Intel - EP4CE10E22C6 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	645
Number of Logic Elements/Cells	10320
Total RAM Bits	423936
Number of I/O	91
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	144-EQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce10e22c6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O Features

Cyclone IV device I/O supports programmable bus hold, programmable pull-up resistors, programmable delay, programmable drive strength, programmable slew-rate control to optimize signal integrity, and hot socketing. Cyclone IV devices support calibrated on-chip series termination (Rs OCT) or driver impedance matching (Rs) for single-ended I/O standards. In Cyclone IV GX devices, the high-speed transceiver I/Os are located on the left side of the device. The top, bottom, and right sides can implement general-purpose user I/Os.

Table 1–8 lists the I/O standards that Cyclone IV devices support.

Туре	I/O Standard
Single-Ended I/O	LVTTL, LVCMOS, SSTL, HSTL, PCI, and PCI-X
Differential I/O	SSTL, HSTL, LVPECL, BLVDS, LVDS, mini-LVDS, RSDS, and PPDS

Table 1–8. I/O Standards Support for the Cyclone IV Device Family

The LVDS SERDES is implemented in the core of the device using logic elements.

• For more information, refer to the I/O Features in Cyclone IV Devices chapter.

Clock Management

Cyclone IV devices include up to 30 global clock (GCLK) networks and up to eight PLLs with five outputs per PLL to provide robust clock management and synthesis. You can dynamically reconfigure Cyclone IV device PLLs in user mode to change the clock frequency or phase.

Cyclone IV GX devices support two types of PLLs: multipurpose PLLs and generalpurpose PLLs:

- Use multipurpose PLLs for clocking the transceiver blocks. You can also use them for general-purpose clocking when they are not used for transceiver clocking.
- Use general purpose PLLs for general-purpose applications in the fabric and periphery, such as external memory interfaces. Some of the general purpose PLLs can support transceiver clocking.

***** For more information, refer to the *Clock Networks and PLLs in Cyclone IV Devices* chapter.

External Memory Interfaces

Cyclone IV devices support SDR, DDR, DDR2 SDRAM, and QDRII SRAM interfaces on the top, bottom, and right sides of the device. Cyclone IV E devices also support these interfaces on the left side of the device. Interfaces may span two or more sides of the device to allow more flexible board design. The Altera[®] DDR SDRAM memory interface solution consists of a PHY interface and a memory controller. Altera supplies the PHY IP and you can use it in conjunction with your own custom memory controller or an Altera-provided memory controller. Cyclone IV devices support the use of error correction coding (ECC) bits on DDR and DDR2 SDRAM interfaces.

Document Revision History

Table 1–10 lists the revision history for this chapter.

Table 1–10. Document Revision History

Date	Version	Changes					
March 2016	2.0	■ Updated Table 1–4 and Table 1–5 to remove support for the N148 package.					
March 2016	2.0	 Updated Figure 1–2 to remove support for the N148 package. 					
April 2014	1.9	Updated "Packaging Ordering Information for the Cyclone IV E Device".					
May 2013	1.8	Updated Table 1–3, Table 1–6 and Figure 1–3 to add new device options and packages.					
February 2013	1.7	Updated Table 1–3, Table 1–6 and Figure 1–3 to add new device options and packages.					
October 2012	1.6	Updated Table 1–3 and Table 1–4.					
November 2011	1.5	 Updated "Cyclone IV Device Family Features" section. 					
	1.5	■ Updated Figure 1–2 and Figure 1–3.					
		 Updated for the Quartus II software version 10.1 release. 					
December 2010		 Added Cyclone IV E new device package information. 					
	1.4	■ Updated Table 1–1, Table 1–2, Table 1–3, Table 1–5, and Table 1–6.					
		■ Updated Figure 1–3.					
		 Minor text edits. 					
July 2010	1.3	Updated Table 1–2 to include F484 package information.					
		■ Updated Table 1–3 and Table 1–6.					
March 2010	1.2	■ Updated Figure 1–3.					
		 Minor text edits. 					
		 Added Cyclone IV E devices in Table 1–1, Table 1–3, and Table 1–6 for the Quartus II software version 9.1 SP1 release. 					
		 Added the "Cyclone IV Device Family Speed Grades" and "Configuration" sections. 					
February 2010	1.1	 Added Figure 1–3 to include Cyclone IV E Device Packaging Ordering Information. 					
		■ Updated Table 1–2, Table 1–4, and Table 1–5 for Cyclone IV GX devices.					
		 Minor text edits. 					
November 2009	1.0	Initial release.					

