

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp710a-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJXXXGPX06A/X08A/X10A ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJXXXGPX06A/X08A/X10A CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

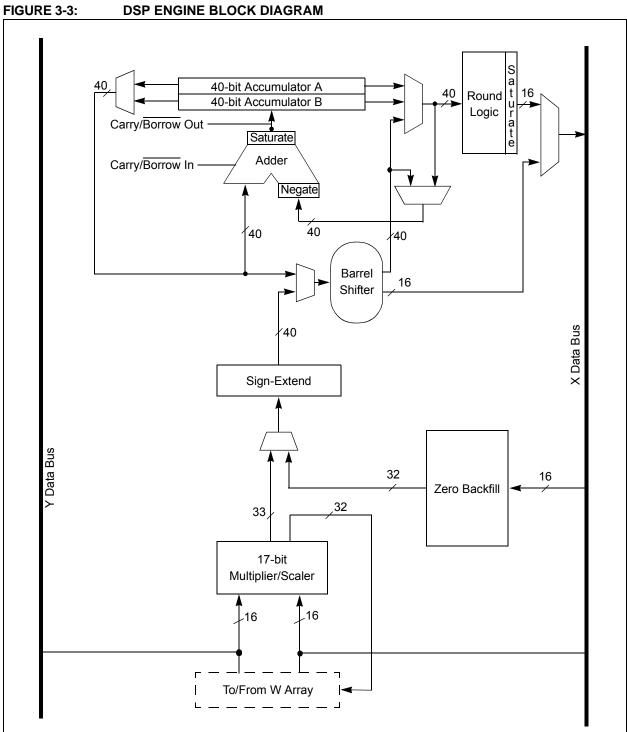
The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJXXXGPX06A/X08A/X10A is a single-cycle, instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations which require no additional data. These instructions are ADD, SUB and NEG.


The DSP engine has various options selected through various bits in the CPU Core Control register (CORCON), as listed below:

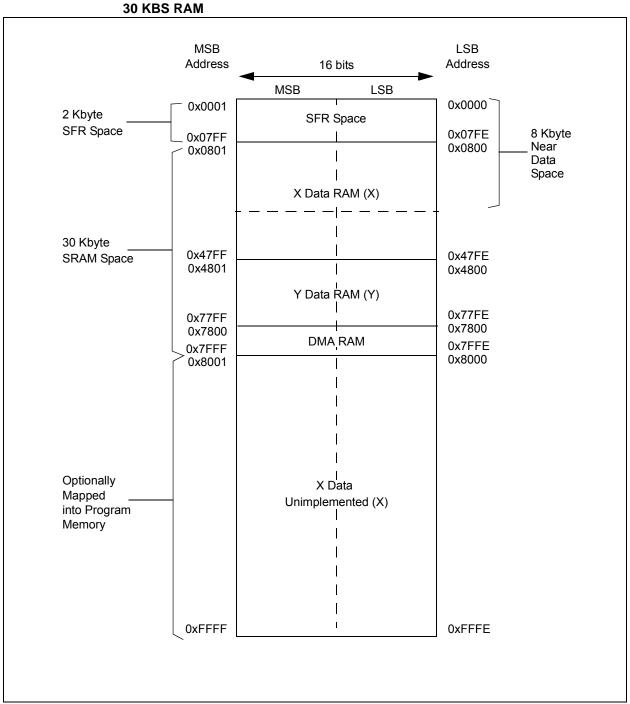

- Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- · Conventional or convergent rounding (RND)
- Automatic saturation on/off for AccA (SATA)
- Automatic saturation on/off for AccB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

Table 3-1 provides a summary of DSP instructions. A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	A = A + x2	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06A/X08A/X10A DEVICES WITH 30 KBS RAM

