

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp710a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest family reference sections of the "dsPIC33F/PIC24H Family Reference Manual", which are available from the Microchip web site (www.microchip.com).

This document contains device specific information for the following devices:

- dsPIC33FJ64GP206A
- dsPIC33FJ64GP306A
- dsPIC33FJ64GP310A
- dsPIC33FJ64GP706A
- dsPIC33FJ64GP708A
- dsPIC33FJ64GP710A
- dsPIC33FJ128GP206A
- dsPIC33FJ128GP306A
- dsPIC33FJ128GP310A
- dsPIC33FJ128GP706A
- dsPIC33FJ128GP708A
- dsPIC33FJ128GP710A
- dsPIC33FJ256GP506A
- dsPIC33FJ256GP510A
- dsPIC33FJ256GP710A

The dsPIC33FJXXXGPX06A/X08A/X10A General Purpose Family of device includes devices with a wide range of pin counts (64, 80 and 100), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes, 16 Kbytes and 30 Kbytes).

This feature makes the family suitable for a wide variety of high-performance digital signal control applications. The device is pin compatible with the PIC24H family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows for easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application.

The dsPIC33FJXXXGPX06A/X08A/X10A device family employs a powerful 16-bit architecture that seamlessly integrates the control features of a Microcontroller (MCU) with the computational capabilities of a Digital Signal Processor (DSP). The resulting functionality is ideal for applications that rely on high-speed, repetitive computations, as well as control.

The DSP engine, dual 40-bit accumulators, hardware support for division operations, barrel shifter, 17 x 17 multiplier, a large array of 16-bit working registers and a wide variety of data addressing modes, together provide the dsPIC33FJXXXGPX06A/X08A/X10A Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the dsPIC33FJXXXGPX06A/X08A/X10A devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use dsPIC33FJXXXGPX06A/X08A/X10A devices.

Figure 1-1 illustrates a general block diagram of the various core and peripheral modules in the dsPIC33FJXXXGPX06A/X08A/X10A family of devices. Table 1-1 provides the functions of the various pins illustrated in the pinout diagrams.

4.2 Data Address Space

The dsPIC33FJXXXGPX06A/X08A/X10A CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJXXXGPX06A/X08A/X10A devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33FJXXXGPX06A/X08A/X10A instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXGPX06A/X08A/X10A core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A complete listing of implemented SFRs, including their addresses, is shown in Table 4-1 through Table 4-34.

Note:	The actual set of peripheral features and interrupts varies by the device. Please
	refer to the corresponding device tables and pinout diagrams for device-specific
	information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

	•••••				\ -	-	- /											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XBREV	0050	BREN)	(B<14:0>								xxxx
DISICNT	0052	—	—						Disable	e Interrupts	Counter R	legister						xxxx
BSRAM	0750	—	—	_	—		_	_	_	—	_	-	—	—	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	—	—	—	_	—	—	—	—	_		—		_	IW_SSR	IR_SSR	RL_SSR	0000
1							.1 .1											

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-1	8: E	ECAN1 F	REGIST	ER MAP	WHEN	C1CTR	L1.WIN :	= 0 OR	1 FOR	dsPIC33F	-JXXXC	SP506A	/51A0/7	706A/70	BA/710/	A DEV	CES (ONLY
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	—	—	CSIDL	ABAT	-	R	EQOP<2:0	>	OPI	MODE<2:0	>	—	CANCAP	—	—	WIN	0480
C1CTRL2	0402	_	_	_	_	_	_	_	_	_	_	_		DN	CNT<4:0>			0000
C1VEC	0404	_	_	_		F	ILHIT<4:0>			_			IC	CODE<6:0>				0000
C1FCTRL	0406	C	MABS<2:0	< 	—	-	—	_	-	_	—	—		F	SA<4:0>			0000
C1FIFO	0408	_	_			FBP<	5:0>			_	—			FNRB<	5:0>			0000
C1INTF	040A	_	_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	—	—	—	—		—	—	—	IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRC	NT<7:0>							RERRCNT	[<7:0>				0000
C1CFG1	0410	—	—	—	—		—	—	—	SJW<	1:0>			BRP<5	:0>			0000
C1CFG2	0412	—	WAKFIL	—	—		SE	EG2PH<2:()>	SEG2PHTS	SAM	S	EG1PH<2:	:0>	PF	RSEG<2:0	>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSł	< <1:0>	F6MSł	<1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK	<1:0>	F2MSI	< <1:0>	F1MSK	<1:0>	F0MSI	<1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	SK<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSK	<1:0>	F8MSł	<1:0>	0000
Laward				Desetualus														

