

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	69
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp708a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 4-5:	INTERRUPT CONTROLLER REGISTER MAP
------------	-----------------------------------

Name A INTCON1 0	SFR Addr	Bit 15	Bit 14	Bit 13														
				61113	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON2 0	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
	0082	ALTIVT	DISI	—	_	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0 C	0084	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1 C	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	—	MI2C1IF	SI2C1IF	0000
IFS2 C	8800	T6IF	DMA4IF	—	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3 0	008A	_	_	DMA5IF	DCIIF	DCIEIF		_	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4 0	008C	_	_	_	_	-		_	_	C2TXIF	C1TXIF	DMA7IF	DMA6IF	_	U2EIF	U1EIF	_	0000
IEC0 C	0094	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1 C	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC2 C	0098	T6IE	DMA4IE	_	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3 0	009A	_	_	DMA5IE	DCIIE	DCIEIE		_	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4 0	009C	—	—	_	—	_	_	-		C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE		0000
IPC0 0	00A4	—		T1IP<2:0>	•	_	(OC1IP<2:0)>	—		IC1IP<2:0>		—	11	NT0IP<2:0>		4444
IPC1 0	00A6	—		T2IP<2:0>	•	_	(OC2IP<2:0)>	—		IC2IP<2:0>		—	DI	MA0IP<2:0	>	4444
IPC2 0	00A8	—	L	J1RXIP<2:()>	_	S	SPI1IP<2:0)>	—	:	SPI1EIP<2:0	>	—		T3IP<2:0>		4444
IPC3 0	00AA	—	—	_	—	_	D	MA1IP<2:	0>	—		AD1IP<2:0>	•	—	U	1TXIP<2:0>	>	0444
IPC4 0	00AC	—		CNIP<2:0>	>	—	-			—	I	MI2C1IP<2:0)>	_	SI	2C1IP<2:0	>	4044
IPC5 0	00AE	—		IC8IP<2:0>	>	—		IC7IP<2:0	>	—		AD2IP<2:0>	•	_	11	VT1IP<2:0>		4444
IPC6 0	00B0	—		T4IP<2:0>	•	—	(C4IP<2:0)>	—		OC3IP<2:0>	>	_	DI	MA2IP<2:0	>	4444
IPC7 0	00B2	_	ι	J2TXIP<2:0)>	-	U	I2RXIP<2:	0>	_		INT2IP<2:0	>	_		T5IP<2:0>		4444
IPC8 0	00B4	—		C1IP<2:0>	>	—	С	1RXIP<2:	0>	—		SPI2IP<2:0	>	_	SF	PI2EIP<2:0	>	4444
IPC9 0	00B6	—		IC5IP<2:0>	>	—		IC4IP<2:0	>	—		IC3IP<2:0>		_	DI	MA3IP<2:0	>	4444
IPC10 0	00B8	—	(OC7IP<2:0	>	—	(C6IP<2:0)>	—		OC5IP<2:0>	>	_	I	C6IP<2:0>		4444
IPC11 0	00BA	—		T6IP<2:0>	•	—	D	MA4IP<2:	0>	—	_			_	C	0C8IP<2:0>		4404
IPC12 0	00BC	_		T8IP<2:0>	•	-	Μ	II2C2IP<2:	0>	_		SI2C2IP<2:0	>	_		T7IP<2:0>		4444
IPC13 0	00BE	_	C	2RXIP<2:0)>	_	I	NT4IP<2:0)>	-		INT3IP<2:0	>	_		T9IP<2:0>		4444
IPC14 0	00C0	_	0	DCIEIP<2:0)>	_	_	—	—	—	—	—	—	—	(C2IP<2:0>		4004
IPC15 0	00C2	_	—	_	—	_	_	—	_	—		DMA5IP<2:0	>	_	[OCIIP<2:0>		0044
IPC16 0	00C4	_	—	_	—	_	l	J2EIP<2:0	>	—		U1EIP<2:0>	•	_		—	—	0440
IPC17 0	00C6	_		C2TXIP<2:0)>	_	C	1TXIP<2:	0>	_		DMA7IP<2:0	>	_	DI	MA6IP<2:0	>	4444
INTTREG 0	00E0	_	—	—	—		ILR<	3:0>		_			VE	CNUM<6:0>				0000

© 2009-2012 Microchip Technology Inc.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE **INSTRUCTIONS**

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.

• TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

• TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

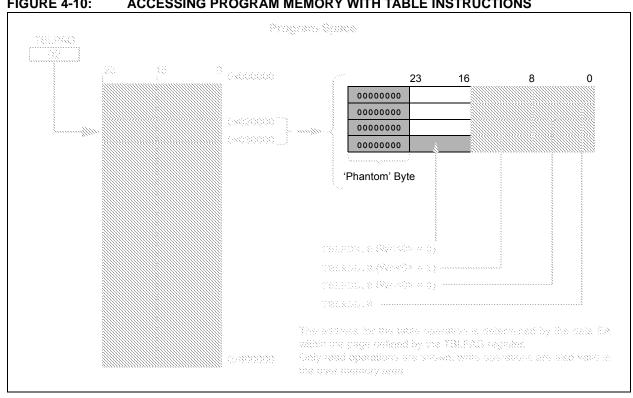


FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 5-2: NVMKEY: NON-VOLATILE MEMORY KEY REGISTER U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 ____ ____ ___ ___ ____ _ — ____ bit 15 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 NVMKEY<7:0> bit 7 Legend: SO = Settable only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register (Write Only) bits

bit 8

bit 0

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

		T2IP<2:0>		—		OC2IP<2:0>						
bit 15							bit					
		DAMO		11.0		DAALO						
U-0	R/W-1	R/W-0 IC2IP<2:0>	R/W-0	U-0	R/W-1	R/W-0 DMA0IP<2:0>	R/W-0					
bit 7		10211 42.05				Division 42.05	bit					
Legend:												
R = Readable		W = Writable k	Dit	•	mented bit, rea							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown					
bit 15	Unimplemer	nted: Read as '0)'									
bit 14-12	T2IP<2:0>: Timer2 Interrupt Priority bits											
	111 = Interru	ıpt is priority 7 (h	nighest priority	y interrupt)								
	•											
	•											
	001 = Interru	pt is priority 1										
	000 = Interrupt source is disabled											
bit 11	Unimplemer	nted: Read as '0)'									
bit 10-8	OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits											
	 111 = Interrupt is priority 7 (highest priority interrupt) • 											
	•											
	•											
	001 = Interrupt is priority 1 000 = Interrupt source is disabled											
bit 7		nted: Read as '0										
bit 6-4	-			rrupt Priority b	its							
	IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interrupt is priority 1 000 = Interrupt source is disabled											
bit 3		nted: Read as '0										
bit 2-0	-	>: DMA Channe		sfer Complete	Interrupt Prio	rity bits						
511 2 0		ipt is priority 7 (h		-		ing bito						
	•		5	,,								
	•											
	• 001 = Intern	pt is priority 1										
		ipt source is disa	abled									

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are									
	initialized, such that all user interrupt									
	sources are assigned to priority level 4.									