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
WREG0	0000								Working Re	gister 0								xxx
WREG1	0002								Working Re	gister 1								XXX
WREG2	0004								Working Re	gister 2								xxxx
WREG3	0006								Working Re	gister 3								XXXX
WREG4	8000								Working Re	gister 4								XXXX
WREG5	000A								Working Re	gister 5								XXXX
WREG6	000C								Working Re	gister 6								XXXX
WREG7	000E								Working Re	gister 7								XXXX
WREG8	0010								Working Re	gister 8								XXXX
WREG9	0012								Working Re	gister 9								XXXX
WREG10	0014								Working Re	gister 10								XXXX
WREG11	0016								Working Re	gister 11								XXXX
WREG12	0018								Working Re	gister 12								XXXX
WREG13	001A								Working Re	gister 13								XXXX
WREG14	001C								Working Re	gister 14								XXXX
WREG15	001E								Working Re	gister 15								0800
SPLIM	0020		Stack Pointer Limit Register												XXXX			
ACCAL	0022		Accumulator A Low Word Register												0000			
ACCAH	0024		Accumulator A High Word Register													0000		
ACCAU	0026							Accumu	lator A Uppe	er Word Reg	lister							0000
ACCBL	0028							Accum	ulator B Low	Word Regi	ster							0000
ACCBH	002A							Accum	ulator B High	Word Regi	ster							0000
ACCBU	002C							Accumu	lator B Uppe	er Word Reg	lister							0000
PCL	002E							Program	Counter Lo	w Word Reg	gister							0000
PCH	0030	-	_	_	_	_	_	_	_			Progra	m Counter	High Byte R	legister			0000
TBLPAG	0032	-	_	_	_	_	_	_	_			Table F	Page Addres	ss Pointer F	Register			0000
PSVPAG	0034	-	_	_	_	_	_	_	_		Progra	am Memory	Visibility Pa	age Addres	s Pointer R	egister		0000
RCOUNT	0036							Repe	at Loop Cou	inter Registe	er							XXXX
DCOUNT	0038								DCOUNT	<15:0>								xxxx
DOSTARTL	003A							DOS	TARTL<15:	1>							0	xxxx
DOSTARTH	003C	_	_	_	_	_		_	_	_				DOSTAF	RTH<5:0>			00xx
DOENDL	003E							DO	ENDL<15:1	>							0	xxxx
DOENDH	0040	_	_	_	_	_		_	_	—				DOE	NDH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	_	_	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_		BWM	1<3:0>			YWM	<3:0>			XWM	<3:0>		0000
XMODSRT	0048)	(S<15:1>								0	XXXX
XMODEND	004A)	(E<15:1>								1	XXXX
YMODSRT	004C							١	′S<15:1>								0	XXXX
YMODEND	004E							١	′E<15:1>								1	XXXX

TABLE 4-1. CPU CORE REGISTERS MAP

dsPIC33FJXXXGPX06A/X08A/X10A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Ca	pture Regist	er							xxxx
IC1CON	0142	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144								Input 2 Ca	pture Regist	er							xxxx
IC2CON	0146	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3BUF	0148								Input 3 Ca	pture Regist	er							xxxx
IC3CON	014A	_	_	ICSIDL	—	—	—	—	—	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC4BUF	014C		Input 4 Capture Register									xxxx						
IC4CON	014E	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC5BUF	0150								Input 5 Ca	pture Regist	er							xxxx
IC5CON	0152			ICSIDL			_			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC6BUF	0154								Input 6 Ca	pture Regist	er							xxxx
IC6CON	0156			ICSIDL			_			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Ca	pture Regist	er							xxxx
IC7CON	015A			ICSIDL			_			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C								Input 8 Ca	pture Regist	er							xxxx
IC8CON	015E	_	_	ICSIDL	—	—	—	_	—	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
Legend:	x = unkno	wn value c	n Reset, -	– = unimple	emented, r	ead as '0'.	Reset valu	es are sho	wn in hexad	lecimal.								

TABLE 4-7: INPUT CAPTURE REGISTER MAP

dsPIC33FJXXXGPX06A/X08A/X10A

TABLE 4-15: ADC1 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Data	Buffer 0								xxxx
AD1CON1	0320	ADON	_	ADSIDL	ADDMABM	_	AD12B	FOR	И<1:0>	:	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	١	/CFG<2:0>	>	_	_	CSCNA	CHP	S<1:0>	BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC		—		SAMC<4:0>					ADCS<7:0>						0000	
AD1CHS123	0326	_		—	_		CH123N	NB<1:0>	CH123SB				—	—	CH123N	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB		—		CI	H0SB<4:0>	>		CH0NA			CH0SA<4:0>					0000
AD1PCFGH(1)	032A	PCFG31	PCFG30	PCFG29	PCFG28	PCFG27	PCFG26	PCFG25	PCFG24	PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16	0000
AD1PCFGL	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSH(1)	032E	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	_	_	—	_	_	_	_	_	_	_	_	_	[DMABL<2:()>	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Not all ANx inputs are available on all devices. See the device pin diagrams for available ANx inputs.

