

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 $= K \in$

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp706at-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section
 2. "CPU" (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJXXXGPX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The dsPIC33FJXXXGPX06A/X08A/X10A instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJXXXGPX06A/X08A/X10A is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1. The programmer's model for the dsPIC33FJXXXGPX06A/ X08A/X10A is shown in Figure 3-2.

3.1 Data Addressing Overview

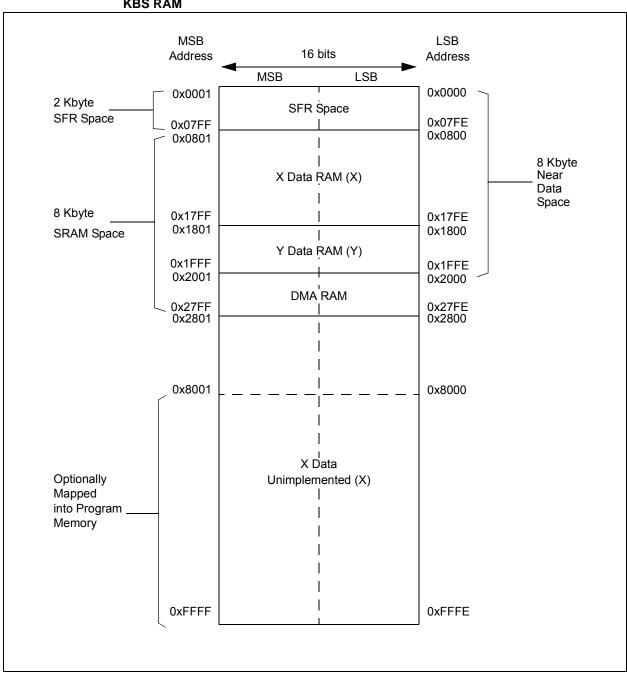
The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own indepen-

dent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space. The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

3.2 DSP Engine Overview


The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value, up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.3 Special MCU Features

The dsPIC33FJXXXGPX06A/X08A/X10A features a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJXXXGPX06A/X08A/X10A supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit, left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06A/X08A/X10A DEVICES WITH 8 KBS RAM

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX10A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	—	—	_	_	_	_	_	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX08A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—		_	_		—		_	_		CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_		_	_		_			_		CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX06A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_			_	_	CN21IE	CN20IE		CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	_	_	CN21PUE	CN20PUE		CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

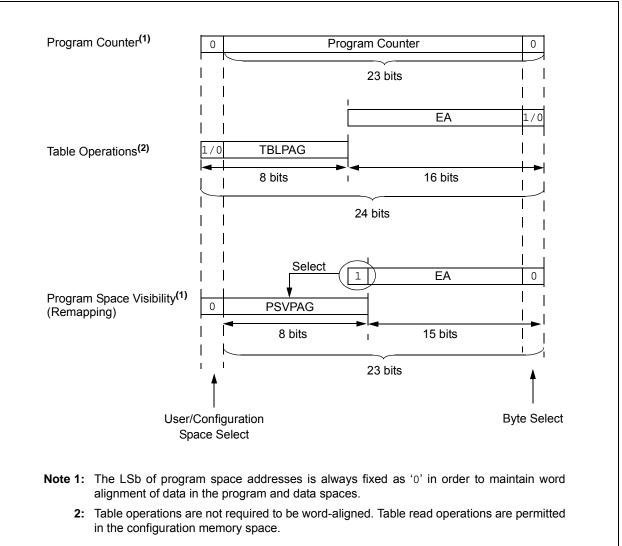
	1-6:			STER N														
	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102									Register 1								FFFF
T1CON	0104	TON	—	TSIDL	_	—	—	—	—	—	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tim	ner3 Holding	Register (fo	r 32-bit time	r operations o	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32		TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	—	_	_	_	TGATE	TCKP	S<1:0>		_	TCS	_	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						-	Timer5 Hold	ing Register	(for 32-bit o	perations only	/)						xxxx
TMR5	0118								Timer5	Register								0000
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T5CON	0120	TON	—	TSIDL	_		-		—		TGATE	TCKP	S<1:0>	_	—	TCS		0000
TMR6	0122								Timer6	Register								0000
TMR7HLD	0124						-	Timer7 Hold	ing Register	(for 32-bit o	perations only	/)						xxxx
TMR7	0126								Timer7	Register								0000
PR6	0128								Period F	Register 6								FFFF
PR7	012A								Period F	Register 7								FFFF
T6CON	012C	TON	—	TSIDL					—		TGATE	TCKP	S<1:0>	T32	_	TCS		0000
T7CON	012E	TON	—	TSIDL					—		TGATE	TCKP	S<1:0>		—	TCS		0000
TMR8	0130								Timer8	Register								0000
TMR9HLD	0132						-	Timer9 Hold	ing Register	(for 32-bit o	perations only	/)						xxxx
TMR9	0134								Timer9	Register								0000
PR8	0136								Period F	Register 8								FFFF
PR9	0138								Period F	Register 9								FFFF
T8CON	013A	TON	—	TSIDL	_	_	—	—	—	_	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T9CON	013C	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKP	S<1:0>	—	—	TCS	—	0000

TABLE 4-6: TIMER REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJXXXGPX06A/X08A/X10A

TABLE 4	I-17:	DMA	REGIS	TER M	AP (CO	NTINUE	D)											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
DMA5CNT	03C6	_	_	_	_	_	_					CN1	<9:0>					0000
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA6REQ	03CA	FORCE	_	_	_	_	_	—	_	_				RQSEL<6:0	>			0000
DMA6STA	03CC								S	TA<15:0>								0000
DMA6STB	03CE								S	TB<15:0>								0000
DMA6PAD	03D0	PAD<15:0> 000												0000				
DMA6CNT	03D2													0000				
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	_		_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA7REQ	03D6	FORCE	—	_	_	_	_		_	_			I	RQSEL<6:0	>			0000
DMA7STA	03D8		•	•	•				S	TA<15:0>	•							0000
DMA7STB	03DA								S	TB<15:0>								0000
DMA7PAD	03DC								P	AD<15:0>								0000
DMA7CNT	03DE	_	_	_	_	_	—					CNT	<9:0>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1	03E2	—	_	_	_		LSTCH	1<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4		DSADR<15:0> 0000															
امعمماه						a abour in												


- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

dsPIC33FJXXXGPX06A/X08A/X10A

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See definit	ion when V	/IN = x							
C1BUFPNT1	0420		F3BP	<3:0>			F2BF	><3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BP	<3:0>			F6BF	><3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11BF	><3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15BF	P<3:0>			F14B	P<3:0>			F13B	P<3:0>			F12BF	°<3:0>		0000
C1RXM0SID	0430				SID<	:10:3>					SID<2:0>		—	MIDE	_	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>							EID<	7:0>	•			xxxx
C1RXM1SID	0434				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	:15:8>							EID<	7:0>	•			xxxx
C1RXM2SID	0438		SID<10:3> EID<15:8>								SID<2:0>		—	MIDE	_	EID<	17:16>	xxxx
C1RXM2EID	043A		EID<15:8>										EID<	7:0>		•		xxxx
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF0EID	0442		EID<15:8>										EID<	7:0>		•		xxxx
C1RXF1SID	0444		SID<10:3>								SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF1EID	0446		SID<10:3> EID<15:8>										EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		—	EXIDE		EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<	17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E	EID<15:8>											EID<	7:0>				xxxx
C1RXF8SID	0460		SID<10:3>								SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx
C1RXF8EID	0462				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF9SID	0464				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF9EID	0466				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF10SID	0468				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF10EID	046A				EID<	:15:8>							EID<	7:0>				xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 4-9: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 3 CNIF: Input Change Notification Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7	'-8: IFS3: I	INTERRUPT	FLAG STAT	US REGIST	ER 3		
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
_	_	DMA5IF	DCIIF	DCIEIF	_	—	C2IF
bit 15				•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at I		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	DMA5IF: DM	A Channel 5 D	ata Transfer (Complete Inter	rupt Flag Status	bit	
		request has oc request has no					
bit 12	DCIIF: DCI E	vent Interrupt I	-lag Status bit				
	1 = Interrupt	request has oc	curred				
	•	request has no					
bit 11		Error Interrupt	U	it			
		request has oc request has no					
bit 10-9	Unimplemen	ted: Read as '	0'				
bit 8	C2IF: ECAN2	2 Event Interrup	ot Flag Status	bit			
	•	request has oc request has no					
bit 7	C2RXIF: ECA	AN2 Receive D	ata Ready Int	errupt Flag Sta	atus bit		
		request has oc request has no					
bit 6	•	rnal Interrupt 4		it			
	1 = Interrupt i	request has oc request has no	curred				
bit 5	INT3IF: Exter	rnal Interrupt 3	Flag Status b	it			
	•	request has oc request has no					
bit 4	-	Interrupt Flag					
	1 = Interrupt i	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 3		Interrupt Flag					
		request has oc					
bit 2	-	request has no 2 Master Even		ag Status bit			
SIL Z		request has oc	•	ug oluluo bit			
		request has no					
bit 1	SI2C2IF: 12C	2 Slave Events	Interrupt Flag	g Status bit			
		request has oc					
	-	request has no					
bit 0		Interrupt Flag					
		request has oc request has no					
		iequest nas no					

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ST/	\<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

11.6 I/O Helpful Tips

- 1. In some cases, certain pins as defined in TABLE 25-9: "DC Characteristics: I/O Pin Input Specifications" under "Injection Current", have internal protection diodes to VDD and Vss. The term "Injection Current" is also referred to as "Clamp Current". On designated pins, with sufficient external current limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with nominal VDD with respect to the VSS and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- I/O pins that are shared with any analog input pin, 2. (i.e., ANx), are always analog pins by default after any reset. Consequently, any pin(s) configured as an analog input pin, automatically disables the digital input pin buffer. As such, any attempt to read a digital input pin will always return a '0' regardless of the digital logic level on the pin if the analog pin is configured. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the analog pin configuration registers in the ADC module, (i.e., ADxPCFGL, AD1PCFGH), by setting the appropriate bit that corresponds to that I/O port pin to a '1'. On devices with more than one ADC, both analog pin configurations for both ADC modules must be configured as a digital I/O pin for that pin to function as a digital I/O pin.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.

- 4. Each CN pin has a configurable internal weak pull-up resistor. The pull-ups act as a current source connected to the pin, and eliminates the need for external resistors in certain applications. The internal pull-up is to ~(VDD-0.8) not VDD. This is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of the data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 25.0 "Electrical Characteristics" for additional information.

11.7 I/O Resources

Many useful resources related to I/O are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546064

11.7.1 KEY RESOURCES

- Section 10. "I/O Ports" (DS70193)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

					•		
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	OCSIDL	_	_		—	_
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit				
R = Readable	e bit	W = Writable bit		U = Unimple	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15-14	Unimpleme	nted: Read as '0'					
bit 13	OCSIDL: St	op Output Compa	re in Idle Mode	Control bit			
		Compare x halts in Compare x continu			de		

- bit 12-5 Unimplemented: Read as '0'
- bit 4 OCFLT: PWM Fault Condition Status bit
 - 1 = PWM Fault condition has occurred (cleared in hardware only)
 - 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
- bit 3 OCTSEL: Output Compare Timer Select bit
 - 1 = Timer3 is the clock source for Compare x
 - 0 = Timer2 is the clock source for Compare x

bit 2-0 OCM<2:0>: Output Compare Mode Select bits

- 111 = PWM mode on OCx, Fault pin enabled
 - 110 = PWM mode on OCx, Fault pin disabled
 - 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low, generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high, compare event forces OCx pin low
 - 001 = Initialize OCx pin low, compare event forces OCx pin high
 - 000 = Output compare channel is disabled

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0>(2	-)	PPRE<	<1:0> ⁽²⁾
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	nted: Read as '	0'				
bit 12		able SCKx pin	-				
		SPI clock is disa SPI clock is ena		ctions as I/O			
bit 11		able SDOx pin					
		-		functions as I/O)		
		is controlled b			,		
bit 10	MODE16: Wo	ord/Byte Comm	nunication Sel	ect bit			
		ication is word- ication is byte-					
bit 9		ata Input Sam					
	Master mode						
		a sampled at e					
	Slave mode:	a sampled at m		Sulput lime			
		e cleared when	SPIx is used	in Slave mode.			
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽¹⁾				
					clock state to Id		
bit 7		Select Enable			ock state to activ	e clock state (see bit 0)
		used for Slave		ue).			
				rolled by port fu	unction		
bit 6	CKP: Clock F	Polarity Select	oit				
			•	ve state is a lov e state is a higł			
bit 5	MSTEN: Mas	ster Mode Enat	ole bit				
	1 = Master m 0 = Slave mo						
	The CKE bit is not		amed SPI mo	des. The user s	should program	this bit to '0' fo	or the Frame
	SPI modes (FRME	$\pm in = \pm j.$					