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y					
_		COSC<2:0>				NOSC<2:0>(2)						
bit 15							bit 8					
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0					
CLKLOC	СК —	LOCK	_	CF		LPOSCEN	OSWEN					
bit 7							bit 0					
Legend:		y = Value set	from Configur	ation bits on P	POR	C = Clea	r only bit					
R = Reada	able bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own					
bit 15	Unimplemer	nted: Read as ')'									
bit 14-12	COSC<2:0>:	Current Oscilla	tor Selection	bits (read-only	()							
		C oscillator (FF										
		110 = Fast RC oscillator (FRC) with Divide-by-16 101 = Low-Power RC oscillator (LPRC)										
	100 = Secon	100 = Secondary oscillator (Sosc)										
		011 = Primary oscillator (XT, HS, EC) with PLL										
		010 = Primary oscillator (XT, HS, EC)										
		001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCDIVN + PLL) 000 = Fast RC oscillator (FRC)										
.:		•	•									
oit 11	-	Unimplemented: Read as '0'										
oit 10-8		NOSC<2:0>: New Oscillator Selection bits ⁽²⁾ 111 = Fast RC oscillator (FRC) with Divide-by-N										
		111 = Fast RC oscillator (FRC) with Divide-by-N 110 = Fast RC oscillator (FRC) with Divide-by-16										
		110 = Fast RC oscillator (FRC) with Divide-by-16 101 = Low-Power RC oscillator (LPRC)										
		101 = Low-Power RC oscillator (LPRC) 100 = Secondary oscillator (Sosc)										
		ry oscillator (XT,		I PLL								
		y oscillator (XT,										
	001 = Fast R	C Oscillator (FF	RC) with Divid	e-by-N and PL	L (FRCDIVN +	⊦ PLL)						
		C oscillator (FF	,									
bit 7		Clock Lock Enal										
		1 = If (FCKSM0 = 1), then clock and PLL configurations are locked										
		If (FCKSM0 = 0), then clock and PLL configurations may be modified										
		Id PLL selection		ked, configurat	ions may be m	odified						
bit 6	-	nted: Read as '										
bit 5		₋ock Status bit (s that PLL is in I	3,	lart un timor in	eatiefied							
		s that PLL is in i				l is disabled						
bit 4		nted: Read as '										
bit 3		ail Detect bit (rea		plication)								
		as detected clo										
		as not detected										
bit 2	Unimplemer	nted: Read as ')'									
Note 1:	Writes to this regis	ster require an u	Inlock sequer	ice. Refer to S	ection 7. "Oso	cillator" (DS701	86) in the					
	"dsPIC33F/PIC24						, -					
2:	Direct clock switch	nes between any	/ primary osci	llator mode wit	th PLL and FRO	CPLL mode are r	not permitted.					
	This applies to clo	ck switches in e	either direction	n. In these inst	ances, the app							
	mode as a transiti	on clock source	between the	two PLL mode	es.							
_												

3: This is register is reset only on a Power-on Reset (POR).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	
T5MD	T4MD	T3MD	T2MD	T1MD		_	DCIMD	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD ⁽¹⁾	
bit 7							bit	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown	
bit 15	T5MD: Timer	5 Module Disat	ole bit					
		nodule is disable nodule is enable						
bit 14	T4MD: Timer	4 Module Disat	ole bit					
	-	nodule is disable nodule is enable						
bit 13		3 Module Disat						
	1 = Timer3 m	nodule is disable	ed					
	0 = Timer3 m	nodule is enable	d					
bit 12	T2MD: Timer2 Module Disable bit							
	-	nodule is disable nodule is enable						
bit 11	T1MD: Timer	1 Module Disat	ole bit					
		nodule is disable nodule is enable						
bit 10-9	Unimplemer	ted: Read as '	כ'					
bit 8	DCIMD: DCI	Module Disable	e bit					
		ule is disabled ule is enabled						
bit 7	I2C1MD: I ² C	1 Module Disab	le bit					
		dule is disabled dule is enabled						
bit 6		T2 Module Disa	ble bit					
	-	nodule is disabl nodule is enable						
bit 5		T1 Module Disa						
		nodule is disabl						
	0 = UART1 n	nodule is enable	ed					
bit 4	SPI2MD: SP	I2 Module Disal	ole bit					
		dule is disabled						
		dule is enabled						
bit 3		11 Module Disal	ole bit					
		dule is disabled dule is enabled						

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

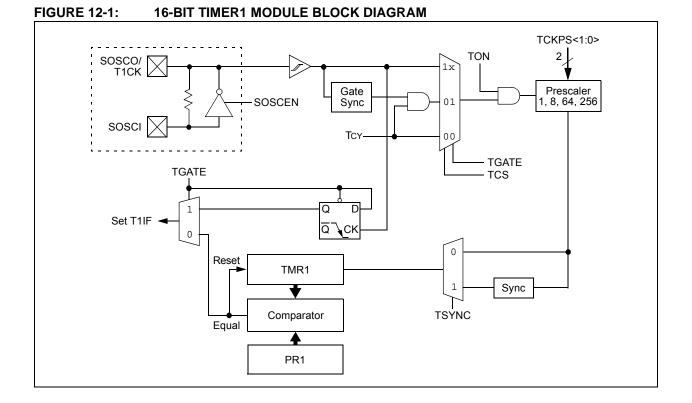
NOTES:

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter


Timer1 also supports these features:

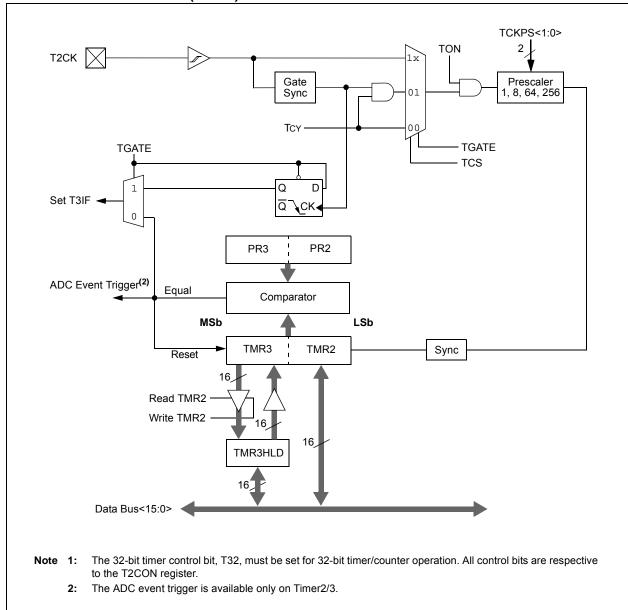

- Timer gate operation
- · Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1) in the T1CON register.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

FIGURE 13-1: TIMER2/3 (32-BIT) BLOCK DIAGRAM⁽¹⁾

TON ⁽¹⁾	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
TON	—	TSIDL ⁽²⁾	—		_	—	_						
bit 15						1	bit						
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0						
_	TGATE ⁽¹⁾	TCKPS	<1:0> ⁽¹⁾	—	—	TCS ^(1,3)							
bit 7							bit						
Legend:													
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, rea	id as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own						
bit 15	TON: Timery	On bit ⁽¹⁾											
		1 = Starts 16-bit Timery 0 = Stops 16-bit Timery											
	-	-											
bit 14	-	ted: Read as '0											
bit 13		TSIDL: Stop in Idle Mode bit ⁽²⁾											
		 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 											
bit 12-7		-		ue									
bit 6	Unimplemented: Read as '0'												
	TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾ When TCS = 1:												
	This bit is ignored.												
	When TCS = 0 :												
	1 = Gated time accumulation enabled												
		e accumulation											
	TCKPS<1:0>: Timer3 Input Clock Prescale Select bits ⁽¹⁾												
bit 5-4	11 = 1:256												
bit 5-4													
bit 5-4	10 = 1:64												
bit 5-4													
bit 5-4 bit 3-2	10 = 1:64 01 = 1:8 00 = 1:1	ted: Read as '0)'										
	10 = 1:64 01 = 1:8 00 = 1:1 Unimplemen	ted: Read as '0 Clock Source S											
bit 3-2	10 = 1:64 01 = 1:8 00 = 1:1 Unimplemen TCS: Timery	Clock Source S clock from pin T	elect bit ^(1,3)										
bit 3-2	10 = 1:64 01 = 1:8 00 = 1:1 Unimplemen TCS: Timery 1 = External o 0 = Internal o	Clock Source S clock from pin T	elect bit ^(1,3) yCK (on the r										

2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The dsPIC33FJXXXGPX06A/X08A/X10A devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

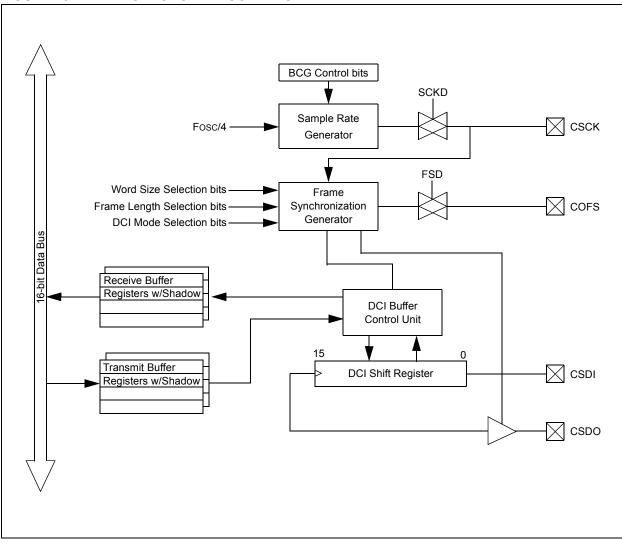
Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C Port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and will arbitrate accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the l^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I^2C module can operate either as a slave or a master on an I^2C bus.


The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, please refer to the "*dsPIC33F/PIC24H Family Reference Manual*".

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
—				FBP<5	:0>						
pit 15							bit 8				
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
_	—			FNRB<	5:0>						
oit 7							bit C				
Legend: R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unknown					
oit 15-14	Unimpleme	ented: Read as '0'									
oit 13-8	FBP<5:0>:	FIFO Write Buffer	Pointer bits								
	011111 = F										
	011110 = F	RB30 buffer									
	•										
	•										
	000001 = T 000000 = T										
oit 7-6		ented: Read as '0'									
oit 5-0	-	: FIFO Next Read		tor bite							
л 5-0	011111 = F										
	011111 – F										
	•										
	•										
	• 000001 = T	DD1 huffor									
	$\cdots \cdots \cdots = 1$										

REGISTER 19-5: CiFIFO: ECAN™ FIFO STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
_	—	_	—		SLO	<3:0>				
bit 15							bit			
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
	—	—	_	ROV	RFUL	TUNF	TMPTY			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unk	nown			
	• • 0010 = Slot #2 is currently active 0001 = Slot #1 is currently active 0000 = Slot #0 is currently active									
bit 7-4	Unimplement	t ed: Read as '	0'							
bit 3	ROV: Receive 1 = A receive 0 = A receive	overflow has	occurred for at	t least one rece	eive register					
bit 2	RFUL: Receiv 1 = New data 0 = The receiv	is available in	the receive re	egisters						
bit 1	TUNF: Transn 1 = A transmit 0 = A transmit	underflow ha	s occurred for	at least one tra	ansmit register					
bit 0	TMPTY: Trans		npty Status bit							

REGISTER 20-4: DCISTAT: DCI STATUS REGISTER

21.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning.
 - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

21.5 ADC Resources

Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browner:
	this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en546064

21.5.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

22.4 Watchdog Timer (WDT)

For dsPIC33FJXXXGPX06A/X08A/X10A devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

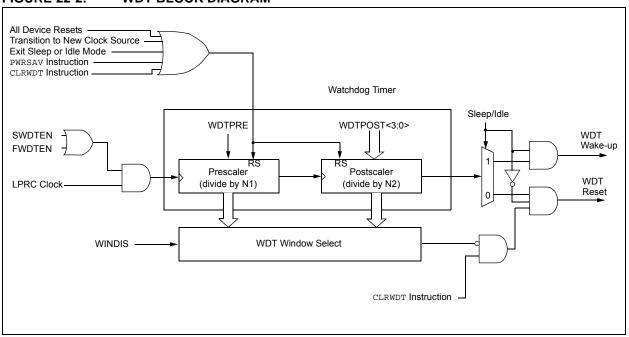
The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler and then can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

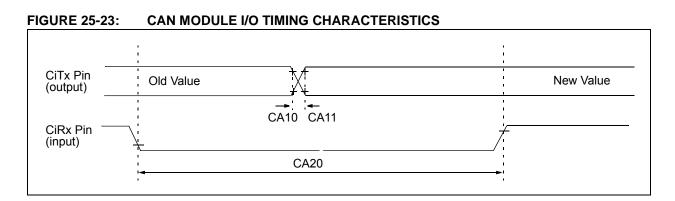
The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.


The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.


The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

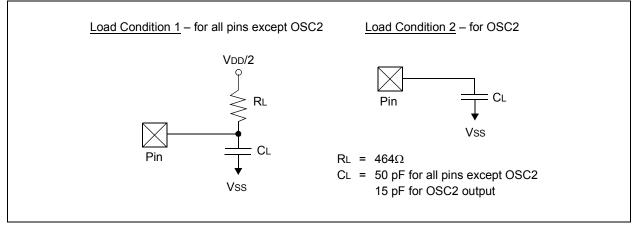
FIGURE 22-2: WDT BLOCK DIAGRAM

TABLE 25-40: ECAN™ MODULE I/O TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
CA10	TioF	Port Output Fall Time	—	_		ns	See parameter D032		
CA11	TioR	Port Output Rise Time	_	_	_	ns	See parameter D031		
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120			ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

26.2 AC Characteristics and Timing Parameters


The information contained in this section defines dsPIC33FJXXXGPX06A/X08A/X10A AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in Section 25.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 25.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 26-7: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)		
	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-8: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period	

Note 1: These parameters are characterized, but are not tested in manufacturing.