TABLE 4-16: ADC2 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC2BUF0	0340								ADC Data	Buffer 0								xxxx
AD2CON1	0360	ADON	_	ADSIDL	ADDMABM	_	AD12B	FORI	M<1:0>	Ş	SSRC<2:0	>	_	SIMSAM	ASAM	SAMP	DONE	0000
AD2CON2	0362	Ň	VCFG<2:0>	>	_	_	CSCNA	CHP	S<1:0>	BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000
AD2CON3	0364	ADRC	_	_		S	AMC<4:0>						ADC	S<7:0>				0000
AD2CHS123	0366	_	_	_	_	_	CH123N	IB<1:0>	CH123SB	_	_	_	_	_	CH123N	IA<1:0>	CH123SA	0000
AD2CHS0	0368	CH0NB	_	_	_		CH0S	B<3:0>		CH0NA	_	_	— CH0SA<3:0>				0000	
Reserved	036A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
AD2PCFGL	036C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
Reserved	036E	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
AD2CSSL	0370	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD2CON4	0372	_	_	_	_		_	_	_	_	_	_	_	_		DMABL<2:	0>	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3													
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0						
_	_	DMA5IF	DCIIF	DCIEIF	_	—	C2IF						
bit 15				•			bit 8						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF						
bit 7							bit 0						
Legend:													
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'							
-n = Value at I		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own						
bit 15-14	Unimplemen	ted: Read as '	0'										
bit 13	DMA5IF: DM	A Channel 5 D	ata Transfer (Complete Inter	rupt Flag Status	bit							
		request has oc request has no											
bit 12	DCIIF: DCI E	vent Interrupt I	-lag Status bit										
	1 = Interrupt	request has oc	curred										
	•	request has no											
bit 11		Error Interrupt	U	it									
		request has oc request has no											
bit 10-9	Unimplemen	ted: Read as '	0'										
bit 8	C2IF: ECAN2	2 Event Interrup	ot Flag Status	bit									
	•	request has oc request has no											
bit 7	C2RXIF: ECA	AN2 Receive D	ata Ready Int	errupt Flag Sta	atus bit								
		request has oc request has no											
bit 6	•	rnal Interrupt 4		it									
	1 = Interrupt i	request has oc request has no	curred										
bit 5	INT3IF: Exter	rnal Interrupt 3	Flag Status b	it									
	•	request has oc request has no											
bit 4	-	Interrupt Flag											
	1 = Interrupt i	request has oc	curred										
	0 = Interrupt	request has no	t occurred										
bit 3		Interrupt Flag											
		request has oc											
bit 2	-	request has no 2 Master Even		ag Status bit									
SIL Z		request has oc	•	ug oluluo bit									
		request has no											
bit 1	SI2C2IF: 12C	2 Slave Events	Interrupt Flag	g Status bit									
		request has oc											
	-	request has no											
bit 0		Interrupt Flag											
		request has oc request has no											
		iequest nas no											

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0 — bit 15	U-0	U-0	U-0	U-0	U-0	U-0	U-0
				_	_		bit a
D # 4 / 0							bitt
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
C2TXIF	C1TXIF	DMA7IF	DMA6IF	_	U2EIF	U1EIF	
bit 7		·					bit (
Legend:							
R = Readable	- hit	W = Writable	hit	II – Unimplor	nented bit, read	ac 'O'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unknow	n
	FUR	I - DILIS SEL			areu	X - DILIS UNKNOW	[]
bit 15-8	Unimploment	ted: Read as '	o'				
bit 7	•			starrupt Flag S	tatua hit		
DIL 7		AN2 Transmit D	-	iterrupt Flag S	datus dit		
		request has oc request has no					
bit 6	•	AN1 Transmit D		nterrunt Flag S	tatus hit		
bit o		request has oc	-	iterrupt i lag e			
		request has no					
bit 5	DMA7IF: DM	IA Channel 7 D	ata Transfer C	omplete Interr	upt Flag Status	bit	
		request has oc		- F			
		request has no					
bit 4	DMA6IF: DM	IA Channel 6 D	ata Transfer C	omplete Interr	upt Flag Status	bit	
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 3	Unimplemer	nted: Read as '	0'				
bit 2	U2EIF: UAR	T2 Interrupt Fla	g Status bit				
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 1	U1EIF: UAR	T1 Interrupt Fla	g Status bit				
		request has oc					
	0 = Interrupt	request has no	t occurred				
		requeet nue no	coourica				

22.4 Watchdog Timer (WDT)

For dsPIC33FJXXXGPX06A/X08A/X10A devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

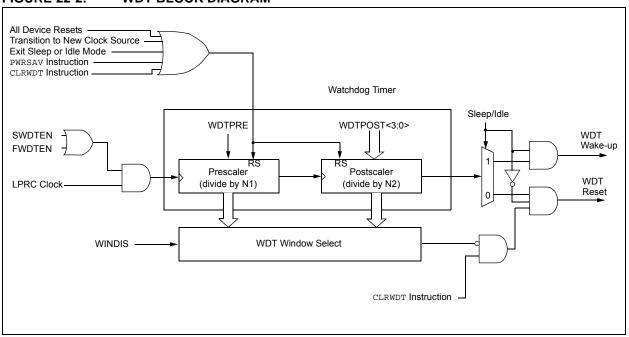
The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler and then can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.