8. Configuration and Remote System **Upgrades in Cyclone IV Devices**

This chapter describes the configuration and remote system upgrades in Cyclone® IV devices. Cyclone IV (Cyclone IV GX and Cyclone IV E) devices use SRAM cells to store configuration data. You must download the configuration data to Cyclone IV devices each time the device powers up because SRAM memory is volatile.

Cyclone IV devices are configured using one of the following configuration schemes:

- Active serial (AS)
- Active parallel (AP) (supported in Cyclone IV E devices only)
- Passive serial (PS)
- Fast passive parallel (FPP) (not supported in EP4CGX15, EP4CGX22, and EP4CGX30 [except for the F484 package] devices)
- JTAG

Cyclone IV devices offer the following configuration features:

- Configuration data decompression ("Configuration Data Decompression" on page 8–2)
- Remote system upgrade ("Remote System Upgrade" on page 8–69)

System designers face difficult challenges, such as shortened design cycles, evolving standards, and system deployments in remote locations. Cyclone IV devices help overcome these challenges with inherent re-programmability and dedicated circuitry to perform remote system upgrades. Remote system upgrades help deliver feature enhancements and bug fixes without costly recalls, reduced time-to-market, and extended product life.

Configuration

This section describes Cyclone IV device configuration and includes the following topics:

- "Configuration Features" on page 8–2
- "Configuration Requirement" on page 8-3
- "Configuration Process" on page 8-6
- "Configuration Scheme" on page 8-8
- "AS Configuration (Serial Configuration Devices)" on page 8-10
- "AP Configuration (Supported Flash Memories)" on page 8-21
- "PS Configuration" on page 8–32

ISO

^{© 2013} Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. 9001:2008 Registered

For device using V_{CCIO} of 2.5, 3.0, and 3.3 V, refer to Figure 8–23. All I/O inputs must maintain a maximum AC voltage of 4.1 V because JTAG pins do not have the internal PCI clamping diodes to prevent voltage overshoot when using V_{CCIO} of 2.5, 3.0, and 3.3 V. You must power up the V_{CC} of the download cable with a 2.5-V supply from V_{CCA}. For device using V_{CCIO} of 1.2, 1.5, and 1.8 V, refer to Figure 8–24. You can power up the V_{CC} of the download cable with the supply from V_{CCIO}.

Notes to Figure 8-23:

- (1) Connect these pull-up resistors to the V_{CCIO} supply of the bank in which the pin resides.
- (2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use JTAG configuration, connect the nCONFIG pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] to either high or low, whichever is convenient on your board.
- (3) Pin 6 of the header is a V₁₀ reference voltage for the MasterBlaster output driver. V₁₀ must match the device's V_{CCA}. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*. When using the USB-Blaster, ByteBlaster II, ByteBlasterMV, and EthernetBlaster cables, this pin is a no connect.
- (4) The nCE pin must be connected to GND or driven low for successful JTAG configuration.
- (5) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (6) Power up the V_{CC} of the EthernetBlaster, ByteBlaster II, USB-Blaster, or ByteBlasterMV cable with a 2.5-V supply from V_{CCA} . Third-party programmers must switch to 2.5 V. Pin 4 of the header is a V_{CC} power supply for the MasterBlaster cable. The MasterBlaster cable can receive power from either 5.0- or 3.3-V circuit boards, DC power supply, or 5.0 V from the USB cable. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*.
- (7) Resistor value can vary from 1 k Ω to 10 k Ω ..

Figure 8–24. JTAG Configuration of a Single Device Using a Download Cable (1.5-V or 1.8-V V_{CCIO} Powering the JTAG Pins)

Notes to Figure 8-24:

- (1) Connect these pull-up resistors to the V_{CCIO} supply of the bank in which the pin resides.
- (2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use JTAG configuration, connect the nCONFIG pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] to either high or low, whichever is convenient on your board.
- (3) In the USB-Blaster and ByteBlaster II cables, this pin is connected to nCE when it is used for AS programming; otherwise it is a no connect.
- (4) The nCE must be connected to GND or driven low for successful JTAG configuration.
- (5) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (6) Power up the V_{CC} of the EthernetBlaster, ByteBlaster II or USB-Blaster cable with supply from V_{CCI0}. The Ethernet-Blaster, ByteBlaster II, and USB-Blaster cables do not support a target supply voltage of 1.2 V. For the target supply voltage value, refer to the *ByteBlaster II Download Cable User Guide*, the USB-Blaster Download Cable User Guide, and the EthernetBlaster Communications Cable User Guide.
- (7) Resistor value can vary from 1 k Ω to 10 k Ω .

To configure a single device in a JTAG chain, the programming software places all other devices in bypass mode. In bypass mode, devices pass programming data from the TDI pin to the TDO pin through a single bypass register without being affected internally. This scheme enables the programming software to program or verify the target device. Configuration data driven into the device appears on the TDO pin one clock cycle later.

The Quartus II software verifies successful JTAG configuration after completion. At the end of configuration, the software checks the state of CONF_DONE through the JTAG port. When Quartus II generates a **.jam** for a multi-device chain, it contains instructions so that all the devices in the chain are initialized at the same time. If CONF_DONE is not high, the Quartus II software indicates that configuration has failed. If CONF_DONE is high, the software indicates that configuration was successful. After the configuration bitstream is serially sent using the JTAG TDI port, the TCK port clocks an additional clock cycles to perform device initialization.

Table 9–6 lists the estimated time for each CRC calculation with minimum and maximum clock frequencies for Cyclone IV devices.

Table	9–6.	CRC	Calculation	Time
-------	------	-----	-------------	------

Dev	vice	Minimum Time (ms) ⁽¹⁾	Maximum Time (s) ⁽²⁾	
	EP4CE6 (3)	5	2.29	
	EP4CE10 (3)	5	2.29	
	EP4CE15 (3)	7	3.17	
	EP4CE22 (3)	9	4.51	
Cyclone IV E	EP4CE30 (3)	15	7.48	
	EP4CE40 (3)	15	7.48	
	EP4CE55 (3)	23	11.77	
	EP4CE75 (3)	31	15.81	
	EP4CE115 (3)	45	22.67	
	EP4CGX15	6	2.93	
	EP4CGX22	12	5.95	
		12	5.95	
Cuelone IV CV		34 (4)	17.34 <i>(4)</i>	
	EP4CGX50	34	17.34	
	EP4CGX75	34	17.34	
	EP4CGX110	62	31.27	
	EP4CGX150	62	31.27	

Notes to Table 9-6:

(1) The minimum time corresponds to the maximum error detection clock frequency and may vary with different processes, voltages, and temperatures (PVT).

(2) The maximum time corresponds to the minimum error detection clock frequency and may vary with different PVT.

(3) Only applicable for device with 1.2-V core voltage

(4) Only applicable for the F484 device package.

Software Support

Enabling the CRC error detection feature in the Quartus II software generates the CRC_ERROR output to the optional dual purpose CRC_ERROR pin.

To enable the error detection feature using CRC, perform the following steps:

- 1. Open the Quartus II software and load a project using Cyclone IV devices.
- 2. On the Assignments menu, click Settings. The Settings dialog box appears.
- 3. In the Category list, select **Device**. The **Device** page appears.
- 4. Click **Device and Pin Options**. The **Device and Pin Options** dialog box appears as shown in Figure 9–2.
- 5. In the **Device and Pin Options** dialog box, click the **Error Detection CRC** tab.
- 6. Turn on Enable error detection CRC.
- 7. In the **Divide error check frequency by** box, enter a valid divisor as documented in Table 9–5 on page 9–5.

Figure 10–3 shows the JTAG chain of mixed voltages and how a level shifter is inserted in the chain.

Figure 10–3. JTAG Chain of Mixed Voltages

Boundary-Scan Description Language Support

The boundary-scan description language (BSDL), a subset of VHDL, provides a syntax that allows you to describe the features of an IEEE Std. 1149.1/IEEE Std. 1149.6 BST-capable device that can be tested.

- For more information about how to download BSDL files for IEEE Std. 1149.1-compliant Cyclone IV E devices, refer to *IEEE Std.* 1149.1 BSDL Files.
- For more information about how to download BSDL files for IEEE Std.
 1149.6-compliant Cyclone IV GX devices, refer to IEEE Std. 1149.6 BSDL Files.
- You can also generate BSDL files (pre-configuration and post-configuration) for IEEE Std. 1149.1/IEEE Std. 1149.6-compliant Cyclone IV devices with the Quartus[®] II software version 9.1 SP1 and later. For more information about the procedure to generate BSDL files using the Quartus II software, refer to *BSDL Files Generation in Quartus II*.

Cyclone IV Device Handbook,

Volume 2

101 Innovation Drive San Jose, CA 95134 www.altera.com

CYIV-5V2-1.9

Bit-Slip Mode

In bit-slip mode, the rx_bitslip port controls the word aligner operation. At every rising edge of the rx_bitslip signal, the bit-slip circuitry slips one bit into the received data stream, effectively shifting the word boundary by one bit. When the received data after bit-slipping matches the programmed word alignment pattern, the rx_patterndetect signal is driven high for one parallel clock cycle.

You can implement a bit-slip controller in the user logic that monitors either the rx_patterndetect signal or the receiver data output (rx_dataout), and controls the rx bitslip port to achieve word alignment.

Figure 1–18 shows an example of the word aligner configured in bit-slip mode. For this example, consider that 8'b1110000 is received back-to-back and 16'b0000111100011110 is specified as the word alignment pattern. A rising edge on the rx_bitslip signal at time n + 1 slips a single bit 0 at the MSB position, forcing the rx_dataout to 8'b01111000. Another rising edge on the rx_bitslip signal at time n + 5 forces rx_dataout to 8'b00111100. Another rising edge on the rx_bitslip signal at time n + 9 forces rx_dataout to 8'b0011110. Another rising edge on the rx_bitslip signal at time n + 9 forces rx_dataout to 8'b00011110. Another rising edge on the rx_bitslip signal at time n + 13 forces the rx_dataout to 8'b0001111. At this instance, rx_dataout in cycles n + 12 and n + 13 is 8'b00011110 and 8'b00001111, respectively, which matches the specified 16-bit alignment pattern 16'b0000111100011110. This results in the assertion of the rx_patterndetect signal.

Automatic Synchronization State Machine Mode

In automatic synchronization state machine mode, the word aligner achieves synchronization after receiving a specific number of synchronization code groups, and falls out of synchronization after receiving a specific number of erroneous code groups. This mode provides hysteresis during link synchronization, which is required by protocols such as PCIe, GbE, XAUI, and Serial RapidIO.

This mode is only supported using the 8B/10B encoded data with 10-bit input to the word aligner.

Table 1–9 lists the high- and low-speed clock sources for each channel.

Table 1–9.	High- and Low-Speed Clo	ck Sources for Each	I Channel in Non-Bonded	Channel Configuration
------------	-------------------------	---------------------	-------------------------	-----------------------

Dookono	Troposiyor Plack	Transseiver Channel	High- and Low-Speed Clocks Sources				
гаскауе	ITAIISCEIVER DIUCK	Transceiver Gnannei	Option 1	Option 2			
F324 and smaller	GXBL0	All channels	MPLL_1	MPLL_2			
	CYDI O	Channels 0, 1	MPLL_5/GPLL_1	MPLL_6			
E484 and larger	GYRLU	Channels 2, 3	High- and Low-Speed Clocks Sources Option 1 Option 2 MPLL_1 MPLL_2 MPLL_5/GPLL_1 MPLL_6 MPLL_5 MPLL_6/MPLL_7 (1) MPLL_7/MPLL_6 MPLL_8 MPLL_7 MPLL_8/GPLL_2				
1404 and larger	CVDI 1 (1)	Channels 0, 1	MPLL_7/MPLL_6	MPLL_8			
	GVDTT (.)	Channels 2, 3	MPLL_7	MPLL_8/GPLL_2			

Note to Table 1–9:

(1) $\tt MPLL_7$ and <code>GXBL1</code> are not applicable for transceivers in F484 package

Figure 1–31 and Figure 1–32 show the high- and low-speed clock distribution for transceivers in F324 and smaller packages, and in F484 and larger packages in non-bonded channel configuration.

Figure 1–31. Clock Distribution in Non-Bonded Channel Configuration for Transceivers in F324 and Smaller Packages

Notes to Figure 1-31:

- (1) Transceiver channels 2 and 3 are not available for devices in F169 and smaller packages.
- (2) High-speed clock.
- (3) Low-speed clock.

Cyclone IV GX transceivers do not have built-in support for some PCS functions such as auto-negotiation state machine, collision-detect, and carrier-sense. If required, you must implement these functions in a user logic or external circuits.

The 1000 Base-X PHY is defined by IEEE 802.3 standard as an intermediate or transition layer that interfaces various physical media with the media access control (MAC) in a GbE system. The 1000 Base-X PHY, which has a physical interface data rate of 1.25 Gbps consists of the PCS, PMA, and physical media dependent (PMD) layers. Figure 1–54 shows the 1000 Base-X PHY in LAN layers.

Figure 1–54. 1000 Base-X PHY in a GbE OSI Reference Model

Notes to Figure 1–54:

- (1) CSMA/CD = Carrier-Sense Multiple Access with Collision Detection
- (2) GMII = gigabit medium independent interface

In Serial RapidIO mode, the rate match FIFO compensates up to ± 100 ppm (200 ppm total) difference between the upstream transmitter and the local receiver reference clock.

Rate matcher is an optional block available for selection in Serial RapidIO mode. However, this block is not fully compliant to the SRIO specification. When enabled in the ALTGX MegaWizard Plug-In Manager, the default settings are:

- control pattern 1 = K28.5 with positive disparity
- skip pattern 1 = K29.7 with positive disparity
- control pattern 2 = K28.5 with negative disparity
- skip pattern 2 = K29.7 with negative disparity

When enabled, the rate match FIFO operation begins after the link is synchronized (indicated by assertion of rx_syncstatus from the word aligner). When the rate matcher receives either of the two 10-bit control patterns followed by the respective 10-bit skip pattern, it inserts or deletes the 10-bit skip pattern as necessary to avoid the rate match FIFO from overflowing or under-running. The rate match FIFO can delete/insert a maximum of one skip pattern from a cluster.

The rate match FIFO may perform multiple insertion or deletion if the ppm difference is more than the allowable 200 ppm range. Ensure that the ppm difference in your system is less than 200 ppm.

XAUI Mode

XAUI mode provides the bonded (×4) transceiver channel datapath configuration for XAUI protocol implementation. The Cyclone IV GX transceivers configured in XAUI mode provides the following functions:

- XGMII-to-PCS code conversion at transmitter datapath
- PCS-to-XGMII code conversion at receiver datapath
- channel deskewing of four lanes
- 8B/10B encoding and decoding
- IEEE P802.3ae-compliant synchronization state machine
- clock rate compensation

The XAUI is a self-managed interface to transparently extend the physical reach of the XGMII between the reconciliation sublayer and the PHY layer in the 10 Gbps LAN as shown in Figure 1–62. The XAUI interface consists of four lanes, each running at 3.125 Gbps with 8B/10B encoded data for a total of actual 10 Gbps data throughput. At the transmit side of the XAUI interface, the data and control characters are

Transceiver Block	rx_digitalreset	rx_analogreset	tx_digitalreset	pll_areset	gxb_powerdown
Serializer	—	—	\checkmark	_	\checkmark
Transmitter Buffer	—	—	—	—	\checkmark
Transmitter XAUI State Machine	_	_	~	_	~
Receiver Buffer	—	—	—	—	\checkmark
Receiver CDR	—	\checkmark	—		\checkmark
Receiver Deserializer	—	—	—	_	\checkmark
Receiver Word Aligner	\checkmark	—	—	—	\checkmark
Receiver Deskew FIFO	\checkmark	—	—	_	\checkmark
Receiver Clock Rate Compensation FIFO	~	_	_	_	~
Receiver 8B/10B Decoder	~	_	_	_	~
Receiver Byte Deserializer	~	_	_	_	~
Receiver Byte Ordering	\checkmark	—	—	_	\checkmark
Receiver Phase Compensation FIFO	~	_	_	_	~
Receiver XAUI State Machine	~	_	—	_	✓
BIST Verifiers	~	—	—	—	 ✓

 Table 2–3. Blocks Affected by Reset and Power-Down Signals (Part 2 of 2)

Transceiver Reset Sequences

You can configure transceiver channels in Cyclone IV GX devices in various configurations. In all functional modes except XAUI functional mode, transceiver channels can be either bonded or non-bonded. In XAUI functional mode, transceiver channels must be bonded. In PCI Express[®] (PCIe[®]) functional mode, transceiver channels can be either bonded or non-bonded and need to follow a specific reset sequence.

The two categories of reset sequences for Cyclone IV GX devices described in this chapter are:

- "All Supported Functional Modes Except the PCIe Functional Mode" on page 2–6—describes the reset sequences in bonded and non-bonded configurations.
- "PCIe Functional Mode" on page 2–17—describes the reset sequence for the initialization/compliance phase and the normal operation phase in PCIe functional modes.

Visual Cue	Meaning					
	Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. The suffix n denotes an active-low signal. For example, resetn.					
Courier type	Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.					
	Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI).					
4	An angled arrow instructs you to press the Enter key.					
1., 2., 3., and a., b., c., and so on	Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.					
	Bullets indicate a list of items when the sequence of the items is not important.					
LP	The hand points to information that requires special attention.					
(?)	The question mark directs you to a software help system with related information.					
	The feet direct you to another document or website with related information.					
[], , , , , , , , , , , , , , , , , , ,	The multimedia icon directs you to a related multimedia presentation.					
CAUTION	A caution calls attention to a condition or possible situation that can damage or destroy the product or your work.					
WARNING	A warning calls attention to a condition or possible situation that can cause you injury.					
	The envelope links to the Email Subscription Management Center page of the Altera website, where you can sign up to receive update notifications for Altera documents.					

Internal Weak Pull-Up and Weak Pull-Down Resistor

Table 1–12 lists the weak pull-up and pull-down resistor values for Cyclone IV devices.

Table 1–12. Internal Weak Pull-Up and Weak Pull-Down Resistor Values for Cyclone IV Devices (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R_PU		$V_{CC10} = 3.3 \text{ V} \pm 5\%$ (2), (3)	7	25	41	kΩ
	Value of the I/O nin pull-up resistor	$V_{CC10} = 3.0 \text{ V} \pm 5\%$ (2), (3)	7	28	47	kΩ
	before and during configuration, as	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2), (3)	8	35	61	kΩ
	well as user mode if you enable the programmable pull-up resistor option	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (2), (3)	10	57	108	kΩ
		$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (2), (3)	13	82	163	kΩ
		$V_{CCIO} = 1.2 \text{ V} \pm 5\%$ (2), (3)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (4)	6	19	30	kΩ
R_PD	Value of the I/O pin pull-down resistor	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (4)	6	22	36	kΩ
		$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (4)	6	25	43	kΩ
	soloro and daming borngulation	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (4)	7	35	71	kΩ
		$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (4)	8	50	112	kΩ

Notes to Table 1-12:

- (1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.
- (2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .
- (3) $R_{PU} = (V_{CCIO} V_I)/I_{R_PU}$ Minimum condition: -40°C; $V_{CCIO} = V_{CC} + 5\%$, $V_I = V_{CC} + 5\% - 50$ mV; Typical condition: 25°C; $V_{CCIO} = V_{CC}$, $V_I = 0$ V; Maximum condition: 100°C; $V_{CCIO} = V_{CC} - 5\%$, $V_I = 0$ V; in which V_I refers to the input voltage at the I/O pin.
- $\begin{array}{ll} (4) & R_{_PD} = V_I/I_{R_PD} \\ & \text{Minimum condition:} -40^{\circ}\text{C}; \ V_{CCIO} = V_{CC} + 5\%, \ V_I = 50 \ \text{mV}; \\ & \text{Typical condition:} \ 25^{\circ}\text{C}; \ V_{CCIO} = V_{CC}, \ V_I = V_{CC} 5\%; \\ & \text{Maximum condition:} \ 100^{\circ}\text{C}; \ V_{CCIO} = V_{CC} 5\%, \ V_I = V_{CC} 5\%; \ \text{in which } V_I \ \text{refers to the input voltage at the I/O pin.} \end{array}$

Hot-Socketing

Table 1–13 lists the hot-socketing specifications for Cyclone IV devices.

Table 1–13. Hot-Socketing Specifications for Cyclone IV Devices

Symbol	Parameter	Maximum
I _{IOPIN(DC)}	DC current per I/O pin	300 μA
I _{IOPIN(AC)}	AC current per I/O pin	8 mA <i>(1)</i>
I _{XCVRTX(DC)}	DC current per transceiver TX pin	100 mA
I _{XCVRRX(DC)}	DC current per transceiver RX pin	50 mA

Note to Table 1-13:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, |IIOPIN| = C dv/dt, in which C is the I/O pin capacitance and dv/dt is the slew rate.

During hot-socketing, the I/O pin capacitance is less than 15 pF and the clock pin capacitance is less than 20 pF.

***** For more information about receiver input and transmitter output waveforms, and for other differential I/O standards, refer to the *I/O Features in Cyclone IV Devices* chapter.

Table 1–18. Differential SSTL I/O Standard Specifications for Cyclone IV Devices (1)

I/O Standard	V _{CCIO} (V)			V _{Swing(DC)} (V) V _{X(AC)}		_{AC)} (V)	;) (V) V _{Swing(AC)} (V)		ng(AC) V)	V _{OX(AC)} (V)			
-	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.36	V _{CCIO}	$V_{CC10}/2 - 0.2$	_	V _{CCI0} /2 + 0.2	0.7	V _{CCI} 0	V _{CCIO} /2 – 0.125		V _{CCI0} /2 + 0.125
SSTL-18 Class I, II	1.7	1.8	1.90	0.25	V _{CCIO}	V _{CCIO} /2 – 0.175	_	V _{CCI0} /2 + 0.175	0.5	V _{CCI} 0	V _{CCIO} /2 – 0.125		V _{CCI0} /2 + 0.125

Note to Table 1-18:

(1) Differential SSTL requires a V_{REF} input.

Table 1–19. Differential HSTL I/O Standard Specifications for Cyclone IV Devices ⁽¹⁾

	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V)				V _{DIF(AC)} (V)	
I/O Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Mi n	Max	
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85	_	0.95	0.85		0.95	0.4	_	
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	_	0.79	0.71		0.79	0.4	_	
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	$0.48 \times V_{CCIO}$	_	0.52 x V _{CCI0}	0.48 x V _{CCI0}		0.52 x V _{CCI0}	0.3	0.48 x V _{CCI0}	

Note to Table 1-19:

(1) Differential HSTL requires a V_{REF} input.

 Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices ⁽¹⁾ (Part 1 of 2)

1/0 Standard	V _{CCIO} (V)			V _{ID} (mV)			V _{ICM} (V) <i>(2)</i>			V _{OD} (mV) ⁽³⁾			V _{0S} (V) ⁽³⁾		
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max	
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80							
(Row I/Os) 2.3	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{ D}_{\text{MAX}} \\ \leq 700 \text{ Mbps} \end{array}$	1.80	_	_	_	_	_	—	
						1.05	D _{MAX} > 700 Mbps	1.55							
						0.05	$D_{MAX} \leq ~500~Mbps$	1.80							
(Column	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{D}_{\text{MAX}} \\ \leq 700 \text{ Mbps} \end{array}$	1.80	_	_	_	_	—	—	
1/03/ * /						1.05	D _{MAX} > 700 Mbps	1.55							
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80							
LVDS (Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{D}_{\text{MAX}} \\ \leq \ 700 \text{ Mbps} \end{array}$	1.80	247	_	600	1.125	1.25	1.375	
						1.05	D _{MAX} > 700 Mbps	1.55							

Embedded Multiplier Specifications

Table 1–26 lists the embedded multiplier specifications for Cyclone IV devices.

Table 1–26. Embedded Multiplier Specifications for Cyclone IV Devices

Mada	Resources Used	Performance								
Mode	Number of Multipliers	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit			
9 × 9-bit multiplier	1	340	300	260	240	175	MHz			
18 × 18-bit multiplier	1	287	250	200	185	135	MHz			

Memory Block Specifications

Table 1–27 lists the M9K memory block specifications for Cyclone IV devices.

Table 1-27.	Memory Block	Performance S	pecifications t	for C	yclone IV Devices
-------------	---------------------	----------------------	-----------------	-------	-------------------

		Resou	rces Used						
Memory	Mode	LEs	M9K Memory	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit
M9K Block	FIFO 256 × 36	47	1	315	274	238	200	157	MHz
	Single-port 256 × 36	0	1	315	274	238	200	157	MHz
	Simple dual-port 256 × 36 CLK	0	1	315	274	238	200	157	MHz
	True dual port 512 × 18 single CLK	0	1	315	274	238	200	157	MHz

Configuration and JTAG Specifications

Table 1–28 lists the configuration mode specifications for Cyclone IV devices.

Table 1–28. Passive Configuration Mode Specifications for Cyclone IV Devices (1)

Programming Mode	V _{CCINT} Voltage Level (V)	DCLK f _{max}	Unit
Passivo Sorial (PS)	1.0 <i>(3)</i>	66	MHz
rassive Serial (rS)	1.2	133	MHz
East Passive Parallel (EDD) (2)	1.0 <i>(3)</i>	66	MHz
TASL FASSIVE FAIAIIEI (FFF) (-)	1.2 (4)	100	MHz

Notes to Table 1-28:

- (1) For more information about PS and FPP configuration timing parameters, refer to the *Configuration and Remote System Upgrades in Cyclone IV Devices* chapter.
- (2) FPP configuration mode supports all Cyclone IV E devices (except for E144 package devices) and EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 only.
- (3) V_{CCINT} = 1.0 V is only supported for Cyclone IV E 1.0 V core voltage devices.
- (4) Cyclone IV E devices support 1.2 V V_{CCINT}. Cyclone IV E 1.2 V core voltage devices support 133 MHz DCLK f_{MAX} for EP4CE6, EP4CE10, EP4CE15, EP4CE22, EP4CE30, and EP4CE40 only.