2 (BRG + 1)		μS	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	—	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	—	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	—	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—	
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μS	—	
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0.2	—	μS		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS	After this period the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	generated	
IM33	TSU:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	—	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	_	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns		
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns		
		From Clock	400 kHz mode	_	1000	ns	_	
			1 MHz mode ⁽²⁾	—	400	ns	—	

TABLE 25-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "*dsPIC33F/PIC24H Family Reference Manual*".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

АС СН	ARACTERI	STICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions					
ADC Accuracy (12-bit Mode) - Measurements with external VREF+/VREF-												
AD20a	Nr	Resolution	12 data bits			bits						
AD21a	INL	Integral Nonlinearity	-2	-	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD23a	Gerr	Gain Error	—	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD24a	EOFF	Offset Error	—	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD25a	—	Monotonicity ⁽¹⁾	_			—	Guaranteed					
		ADC Accuracy (12-bit Mod	de) - Measu	ements	with interna	I VREF+	/VREF-					
AD20a	Nr	Resolution	12 data bits		bits							
AD21a	INL	Integral Nonlinearity	-2	-	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD22a	DNL	Differential Nonlinearity	>-1	-	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD23a	Gerr	Gain Error	—	10.5	20	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD24a	EOFF	Offset Error	—	3.8	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD25a	—	Monotonicity ⁽¹⁾	_	_	_	—	Guaranteed					
		Dynamic	Performan	ce (12-bi	t Mode)							
AD30a	THD	Total Harmonic Distortion	_		-75	dB	—					
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5		dB	_					
AD32a	SFDR	Spurious Free Dynamic Range	80	_	_	dB	_					
AD33a	Fnyq	Input Signal Band-Width		—	250	kHz	—					
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits	_					

TABLE 25-42: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽²⁾

Note 1: The ADC conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

АС СН	ARACTERI	STICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$									
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions					
ADC Accuracy (10-bit Mode) - Measurements with external VREF+/VREF-												
AD20b	Nr	Resolution	10 data bits			bits						
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD22b	DNL	Differential Nonlinearity	>-1	-	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD25b	—	Monotonicity ⁽¹⁾	—	—	_	—	Guaranteed					
ADC Accuracy (10-bit Mode) - Measurements with internal VREF+/VREF-												
AD20b	Nr	Resolution	10 data bits			bits						
AD21b	INL	Integral Nonlinearity	-1	_	+1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD23b	Gerr	Gain Error	—	7	15	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD24b	EOFF	Offset Error	_	3	7	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
AD25b	—	Monotonicity ⁽¹⁾				_	Guaranteed					
		Dynamic	Performan	ce (10-bi	it Mode)	•						
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB	—					
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	—	dB						
AD32b	SFDR	Spurious Free Dynamic Range	72	_		dB	_					
AD33b	Fnyq	Input Signal Bandwidth	—	—	550	kHz	—					
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits						

TABLE 25-43: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽²⁾

Note 1: The ADC conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.