The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

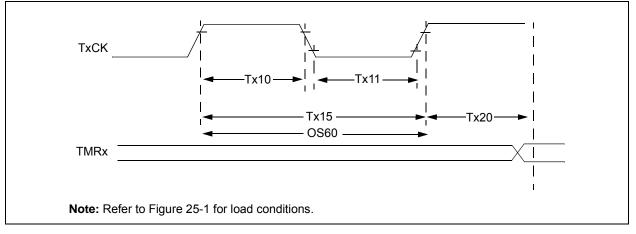
The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

FIGURE 22-2: WDT BLOCK DIAGRAM

DC CHA	RACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions				
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and RB11				
DI60b	ІІСН	Input High Injection Current	0	_	+5(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB11, and all 5V tolerant pins ⁽⁷⁾				
DI60c	Σ ΙΙΟΤ	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT				


TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (VSS 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 25-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

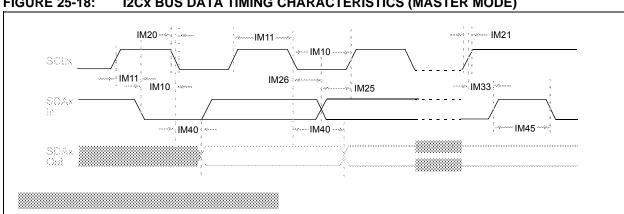
TABLE 25-22: TIME	R1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾
-------------------	--

AC CH	ARACTERIS	TICS	(unle	dard Operating of the state of	ated) e -40°	cons: 3.0V to 3.6 $C \le TA \le +85^{\circ}$ $C \le TA \le +125^{\circ}$	C for In	
Param No.	Symbol	Charact	eristic	Min	Тур	Мах	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchronous no prescaler	, TCY + 20	_	_	ns	Must also meet parameter TA15
			Synchronous with prescale		_	—	ns	
			Asynchronou	s 20	—	—	ns	
TA11	TTXL	TxCK Low Time	Synchronous no prescaler	, (Tcy + 20)/N	—	—	ns	Must also meet parameter TA15
			Synchronous with prescale		—	_	ns	N = prescale value
			Asynchronou	s 20	—	—	ns	(1,8,64,256)
TA15	ΤτχΡ	TxCK Input Period	Synchronous no prescaler	, 2Tcy + 40	_	—	ns	—
			Synchronous with prescale		_	_	—	N = prescale value (1, 8, 64, 256)
			Asynchronou	s 40	_	—	ns	—
OS60	Ft1	SOSC1/T1CK O frequency Range enabled by settir (T1CON<1>))	e (oscillator	DC	_	50	kHz	—
TA20	TCKEXTMRL	Delay from Exter Clock Edge to Ti		0.75Tcy+40		1.75Tcy+40	ns	—

Note 1: Timer1 is a Type A.

TABLE 25-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Op (unless othe Operating ter	rwise st	ated) œ -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	—	_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	_		_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx Input	120		—	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40			ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge		—	50	ns	—


Note 1: These parameters are characterized, but are not tested in manufacturing.

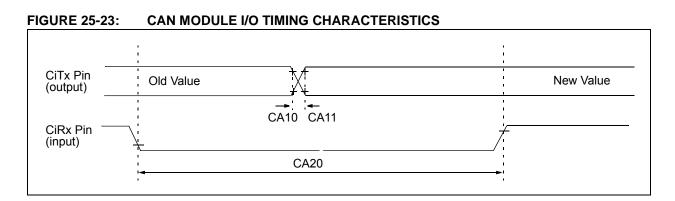
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 25-17: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)))ī SCLx IM34 IM31_ IM30 IM33 1 SDAx)) ((Start Stop Condition Condition Note: Refer to Figure 25-1 for load conditions.