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 FOR dsPIC33FJXXXGP506A/510A/706A/708A/710A DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C1RXD	0440								Received [Data Word								xxxx
C1TXD	0442								Transmit E	Data Word								xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: DCI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
DCICON1	0280	DCIEN	—	DCISIDL	—	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST			—	COFSM1	COFSM0	0000 0000 0000 0000
DCICON2	0282	_	_	_	_	BLEN1	BLEN0	_		COFSO	G<3:0>		-		V	VS<3:0>		0000 0000 0000 0000
DCICON3	0284	_	_	_	_						BCG<1	1:0>						0000 0000 0000 0000
DCISTAT	0286	_	_	_	_	SLOT3	SLOT2	SLOT1	SLOT0		_	-	-	ROV	RFUL	TUNF	TMPTY	0000 0000 0000 0000
TSCON	0288	TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8	TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0	0000 0000 0000 0000
RSCON	028C	RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8	RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0	0000 0000 0000 0000
RXBUF0	0290							Receive E	Buffer #0 D	ata Regis	ster							0000 0000 0000 0000
RXBUF1	0292							Receive E	Buffer #1 D	ata Regis	ster							0000 0000 0000 0000
RXBUF2	0294							Receive E	Buffer #2 D	ata Regis	ster							0000 0000 0000 0000
RXBUF3	0296							Receive E	Buffer #3 D	ata Regis	ster							0000 0000 0000 0000
TXBUF0	0298							Transmit I	Buffer #0 D	ata Regi	ster							0000 0000 0000 0000
TXBUF1	029A							Transmit I	Buffer #1 D	ata Regi	ster							0000 0000 0000 0000
TXBUF2	029C							Transmit I	Buffer #2 D	ata Regi	ster							0000 0000 0000 0000
TXBUF3	029E							Transmit I	Buffer #3 D	ata Regi	ster							0000 0000 0000 0000

dsPIC33FJXXXGPX06A/X08A/X10A

Legend:

— = unimplemented, read as '0'. Refer to the *"dsPIC33F/PIC24H Family Reference Manual"* for descriptions of register bit fields. Note 1:

TABLE 4-25: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14	TRISA13	TRISA12	_	TRISA10	TRISA9		TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	F6FF
PORTA	02C2	RA15	RA14	RA13	RA12	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	LATA15	LATA14	LATA13	LATA12	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA ⁽²⁾	06C0	ODCA15	ODCA14	_	_	_	_	_		_		ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Legend:

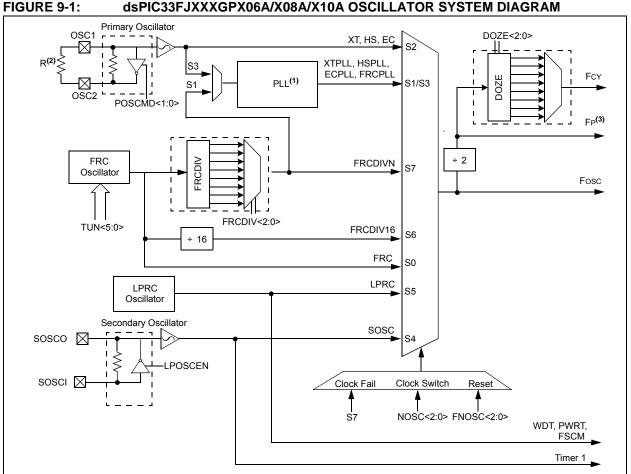
Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-26: PORTB REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.


9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/ X08A/X10A family of devices. However, not intended to it is be а comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXGPX06A/X08A/X10A oscillator system provides:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection

A simplified diagram of the oscillator system is shown in Figure 9-1.

Note 1: See Figure 9-2 for PLL details.

- 2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 M Ω must be connected.
- **3:** The term, FP refers to the clock source for all the peripherals, while Fcy refers to the clock source for the CPU. Throughout this document FP and Fcy are used interchangeably, except in the case of Doze mode. FP and Fcy will be different when Doze mode is used in any ratio other than 1:1, which is the default.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
_		COSC<2:0>				NOSC<2:0>(2)	
bit 15							bit 8
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOC	СК —	LOCK	_	CF		LPOSCEN	OSWEN
bit 7							bit 0
Legend:		y = Value set	from Configur	ation bits on P	POR	C = Clea	r only bit
R = Reada	able bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimplemer	nted: Read as ')'				
bit 14-12	COSC<2:0>:	Current Oscilla	tor Selection	bits (read-only	()		
		C oscillator (FF					
		C oscillator (FF					
		ower RC oscilla	,	5			
	100 = Secon	dary oscillator (Sosc)				
		ry oscillator (XT,		I PLL			
		y oscillator (XT,					
		C Oscillator (FF		e-by-N and PL	L (FRCDIVN +	FPLL)	
.:. 11		C oscillator (FF	•				
oit 11	-	nted: Read as '		(2)			
oit 10-8		New Oscillator					
		C oscillator (FF C oscillator (FF					
		ower RC oscilla		e-by-10			
		dary oscillator (
		ry oscillator (XT,		I PLL			
		y oscillator (XT,					
	001 = Fast R	C Oscillator (FF	RC) with Divid	e-by-N and PL	L (FRCDIVN +	⊦ PLL)	
		C oscillator (FF	,				
bit 7		Clock Lock Enal					
		M0 = 1), then c					
		M0 = 0), then c					
		Id PLL selection		ked, configurat	ions may be m	odified	
bit 6	-	nted: Read as '					
bit 5		₋ock Status bit (s that PLL is in I	3,	lart un timor in	eatiefied		
		s that PLL is in i				l is disabled	
bit 4		nted: Read as '					
bit 3		ail Detect bit (rea		plication)			
		as detected clo					
		as not detected					
bit 2	Unimplemer	nted: Read as ')'				
Note 1:	Writes to this regis	ster require an u	Inlock sequer	ice. Refer to S	ection 7. "Oso	cillator" (DS701	86) in the
	"dsPIC33F/PIC24						, -
2:	Direct clock switch	nes between any	/ primary osci	llator mode wit	th PLL and FRO	CPLL mode are r	not permitted.
	This applies to clo	ck switches in e	either direction	n. In these inst	ances, the app		
	mode as a transiti	on clock source	between the	two PLL mode	es.		
_							

3: This is register is reset only on a Power-on Reset (POR).

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator

bit 0 OSWEN: Oscillator Switch Enable bit

bit 1

- 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual" for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: This is register is reset only on a Power-on Reset (POR).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾
	_		_	_	_	_	PLLDIV<8>
bit 15	·	·	·	•	•	•	bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
R/W-U	R/W-0	R/ W- I		IV<7:0>	R/W-0	R/ W-U	R/W-0
bit 7			FLLD	10~7.02			bit 0
							DILU
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unl	known
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unl	known
-n = Value a		'1' = Bit is set	-	ʻ0' = Bit is cle	ared	x = Bit is unl	known
	Unimpleme		ʻ0'				known
bit 15-9	Unimpleme	nted: Read as '	ʻ0'				known
bit 15-9	Unimplemer PLLDIV<8:0	nted: Read as '	ʻ0'				known
bit 15-9	Unimplemer PLLDIV<8:0	nted: Read as '	ʻ0'				(nown
bit 15-9	Unimplemer PLLDIV<8:0	nted: Read as '	ʻ0'				(nown
bit 15-9	Unimplemei PLLDIV<8:0 111111111 • •	nted: Read as '	ʻ0'				(nown
bit 15-9	Unimplemei PLLDIV<8:0 111111111 • •	nted: Read as >: PLL Feedba = 513	ʻ0'				<u>known</u>
bit 15-9	Unimplemei PLLDIV<8:0 111111111 • •	nted: Read as >: PLL Feedba = 513	ʻ0'				<u>known</u>
bit 15-9	Unimplemei PLLDIV<8:0 111111111 • •	nted: Read as >: PLL Feedba = 513	ʻ0'				<u>Known</u>
bit 15-9	Unimplemer PLLDIV<8:0 111111111 • •	nted: Read as >: PLL Feedba = 513 = 50 (default)	ʻ0'				<u>Known</u>
bit 15-9	Unimplemen PLLDIV<8:0 111111111 • • • • • • • • • • • • • •	nted: Read as >: PLL Feedba = 513 = 50 (default) = 4	ʻ0'				<u>Known</u>

Note 1: This is register is reset only on a Power-on Reset (POR).

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33FJXXXGPX06A/X08A/X10A devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 22.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the status bits, LOCK (OSCCON<5>) and CF (OSCCON<3>) are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRC-PLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual" for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2009-2012} Microchip Technology Inc.

REGISTER 19-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	/-0
F7MS	K<1:0>	F6MSł	<<1:0>	F5MS	K<1:0>	F4MSł	< <1:0>	
bit 15								bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	/-0
F3MS	K<1:0>	F2MSł	<<1:0>	F1MS	K<1:0>	FOMS	<<1:0>	
bit 7								bit 0
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-14		: Mask Source	e for Filter 7 bi	t				
		ed; do not use ince Mask 2 reg	nistore contain	mask				
		ince Mask 2 reg						
		nce Mask 0 reg	-					
bit 13-12		: Mask Source	e for Filter 6 bi	t				
		ed; do not use	niatoro contain	maak				
		ince Mask 2 reg ince Mask 1 reg						
		ince Mask 0 reg						
bit 11-10		: Mask Source	e for Filter 5 bi	t				
		ed; do not use	niatoro contain	mook				
		ince Mask 2 reg ince Mask 1 reg	-					
	•	ince Mask 0 reg	-					
bit 9-8		: Mask Source	e for Filter 4 bi	t				
		ed; do not use	niatoro contain	mook				
		ince Mask 2 reg ince Mask 1 reg						
		ince Mask 0 reg	•					
bit 7-6		: Mask Source	e for Filter 3 bi	t				
		ed; do not use	niatoro contain	mook				
		ince Mask 2 reg ince Mask 1 reg						
		ince Mask 0 reg						
bit 5-4		: Mask Source	e for Filter 2 bi	t				
		ed; do not use	niatoro contain	mook				
		ince Mask 2 reg ince Mask 1 reg	-					
		ince Mask 0 reg						
bit 3-2		·: Mask Source	e for Filter 1 bi	t				
		ed; do not use	niatoro contain	maak				
		ince Mask 2 reg ince Mask 1 reg	-					
		ince Mask 0 reg	-					
bit 1-0	F0MSK<1:0>	: Mask Source	e for Filter 0 bi	t				
	_							
DIL 1-0		ed; do not use						
Dit 1-0	10 = Accepta	ed; do not use ince Mask 2 reg ince Mask 1 reg	-					

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SID	<10:3>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
	SID<2:0>			MIDE		EID<1	7:16>
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable t	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-5	SID<10:0>:	Standard Identif	ier bits				
	1 = Include	bit SIDx in filter c	omparison				
	0 = Bit SIDx	is don't care in fi	ilter comparis	son			
bit 4	Unimpleme	nted: Read as '0)'				
bit 3	MIDE: Iden	tifier Receive Mo	de bit				
	0 = Match e	only message typ either standard or (Filter SID) = (Me	extended a	ddress messag	e if filters match	י. ו	DE bit in filter
bit 2	Unimpleme	nted: Read as 'o)'				
bit 1-0	EID<17:16>	: Extended Ident	ifier bits				
	1 = Include	bit EIDx in filter of	comparison				

REGISTER 19-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EID	<15:8>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EID)<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

22.0 SPECIAL FEATURES

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXGPX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section "CodeGuard™ 23. Security" (DS70199), Section 24. "Programming and Diagnostics" (DS70207), and Section 25. "Device Configuration" (DS70194) in the "dsPIC33F/PIC24H Family Reference Manual", which are available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJXXXGPX06A/X08A/X10A devices include the following features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0xF80000 FBS RBS<1:0> BSS<2:0> BWRP SWRP 0xF80002 FSS RSS<1:0> SSS<2:0> 0xF80004 FGS GSS1 GSS0 GWRP Reserved⁽²⁾ FNOSC<2:0> 0xF80006 FOSCSEL **IESO** OSCIOFNC POSCMD<1:0> 0xF80008 FOSC FCKSM<1:0> 0xF8000A FWDT FWDTEN WINDIS PLLKEN⁽³⁾ WDTPRE WDTPOST<3:0> 0xF8000C FPOR Reserved⁽⁴⁾ FPWRT<2:0> Reserved⁽¹⁾ 0xF8000E FICD **JTAGEN** ICS<1:0> 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3

TABLE 22-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: These bits are reserved for use by development tools and must be programmed as '1'.

- 2: When read, this bit returns the current programmed value.
- **3:** This bit is unimplemented on dsPIC33FJ64GPX06A/X08A/X10A and dsPIC33FJ128GPX06A/X08A/X10A devices and reads as '0'.
- 4: These bits are reserved and always read as '1'.

22.1 Configuration Bits

dsPIC33FJXXXGPX06A/X08A/X10A devices provide nonvolatile memory implementation for device configuration bits. Refer to **Section 25.** "**Device Configuration**" (DS70194) of the "*dsPIC33F/PIC24H Family Reference Manual*", for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The device Configuration register map is shown in Table 22-1.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 22-2.

Note that address 0xF80000 is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFF) which can only be accessed using table reads and table writes.

24.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

24.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

24.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

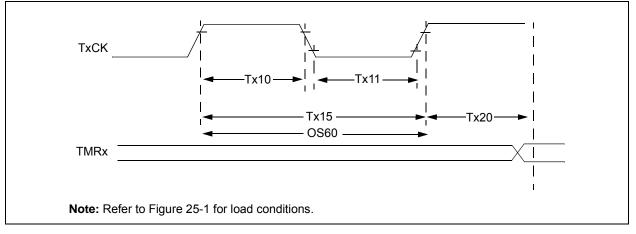
The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

DC CHARACT	ERISTICS		(unless othe	dard Operating Conditions: 3.0V to 3.6V ss otherwise stated) ating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units	Conditions				
Idle Current (I	DLE): Core OF	F Clock ON	Base Curren	t ⁽¹⁾				
DC40d	3	25	mA	-40°C				
DC40a	3	25	mA	+25°C		10 MIPS		
DC40b	3	25	mA	+85°C	3.3∨	TO MIPS		
DC40c	3	25	mA	+125°C				
DC41d	4	25	mA	-40°C		16 MIPS		
DC41a	5	25	mA	+25°C	- 3.3V			
DC41b	6	25	mA	+85°C		10 1011-5		
DC41c	6	25	mA	+125°C				
DC42d	8	25	mA	-40°C		20 MIPS		
DC42a	9	25	mA	+25°C	3.3V			
DC42b	10	25	mA	+85°C	3.3V			
DC42c	10	25	mA	+125°C				
DC43a	15	25	mA	+25°C				
DC43d	15	25	mA	-40°C	3.3V	30 MIPS		
DC43b	15	25	mA	+85°C	3.3V	30 MIPS		
DC43c	15	25	mA	+125°C				
DC44d	16	25	mA	-40°C				
DC44a	16	25	mA	+25°C	3.3V	40 MIPS		
DC44b	16	25	mA	+85°C	3.3V	40 WIF5		
DC44c	16	25	mA	+125°C				

TABLE 25-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:


 CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled

• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)

- JTAG is disabled
- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

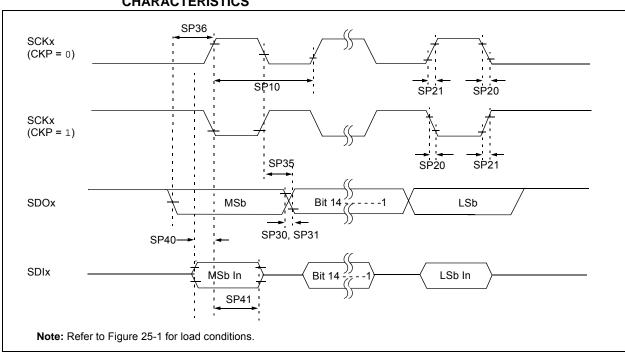

FIGURE 25-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 25-22: TIME	R1 EXTERNAL CLOCK TIMING REQUIREMENTS ⁽¹⁾
-------------------	--

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol Characteristic			ic Min		Min Typ		Units	Conditions	
TA10	ТтхН	TxCK High Time	Synchro no preso		Tcy + 20	—	_	ns	Must also meet parameter TA15	
			Synchro with pres		(Tcy + 20)/N	—	_	ns		
			Asynchr	onous	20	—	_	ns		
TA11			Synchro no preso		(Tcy + 20)/N	_	—	ns	Must also meet parameter TA15	
			Synchro with pres		20	—	_	ns	N = prescale value	
			Asynchronous		20	—	_	ns	(1,8,64,256)	
TA15	ΤτχΡ	TxCK Input Period	Synchro no preso		2Tcy + 40		_	ns	—	
			Synchro with pres		Greater of 40 ns or (2Tcy + 40)/N	_	_	—	N = prescale value (1, 8, 64, 256)	
			Asynchr	onous	40	_	_	ns	—	
OS60	Ft1	frequency Range	C1/T1CK Oscillator Input iency Range (oscillator iled by setting TCS bit iON<1>))		DC	_	50	kHz	—	
TA20	TCKEXTMRL	1 <i>n</i>			0.75Tcy+40	—	1.75Tcy+40	ns	—	

Note 1: Timer1 is a Type A.

FIGURE 25-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS

TABLE 25-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

АС СНА	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	—	_	10	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	-	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

AC CH	ARACTE	RISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions	
	-	Cloc	k Parame	ters			·	
AD50b	TAD	ADC Clock Period	76		_	ns	—	
AD51b	TRC	ADC Internal RC Oscillator Period	_	250	_	ns	—	
		Con	version F	late				
AD55b	TCONV	Conversion Time	—	12 Tad	_	_	—	
AD56b	FCNV	Throughput Rate	—		1.1	Msps	—	
AD57b	TSAMP	Sample Time	2 Tad	_	_	_	—	
		Timir	ng Paramo	eters				
AD60b	TPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 TAD	—	3.0 Tad	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected	
AD61b	TPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad		_	
AD62b	Tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	_	0.5 Tad	_		_	
AD63b	Tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	_	—	20	μS	_	

TABLE 25-45: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

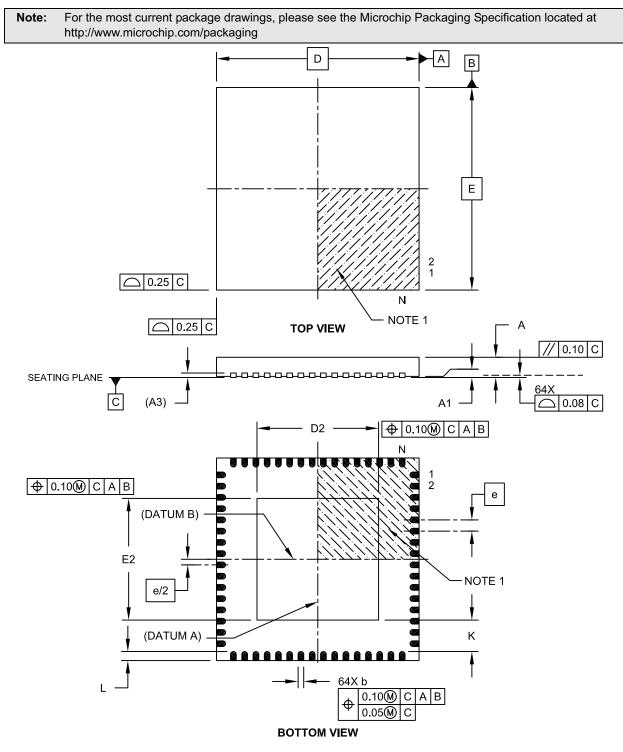
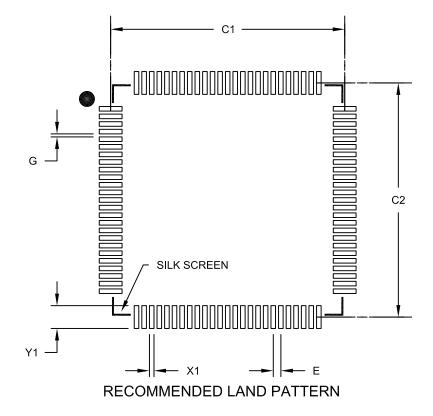

3: TDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 25-46: DMA READ/WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions	
DM1a	DMA Read/Write Cycle Time	—	_	2 Tcy	ns	This characteristic applies to dsPIC33FJ256GPX06A/X08A/X10A devices only.	
DM1b	DMA Read/Write Cycle Time	—	_	1 Тсү	ns	This characteristic applies to all devices with the exception of the dsPIC33FJ256GPX06A/X08A/X10A.	

28.2 Package Details


64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	ILLIMETER	S
Dimensior	Dimension Limits			MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B