- 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0				
		_	—	BLEN	\<1:0>		COFSG3				
bit 15							bit				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	COFSG<2:0>				WS	<3:0>					
bit 7							bit				
Legend:											
R = Readab		W = Writable			nented bit, read						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown				
bit 15-12	-	ted: Read as '									
bit 11-10	BLEN<1:0>:	Buffer Length (Control bits								
		11 = Four data words will be buffered between interrupts									
	10 = Three data words will be buffered between interrupts										
		 01 = Two data words will be buffered between interrupts 00 = One data word will be buffered between interrupts 									
				een interrupts							
bit 9	-	ted: Read as '									
bit 8-5	COFSG<3:0>: Frame Sync Generator Control bits										
	1111 = Data frame has 16 words										
	•										
	•										
	• 0010 = Data :	frame has 3 wo	orde								
		frame has 2 wo									
		frame has 1 wo									
bit 4	Unimplemen	ted: Read as '	0'								
bit 3-0	WS<3:0>: DO	I Data Word S	ize bits								
	1111 = Data	word size is 16	bits								
	•										
	•										
	•										
		word size is 5 k									
	0011 = Data	word size is 4 b	oits		40						
	0011 = Data 0010 = Inval	word size is 4 t d Selection. D	oits Io not use. U	nexpected resul nexpected resul							

REGISTER 20-2: DCICON2: DCI CONTROL REGISTER 2

22.4 Watchdog Timer (WDT)

For dsPIC33FJXXXGPX06A/X08A/X10A devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

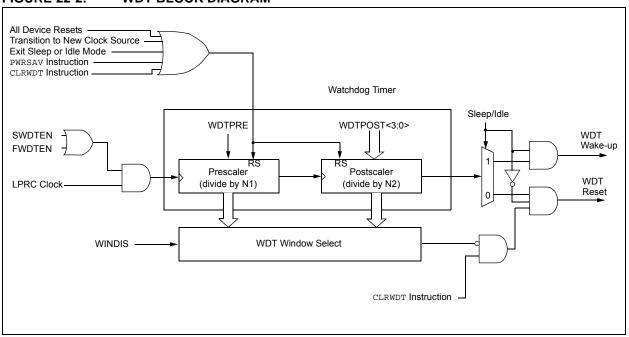
The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler and then can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

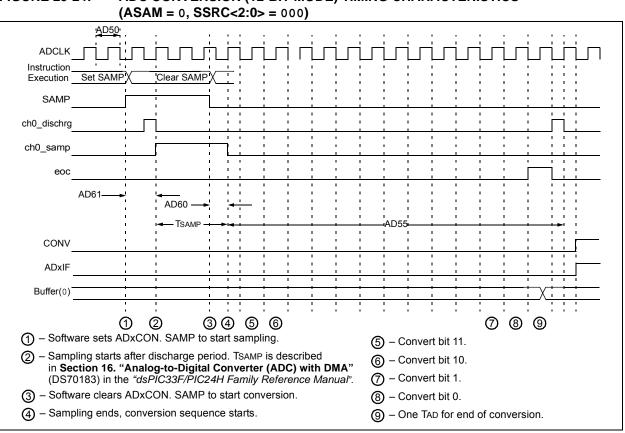
The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.


The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.


The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

FIGURE 22-2: WDT BLOCK DIAGRAM

FIGURE 25-24: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS

TABLE 26-14: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No. Symbol		Characteristic	Min	Min Typ Max Units C		Conditions			
Reference Inputs									
HAD08	IREF	Current Drain		250 —	600 50	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1		

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 26-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽³⁾

-	AC TERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
	ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾								
AD23a	Gerr	Gain Error	—	5	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD24a	EOFF	Offset Error	_	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
	ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF- ⁽¹⁾								
AD23a	Gerr	Gain Error	2	10	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24a	EOFF	Offset Error	2	5	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
	Dynamic Performance (12-bit Mode) ⁽²⁾								
HAD33a	Fnyq	_	_	200	kHz	—			

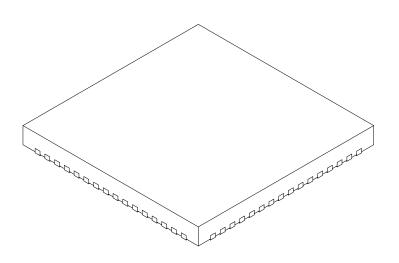
Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 26-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽³⁾

	AC TERISTICS	Standard Operating Conc Operating temperature			•		•		
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾									
AD23b	Gerr	Gain Error	_	3	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD24b	EOFF	Offset Error		2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
	ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF- ⁽¹⁾								
AD23b	Gerr	Gain Error	_	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24b	EOFF	Offset Error	_	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
	Dynamic Performance (10-bit Mode) ⁽²⁾								
HAD33b	Fnyq	Input Signal Bandwidth	_	_	400	kHz	_		


Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

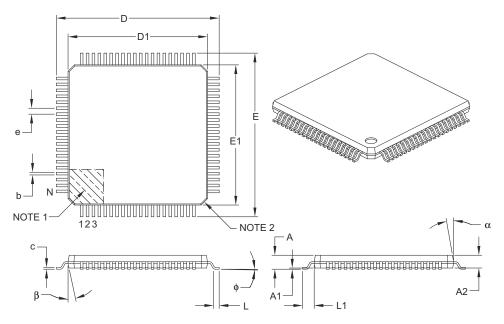
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensio	Dimension Limits			MAX			
Number of Pins	Ν		64				
Pitch	е		0.50 BSC				
Overall Height	Α	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.20 REF					
Overall Width	Е	9.00 BSC					
Exposed Pad Width	E2	5.30	5.40	5.50			
Overall Length	erall Length D 9.			9.00 BSC			
Exposed Pad Length	D2	5.30	5.40	5.50			
Contact Width	b	0.20	0.25	0.30			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
]	Dimension Limits	MIN	NOM	MAX			
Number of Leads		80					
Lead Pitch	е	0.50 BSC					
Overall Height	А	-	-	1.20			
Molded Package Thickness	A2	0.95	1.00	1.05			
Standoff	A1	0.05	-	0.15			
Foot Length	L	0.45	0.60	0.75			
Footprint	L1	1.00 REF					
Foot Angle	¢	0°	3.5°	7°			
Overall Width	E 14.00 BSC						
Overall Length	D	14.00 BSC					
Molded Package Width	E1	12.00 BSC					
Molded Package Length	D1	12.00 BSC					
Lead Thickness	С	0.09	-	0.20			
Lead Width	b	0.17	0.22	0.27			
Mold Draft Angle Top	α	11°	12°	13°			
Mold Draft Angle Bottom	β	11°	12°	13°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

APPENDIX A: MIGRATING FROM dsPIC33FJXXXGPX06/X08/X10 DEVICES TO dsPIC33FJXXXGPX06A/X08A/X10A DEVICES

dsPIC33FJXXXGPX06A/X08A/X10A devices were designed to enhance the dsPIC33FJXXXGPX06/X08/ X10 families of devices.

In general, the dsPIC33FJXXXGPX06A/X08A/X10A devices backward-compatible are with dsPIC33FJXXXGPX06/X08/X10 devices; however, manufacturing differences may cause dsPIC33FJXXXGPX06A/X08A/X10A devices to behave differently from dsPIC33FJXXXGPX06/X08/ X10 devices. Therefore, complete system test and recommended characterization is if dsPIC33FJXXXGPX06A/X08A/X10A devices are used to replace dsPIC33FJXXXGPX06/X08/X10 devices.

The following enhancements were introduced:

- Extended temperature support of up to +125°C
- Enhanced Flash module with higher endurance and retention
- New PLL Lock Enable configuration bit
- Added Timer5 trigger for ADC1 and Timer3 trigger for ADC2