FIGURE 25-18: **I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)**


TABLE 25-38:	DCI MODULE	MULTI-CHANNEL.	I ² S MODES	TIMING REQUIREMENTS
	DOLINODOLL			

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industri} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
CS10	TCSCKL	CSCK Input Low Time (CSCK pin is an input)	Tcy/2 + 20	_		ns	—
		CSCK Output Low Time ⁽³⁾ (CSCK pin is an output)	30			ns	_
CS11	Тсѕскн	CSCK Input High Time (CSCK pin is an input)	Tcy/2 + 20			ns	—
		CSCK Output High Time ⁽³⁾ (CSCK pin is an output)	30	_	_	ns	—
CS20	TCSCKF	CSCK Output Fall Time ⁽⁴⁾ (CSCK pin is an output)	—	10	25	ns	—
CS21	TCSCKR	CSCK Output Rise Time ⁽⁴⁾ (CSCK pin is an output)	—	10	25	ns	—
CS30	TCSDOF	CSDO Data Output Fall Time ⁽⁴⁾	—	10	25	ns	—
CS31	TCSDOR	CSDO Data Output Rise Time ⁽⁴⁾	—	10	25	ns	—
CS35	TDV	Clock Edge to CSDO Data Valid	—	—	10	ns	—
CS36	TDIV	Clock Edge to CSDO Tri-Stated	10	_	20	ns	—
CS40	TCSDI	Setup Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20		_	ns	_
CS41	THCSDI	Hold Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20		_	ns	_
CS50	TCOFSF	COFS Fall Time (COFS pin is output)	_	10	25	ns	Note 1
CS51	TCOFSR	COFS Rise Time (COFS pin is output)	_	10	25	ns	Note 1
CS55	TSCOFS	Setup Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	_	_	ns	—
CS56	THCOFS	Hold Time of COFS Data Input to CSCK Edge (COFS pin is input)	20		—	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- **3:** The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all DCI pins.

TABLE 25-40: ECAN™ MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless	rd Opera otherwis ng tempe	se stated	l) -40°C ≤ T/	8.0V to 3.6V A ≤ +85°C A ≤ +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
CA10	TioF	Port Output Fall Time	—	_		ns	See parameter D032
CA11	TioR	Port Output Rise Time	_	_	_	ns	See parameter D031
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120			ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

NOTES:

TABLE 26-14: ADC MODULE SPECIFICATIONS

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							-
Param No.	Symbol	Characteristic Min Typ Max Units Condit				Conditions	
	Reference Inputs						
HAD08	IREF	Current Drain		250 —	600 50	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 26-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽³⁾

-	AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
	ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾						
AD23a	Gerr	Gain Error	—	5	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24a	EOFF	Offset Error	_	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
	AD	C Accuracy (12-bit Mode	e) – Meas	uremen	ts with in	ternal V	/REF+/VREF- ⁽¹⁾
AD23a	Gerr	Gain Error	2	10	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24a	EOFF	Offset Error	2	5	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V
	Dynamic Performance (12-bit Mode) ⁽²⁾						
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz	—

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 26-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽³⁾

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						•	
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
	ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾						
AD23b	Gerr	Gain Error	_	3	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD24b	EOFF	Offset Error		2	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
	AD	C Accuracy (12-bit Mode)	– Measu	rement	s with int	ernal V	REF+/VREF- ⁽¹⁾
AD23b	Gerr	Gain Error	_	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24b	EOFF	Offset Error	_	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
	Dynamic Performance (10-bit Mode) ⁽²⁾						
HAD33b	Fnyq	Input Signal Bandwidth	_	_	400	kHz	_

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

Revision D (June 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-3: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal Controllers"	Updated the Recommended Minimum Connection (see Figure 2-1).
Section 9.0 "Oscillator Configuration"	Updated the COSC<2:0> and NOSC<2:0> bit value definitions for '001' (see Register 9-1).
Section 21.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Updated the Analog-to-Digital Conversion Clock Period Block Diagram (see Figure 21-2).
Section 22.0 "Special Features"	Added Note 3 to the On-chip Voltage Regulator Connections (see Figure 22-1).
Section 25.0 "Electrical Characteristics"	Updated "Absolute Maximum Ratings".
	Updated Operating MIPS vs. Voltage (see Table 25-1).
	Removed parameter DC18 from the DC Temperature and Voltage Specifications (see Table 25-4).
	Updated the notes in the following tables:
	• Table 25-5
	Table 25-6
	• Table 25-7
	Table 25-8
	Updated the I/O Pin Output Specifications (see Table 25-10).
	Updated the Conditions for parameter BO10 (see Table 25-11).
	Updated the Conditions for parameters D136b, D137b, and D138b (TA = 150°C) (see Table 25-12).
Section 26.0 "High Temperature Electrical	Updated "Absolute Maximum Ratings".
Characteristics"	Updated the I/O Pin Output Specifications (see Table 26-6).
	Removed Table 25-7: DC Characteristics: Program Memory.

NOTES:

NOTES: