

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	69
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp708a-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1: SR: CPU STATUS REGISTER

bit 8		DC: MCU ALU Half Carry/Borrow bit
		 1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred
		 0 = No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred
bit 7-	5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
		<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4		RA: REPEAT Loop Active bit
		1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3		N: MCU ALU Negative bit
		1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2		OV: MCU ALU Overflow bit
		This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude which causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1		Z: MCU ALU Zero bit
		 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result)
bit 0		C: MCU ALU Carry/Borrow bit
		 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note	1:	This bit may be read or cleared (not set).
	2:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority

- Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

	1-6:			STER N														
	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102									Register 1								FFFF
T1CON	0104	TON	—	TSIDL	_	—	—	—	—	—	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tim	ner3 Holding	Register (fo	r 32-bit time	r operations o	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32		TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	—	_	_	_	TGATE	TCKP	S<1:0>		_	TCS	_	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						-	Timer5 Hold	ing Register	(for 32-bit o	perations only	/)						xxxx
TMR5	0118								Timer5	Register								0000
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T5CON	0120	TON	—	TSIDL	_		_		—		TGATE	TCKP	S<1:0>	_	—	TCS		0000
TMR6	0122								Timer6	Register								0000
TMR7HLD	0124						-	Timer7 Hold	ing Register	(for 32-bit o	perations only	/)						xxxx
TMR7	0126								Timer7	Register								0000
PR6	0128								Period F	Register 6								FFFF
PR7	012A								Period F	Register 7								FFFF
T6CON	012C	TON	—	TSIDL					—		TGATE	TCKP	S<1:0>	T32	_	TCS		0000
T7CON	012E	TON	—	TSIDL					—		TGATE	TCKP	S<1:0>		—	TCS		0000
TMR8	0130								Timer8	Register								0000
TMR9HLD	0132						-	Timer9 Hold	ing Register	(for 32-bit o	perations only	/)						xxxx
TMR9	0134								Timer9	Register								0000
PR8	0136								Period F	Register 8								FFFF
PR9	0138								Period F	Register 9								FFFF
T8CON	013A	TON	—	TSIDL	_	_	—	—	—	_	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T9CON	013C	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKP	S<1:0>	—	—	TCS	—	0000

TABLE 4-6: TIMER REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJXXXGPX06A/X08A/X10A

TABLE 4-17: DMA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	_			_		AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA0REQ	0382	FORCE	_	_	_	_	_	_	_	_				RQSEL<6:0	>	-	-	0000
DMA0STA	0384	I							S	TA<15:0>								0000
DMA0STB	0386								S	TB<15:0>								0000
DMA0PAD	0388								P	AD<15:0>								0000
DMA0CNT	038A	_	—	_	—	_	_					CN	<9:0>					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	_	_	—	_	_	AMOD	E<1:0>	_	—	MODE	<1:0>	0000
DMA1REQ	038E	FORCE	_	_	—	_	_	_	_	_			l	RQSEL<6:0	>			0000
DMA1STA	0390								S	TA<15:0>								0000
DMA1STB	0392								S	TB<15:0>								0000
DMA1PAD	0394								Р	AD<15:0>								0000
DMA1CNT	0396	—	—		—	—	_					CN	<9:0>					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW	—	_	—		—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA2REQ	039A	FORCE	—		_	_	—	_	—				l	RQSEL<6:0	>			0000
DMA2STA	039C								S	TA<15:0>								0000
DMA2STB	039E								S	TB<15:0>								0000
DMA2PAD	03A0				-			-	Р	AD<15:0>								0000
DMA2CNT	03A2	—	_	—	—	_	_		-			CN	<9:0>	_	-	-		0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	-	—	MODE	<1:0>	0000
DMA3REQ	03A6	FORCE	_	_	—	—	_	—	—	_				RQSEL<6:0	>			0000
DMA3STA	03A8								S	TA<15:0>								0000
DMA3STB	03AA								S	TB<15:0>								0000
DMA3PAD	03AC								Р	AD<15:0>								0000
DMA3CNT	03AE	—	—	—	—	—	—					CN	<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA4REQ	03B2	FORCE	—	—	—	—	—	—	—	—			l	RQSEL<6:0	>			0000
DMA4STA	03B4								S	TA<15:0>								0000
DMA4STB	03B6								S	TB<15:0>								0000
DMA4PAD	03B8								P	AD<15:0>								0000
DMA4CNT	03BA	—	—	—	—	—	—					CN	<9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	_	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA5REQ	03BE	FORCE	—	—	—	—		—	—	—				RQSEL<6:0	>			0000
DMA5STA	03C0								S	TA<15:0>								0000
DMA5STB	03C2								S	TB<15:0>								0000
DMA5PAD	03C4								Р	AD<15:0>								0000

© 2009-2012 Microchip Technology Inc.

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70593D-page 56

TABLE 4-27: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02CC	TRISC15	TRISC14	TRISC13	TRISC12		_			_	—		TRISC4	TRISC3	TRISC2	TRISC1		F01E
PORTC	02CE	RC15	RC14	RC13	RC12	_	_	_	-	_	_	_	RC4	RC3	RC2	RC1	_	xxxx
LATC	02D0	LATC15	LATC14	LATC13	LATC12			_		_	_	-	LATC4	LATC3	LATC2	LATC1		xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-28: PORTD REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02D4	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02D6	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	06D2	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-29: PORTE REGISTER MAP⁽¹⁾

	-	-																
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8	—	—	—	—	—	_	_	—	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	OOFF
PORTE	02DA	_	_	_	_	_	_	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02DC	_	_	_	_	_	_	_	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-30: PORTF REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	_	_	TRISF13	TRISF12	—	-	_	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	_	_	RF13	RF12	_	_	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02E2	_	_	LATF13	LATF12	_	_	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	06DE	_	_	ODCF13	ODCF12	_	_	_	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

5.0 FLASH PROGRAM MEMORY

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Familv Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

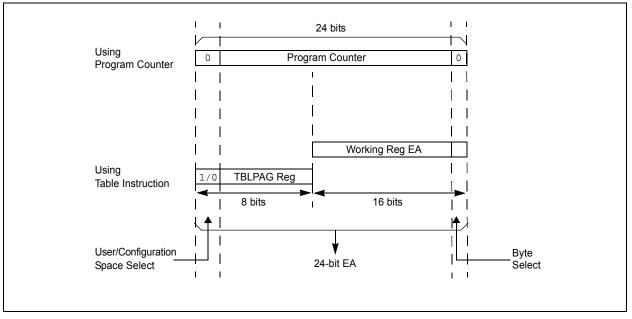
Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJXXXGPX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and

Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE bit (NVMCON<6>) and the WREN bit (NVMCON<14>).
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase operation	
MOV #0x4042, W0	i
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	i
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

REGISTER 7-20: IP	PC5: INTERRUPT PRIORITY CONTROL REGISTER 5
-------------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC8IP<2:0>		—		IC7IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		AD2IP<2:0>		—		INT1IP<2:0>	
bit 7							bit
Legend:							
R = Readable	bit	W = Writable t	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as '0)'				
bit 14-12	-	Input Capture C		rrunt Priority h	nite		
		upt is priority 7 (h					
	•			,			
	•						
	• 001 - Interr	upt is priority 1					
		upt source is disa	abled				
bit 11		nted: Read as '0					
bit 10-8	-	Input Capture C		rrupt Priority b	oits		
		upt is priority 7 (h					
	•						
	•						
	• 001 = Interru	upt is priority 1					
		upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '0)'				
bit 6-4	AD2IP<2:0>	: ADC2 Convers	ion Complete	e Interrupt Pric	rity bits		
	111 = Interru	upt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
		upt is priority 1 upt source is disa	abled				
bit 3		nted: Read as '0					
bit 2-0	-	: External Interr		hits			
		upt is priority 7 (h					
	•			,			
	•						
	• 001 - Intern	int is priority 1					
	001 = merrl	upt is priority 1					

REGISTER 8-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
			5444	54446		B 111 A	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAI	0<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	-	—	—	—	CNT<	9:8> ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> (2)			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1				
—	_	—	—		LSTCH	+<3:0>					
oit 15	÷						bit				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0				
bit 7						I	bit				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-12	Unimplemen	ted: Read as '	0'								
bit 11-8	LSTCH<3:0>	: Last DMA Ch	annel Active t	oits							
	1111 = No DM	MA transfer ha	s occurred sin	ce system Res	et						
	1110-1000 =										
		lata transfer wa									
		lata transfer wa									
		0101 = Last data transfer was by DMA Channel 5 0100 = Last data transfer was by DMA Channel 4									
	0010 – Last data transfer was by DMA Channel 3										
		lata transfer wa									
		lata transfer wa									
bit 7		lata transfer wa inel 7 Ping-Por	-								
	1 = DMA7STE	B register select register select	ted	S Flag bit							
bit 6		inel 6 Ping-Por		s Flag bit							
		B register selec	-								
		A register selec									
bit 5	PPST5: Chan	nel 5 Ping-Por	ng Mode Statu	s Flag bit							
	1 = DMA5STE	B register selec	ted	-							
	0 = DMA5STA	A register selec	ted								
bit 4	PPST4: Chan	inel 4 Ping-Por	ng Mode Statu	s Flag bit							
		B register select A register select									
bit 3	PPST3: Chan	inel 3 Ping-Por	ng Mode Statu	s Flag bit							
		B register select A register select									
bit 2	PPST2: Chan	inel 2 Ping-Por	ng Mode Statu	s Flag bit							
	1 = DMA2STE	B register select	ted								
bit 1		inel 1 Ping-Por		s Flao bit							
	1 = DMA1STE	B register select register select	cted								
bit 0		inel 0 Ping-Por		s Flag bit							
		B register selec	-								

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator

bit 0 OSWEN: Oscillator Switch Enable bit

bit 1

- 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual" for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: This is register is reset only on a Power-on Reset (POR).

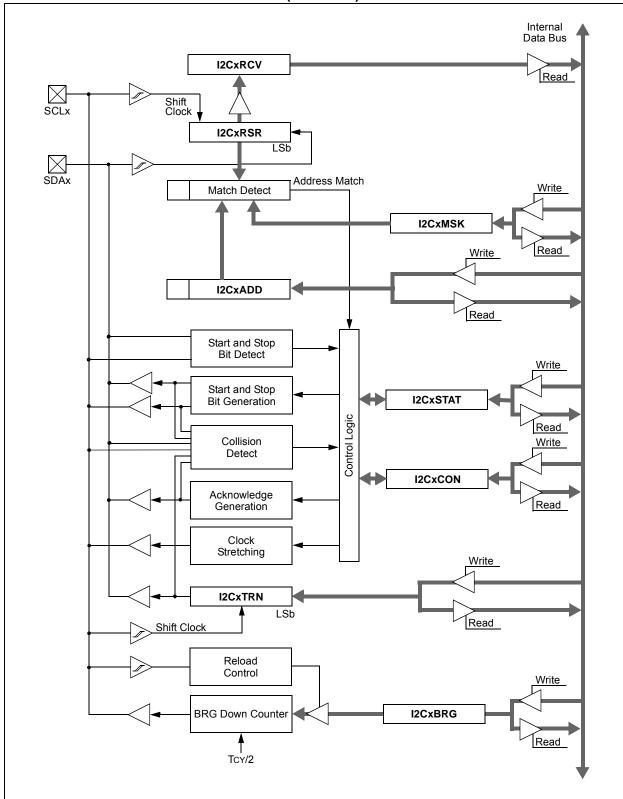


FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (X = 1 OR 2)

REGISTER 19-9: CiCFG1: ECAN[™] BAUD RATE CONFIGURATION REGISTER 1

			11.0				11.0
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—		—	—	
bit 15							bit 8
5444	5444.0		DM/ 0	D 444 A	5444.0	5444.0	D 4 4 4
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	N<1:0>			BRI	P<5:0>		
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set	t '0' = Bit is cleared			x = Bit is unknown	
bit 15-8	Unimplemer	nted: Read as '	0'				
bit 7-6	SJW<1:0>: S	Synchronization	Jump Width I	bits			
	11 = Length	is 4 x Tq					
	10 = Length						
	01 = Length						
	00 = Length						
bit 5-0		Baud Rate Pres					
		[q = 2 x 64 x 1/	FCAN				
	•						
	•						
	•						
		$Q = 2 \times 3 \times 1/F$					
		「q = 2 x 2 x 1/F 「q = 2 x 1 x 1/F					
	00 0000 - 1						

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	WAKFIL		_			SEG2PH<2:0>	
bit 15		·		· · · ·			bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM		SEG1PH<2:0>	>		PRSEG<2:0>	
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 13-11 bit 10-8 bit 7	 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up Unimplemented: Read as '0' SEG2PH<2:0>: Phase Buffer Segment 2 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ SEG2PHTS: Phase Segment 2 Time Select bit 						
bit 6	SAM: Samp 1 = Bus line i	ogrammable n of SEG1PH b le of the CAN b is sampled thre is sampled onc	ous Line bit e times at the	sample point	Time (IPT), wh	ichever is grea	ter
bit 5-3		0>: Phase Buff n is 8 x TQ		•			
bit 2-0	PRSEG<2:0: 111 = Length 000 = Length		Time Segmer	nt bits			

25.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXGPX06A/X08A/X10A electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJXXXGPX06A/X08A/X10A family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when $V_{DD} < 3.0V^{(4)}$	0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
 - 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

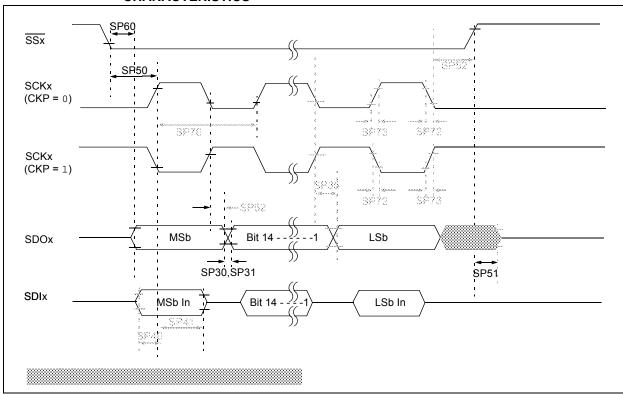

DC CHA	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and RB11	
DI60b	ІІСН	Input High Injection Current	0	_	+5(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB11, and all 5V tolerant pins ⁽⁷⁾	
DI60c	Σ ΙΙΟΤ	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (VSS 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 25-14: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 25-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

АС СНА		rics	Standard Operating Conditions: 2.4V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Min Typ ⁽²⁾			Conditions		
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	_		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	—		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—		ns	See Note 4		

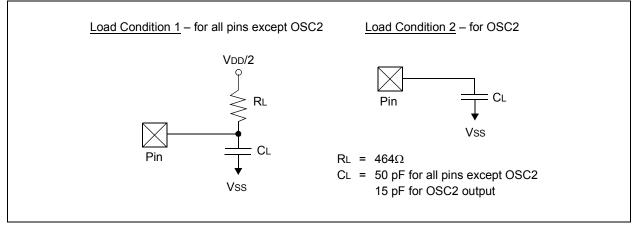
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

26.2 AC Characteristics and Timing Parameters

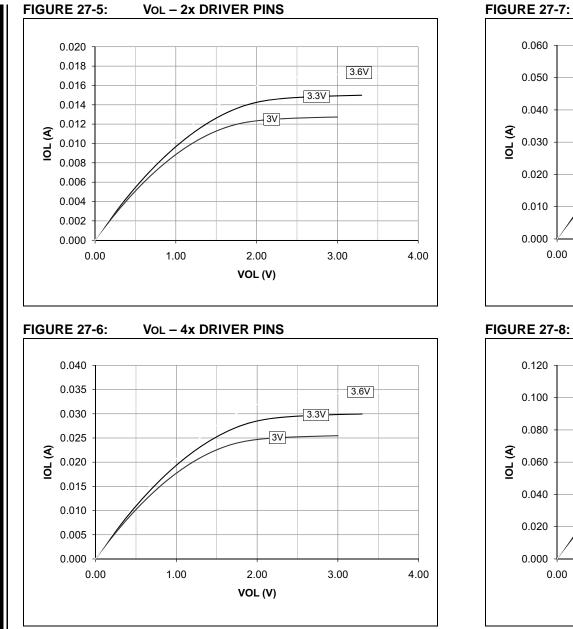

The information contained in this section defines dsPIC33FJXXXGPX06A/X08A/X10A AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in Section 25.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

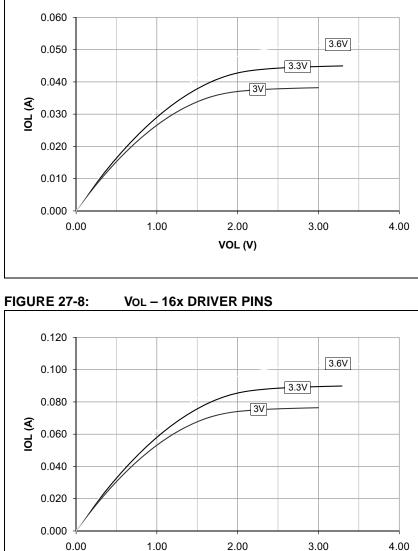
Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 25.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 26-7: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
	$\begin{array}{llllllllllllllllllllllllllllllllllll$

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS




TABLE 26-8: PLL CLOCK TIMING SPECIFICATIONS

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

Note 1: These parameters are characterized, but are not tested in manufacturing.

VOL (V)

VOL – 8x DRIVER PINS

DS70593D-page 332

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Revision Level - Tape and Reel Fl	mily — Size (K ag (if ap ge	(B)		Examples: a) dsPIC33FJ256GP710AI/PT: General-purpose dsPIC33, 64 KB program memory, 100-pin, Industrial temp., TQFP package.
Architecture:	33	=	16-bit Digital Signal Controller	
Flash Memory Family:	FJ	=	Flash program memory, 3.3V	
Product Group:	GP5	= = =	General purpose family General purpose family	
Pin Count:	08	= =	80-pin	
Temperature Range:	I E H	= = =	-40°C to+85°C(Industrial) -40°C to+125°C(Extended) -40°C to+150°C(High)	
Package:	PF	= = =	10x10 or 12x12 mm TQFP (Thin Quad Flatpack) 14x14 mm TQFP (Thin Quad Flatpack) 9x9mm QFN (Plastic Quad Flatpack)	
Pattern	(blank o		,	