E·XFL

Intel - EP4CE10E22C8LN Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	645
Number of Logic Elements/Cells	10320
Total RAM Bits	423936
Number of I/O	91
Number of Gates	-
Voltage - Supply	0.97V ~ 1.03V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	144-EQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce10e22c8ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 3–3 and Figure 3–4 show the address clock enable waveform during read and write cycles, respectively.

Figure 3–3. Cyclone IV Devices Address Clock Enable During Read Cycle Waveform

Figure 3-4. Cyclone IV Devices Address Clock Enable During Write Cycle Waveform

Mixed-Width Support

M9K memory blocks support mixed data widths. When using simple dual-port, true dual-port, or FIFO modes, mixed width support allows you to read and write different data widths to an M9K memory block. For more information about the different widths supported per memory mode, refer to "Memory Modes" on page 3–7.

Figure 3–12 shows the Cyclone IV devices M9K memory block in shift register mode.

ROM Mode

Cyclone IV devices M9K memory blocks support ROM mode. A **.mif** initializes the ROM contents of these blocks. The address lines of the ROM are registered. The outputs can be registered or unregistered. The ROM read operation is identical to the read operation in the single-port RAM configuration.

FIFO Buffer Mode

Cyclone IV devices M9K memory blocks support single-clock or dual-clock FIFO buffers. Dual clock FIFO buffers are useful when transferring data from one clock domain to another clock domain. Cyclone IV devices M9K memory blocks do not support simultaneous read and write from an empty FIFO buffer.

***** For more information about FIFO buffers, refer to the *Single- and Dual-Clock FIFO Megafunction User Guide.*

Figure 6–3 shows the external calibration resistors setup on the RUP and RDN pins and the associated OCT calibration circuitry.

RUP and RDN pins go to a tri-state condition when calibration is completed or not running. These two pins are dual-purpose I/Os and function as regular I/Os if you do not use the calibration circuit.

On-Chip Series Termination Without Calibration

Cyclone IV devices support driver impedance matching to match the impedance of the transmission line, which is typically 25 or 50 Ω . When used with the output drivers, OCT sets the output driver impedance to 25 or 50 Ω . Cyclone IV devices also support I/O driver series termination (R_S = 50 Ω) for SSTL-2 and SSTL-18.

Table 7–2 lists the number of DQS or DQ groups supported on each side of the Cyclone IV E device.

Device	Package	Side	Number ×8 Groups	Number ×9 Groups	Number ×16 Groups	Number ×18 Groups	Number ×32 Groups	Number ×36 Groups
		Left	0	0	0	0	—	—
	144 pip EOED	Right	0	0	0	0	—	—
Device EP4CE6 EP4CE10 EP4CE15	144-pill EQFP	Bottom (1), (3)	1	0	0	0	—	—
		Top (1), (4)	1	0	0	0	—	—
		Left (1)	1	1	0	0	—	—
EP4CE6	256-pip LIBGA	Right ⁽²⁾	1	1	0	0	—	—
EP4CE10	250-piil 080A	Bottom	2	2	1	1	—	—
		Тор	2	2	1	1	—	—
		Left (1)	1	1	0	0	—	—
	256 pip EPCA	Right ⁽²⁾	1	1	0	0	—	—
	250-piii FBGA	Bottom	2	2	1	1	—	—
		Тор	2	2	1	1	—	—
		Left	0	0	0	0	—	—
	144 pip EOED	Right	0	0	0	0	—	—
	144-pill EQFP	Bottom (1), (3)	1	0	0	0	—	—
		Top (1), (4)	1	0	0	0	—	—
		Left	0	0	0	0	—	—
	164-pin MBGA	Right	0	0	0	0	—	—
		Bottom (1), (3)	1	0	0	0	—	—
		Top (1), (4)	1	0	0	0	—	—
		Left	1	1	0	0	—	—
	256 pip MPCA	Right	1	1	0	0	—	—
		Bottom (1), (3)	2	2	1	1	—	—
		Top (1), (4)	2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	—	—		
EF40E15		Left (1)	1	1	0	0	—	—
	256 pip LIPCA	Right (2)	1	1	0	0	—	—
	250-piil 080A	Bottom	2	2	1	1	—	—
		Тор	2	2	1	1	—	—
		Left (1)	1	1	0	0	—	—
	256 pip EPCA	Right ⁽²⁾	1	1	0	0	—	—
	250-piii FBGA	Bottom	2	2	1	1	—	—
		Тор	2	2	1	1	—	—
		Left	4	4	2	2	1	1
	484-nin EPCA	Right	4	4	2	2	1	1
	чоч-ріп град	Bottom	4	4	2	2	1	1
		Тор	4	4	2	2	1	1

DDR Output Registers

A dedicated write DDIO block is implemented in the DDR output and output enable paths.

Figure 7–8 shows how a Cyclone IV dedicated write DDIO block is implemented in the I/O element (IOE) registers.

Figure 7–8. Cyclone IV Dedicated Write DDIO

The two DDR output registers are located in the I/O element (IOE) block. Two serial data streams routed through datain_l and datain_h, are fed into two registers, output register Ao and output register Bo, respectively, on the same clock edge. The output from output register Ao is captured on the falling edge of the clock, while the output from output register Bo is captured on the rising edge of the clock. The registered outputs are multiplexed by the common clock to drive the DDR output pin at twice the data rate.

The DDR output enable path has a similar structure to the DDR output path in the IOE block. The second output enable register provides the write preamble for the DQS strobe in DDR external memory interfaces. This active-low output enable register extends the high-impedance state of the pin by half a clock cycle to provide the external memory's DQS write preamble time specification.

To For more information about Cyclone IV IOE registers, refer to the *Cyclone IV Device I/O Features* chapter.

For more information about the USB-Blaster download cable, refer to the USB-Blaster *Download Cable User Guide*. For more information about the ByteBlaster II download cable, refer to the *ByteBlaster II Download Cable User Guide*.

Figure 8-6 shows the download cable connections to the serial configuration device.

Notes to Figure 8-6:

- (1) Connect these pull-up resistors to the V_{CCIO} supply of the bank in which the pin resides.
- (2) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (3) Power up the V_{CC} of the ByteBlaster II or USB-Blaster download cable with the 3.3-V supply.
- (4) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (5) The diodes and capacitors must be placed as close as possible to the Cyclone IV device. You must ensure that the diodes and capacitors maintain a maximum AC voltage of 4.1 V. The external diodes and capacitors are required to prevent damage to the Cyclone IV device AS configuration input pins due to possible overshoot when programming the serial configuration device with a download cable. Altera recommends using the Schottky diode, which has a relatively lower forward diode voltage (VF) than the switching and Zener diodes, for effective voltage clamping.
- (6) When cascading Cyclone IV devices in a multi-device AS configuration, connect the repeater buffers between the master and slave devices for DATA [0] and DCLK. All I/O inputs must maintain a maximum AC voltage of 4.1 V. The output resistance of the repeater buffers must fit the maximum overshoot equation outlined in "Configuration and JTAG Pin I/O Requirements" on page 8–5.
- (7) These pins are dual-purpose I/O pins. The nCSO pin functions as FLASH_nCE pin in AP mode. The ASDO pin functions as DATA [1] pin in AP and FPP modes.
- (8) Only Cyclone IV GX devices have an option to select CLKUSR (40 MHz maximum) as the external clock source for DCLK.

Figure 8–34 shows the control register bit positions. Table 8–23 defines the control register bit contents. The numbers in Figure 8–34 show the bit position of a setting in a register. For example, bit number 35 is the enable bit for the watchdog timer.

Figure 8-34. Remote System Upgrade Control Register

38	37	36	35	34	33	12	11	0
Rsv2	Cd_early	Osc_int	Wd_en	Rsv1	Ru_addr	ress[210]	Wd_timer[[110]

Table 8–23. Remote System Upgrade Control Register Contents

Control Register Bit	Value	Definition
Wd_timer[110]	12'b00000000000	User watchdog time-out value (most significant 12 bits of 29-bit count value: {Wd_timer[110],17'b1000})
Ru_address[210]	22'b00000000000000000000000000000000000	Configuration address (most significant 22 bits of 24-bit boot address value: boot_address[23:0] = {Ru_address[210],2'b0})
Rsv1	1'b0	Reserved bit
Wd_en	1'b1	User watchdog timer enable bit
Osc_int (1)	1'b1	Internal oscillator as startup state machine clock enable bit
Cd_early (1)	1'b1	Early CONF_DONE check
Rsv2	1'b1	Reserved bit

Note to Table 8-23:

(1) Option bit for the application configuration.

When enabled, the early CONF_DONE check (Cd_early) option bit ensures that there is a valid configuration at the boot address specified by the factory configuration and that it is of the proper size. If an invalid configuration is detected or the CONF_DONE pin is asserted too early, the device resets and then reconfigures the factory configuration image. The internal oscillator (as the startup state machine clock [Osc_int] option bit) ensures a functional startup clock to eliminate the hanging of startup. When all option bits are turned on, they provide complete coverage for the programming and startup portions of the application configuration. Altera recommends turning on both the Cd early and Osc int option bits.

The Cd_early and Osc_int option bits for the application configuration must be turned on by the factory configuration.

Remote System Upgrade Status Register

The remote system upgrade status register specifies the reconfiguration trigger condition. The various trigger and error conditions include:

- Cyclical redundancy check (CRC) error during application configuration
- nSTATUS assertion by an external device due to an error
- Cyclone IV device logic array triggers a reconfiguration cycle, possibly after downloading a new application configuration image

Figure 1–31 and Figure 1–32 show the high- and low-speed clock distribution for transceivers in F324 and smaller packages, and in F484 and larger packages in non-bonded channel configuration.

Figure 1–31. Clock Distribution in Non-Bonded Channel Configuration for Transceivers in F324 and Smaller Packages

Notes to Figure 1-31:

- (1) Transceiver channels 2 and 3 are not available for devices in F169 and smaller packages.
- (2) High-speed clock.
- (3) Low-speed clock.

Chann	el Configuration	Quartus II Selection
Bonded	With rate match FIFO ⁽¹⁾	coreclkout clock feeds the FIFO read clock for the bonded channels. coreclkout clock is the common bonded low-speed clock, which also feeds the FIFO read clock and transmitter PCS in the bonded channels.
Bonded	Without rate match FIFO	<code>rx_clkout</code> clock feeds the FIFO read clock. <code>rx_clkout</code> is forwarded through the receiver channel from low-speed recovered clock, which also feeds the FIFO write clock.

Table 1–13. Automatic RX Phase Compensation FIFO Read Clock Selection (Part 2 of 2)

Note to Table 1-13:

(1) Configuration with rate match FIFO is supported in transmitter and receiver operation.

When using user-specified clock option, ensure that the clock feeding rx_coreclk port has 0 ppm difference with the RX phase compensation FIFO write clock.

Calibration Block

This block calibrates the OCT resistors and the analog portions of the transceiver blocks to ensure that the functionality is independent of process, voltage, and temperature (PVT) variations.

Figure 1–40 shows the location of the calibration block and how it is connected to the transceiver blocks.

Note to Figure 1-40:

(1) Transceiver block GXBL1 is only available for devices in F484 and larger packages.

Transmitter Only Channel

This configuration contains only a transmitter channel. If you create a **Transmitter Only** instance in the ALTGX MegaWizard Plug-In Manager in Basic ×4 functional mode, use the reset sequence shown in Figure 2–3.

As shown in Figure 2–3, perform the following reset procedure for the **Transmitter Only** channel configuration:

- 1. After power up, assert pll_areset for a minimum period of 1 µs (the time between markers 1 and 2).
- 2. Keep the tx_digitalreset signal asserted during this time period. After you de-assert the pll_areset signal, the multipurpose PLL starts locking to the transmitter input reference clock.
- 3. When the multipurpose PLL locks, as indicated by the pll_locked signal going high (marker 3), de-assert the tx_digitalreset signal (marker 4). At this point, the transmitter is ready for transmitting data.

- 4. For the receiver operation, after deassertion of busy signal, wait for two parallel clock cycles to deassert the rx analogreset signal.
- 5. Wait for the rx_freqlocked signal from each channel to go high. The rx_freqlocked signal of each channel may go high at different times (indicated by the slashed pattern at marker 7).
- 6. In a bonded channel group, when the rx_freqlocked signals of all the channels has gone high, from that point onwards, wait for at least t_{LTD_Auto} time for the receiver parallel clock to be stable, then deassert the rx_digitalreset signal (marker 8). At this point, all the receivers are ready for data traffic.

Receiver and Transmitter Channel—Receiver CDR in Manual Lock Mode

This configuration contains both a transmitter and receiver channel. When the receiver CDR is in manual lock mode, use the reset sequence shown in Figure 2–5.

Notes to Figure 2-5:

- (1) For t_{LTD Manual} duration, refer to the Cyclone IV Device Datasheet chapter.
- (2) The number of rx_locktorefclk [n] and rx_locktodata [n] signals depend on the number of channels configured. n=number of channels.
- (3) For $t_{LTR_LTD_Manual}$ duration, refer to the *Cyclone IV Device Datasheet* chapter.
- (4) The busy signal is asserted and deasserted only during initial power up when offset cancellation occurs. In subsequent reset sequences, the busy signal is asserted and deasserted only if there is a read or write operation to the ALTGX_RECONFIG megafunction.

- 4. Wait for at least t_{LTR_LTD_Manual} (the time between markers 6 and 7), then deassert the rx_locktorefclk signal. At the same time, assert the rx_locktodata signal (marker 7). At this point, the receiver CDR enters lock-to-data mode and the receiver CDR starts locking to the received data.
- 5. Deassert rx_digitalreset at least t_{LTD_Manual} (the time between markers 7 and 8) after asserting the rx_locktodata signal. At this point, the transmitter and receiver are ready for data traffic.

Reset Sequence in Loss of Link Conditions

Loss of link can occur due to loss of local reference clock source or loss of the link due to an unplugged cable. Other adverse conditions like loss of power could also cause the loss of signal from the other device or link partner.

Loss of Local REFCLK or Other Reference Clock Condition

Should local reference clock input become disabled or unstable, take the following steps:

- 1. Monitor pll_locked signal. Pll_locked is de-asserted if local reference clock source becomes unavailable.
- 2. Pll_locked assertion indicates a stable reference clock because TX PLL locks to the incoming clock. You can follow appropriate reset sequence provided in the device handbook, starting from pll_locked assertion.

Loss of Link Due To Unplugged Cable or Far End Shut-off Condition

Use one or more of the following methods to identify whether link partner is alive:

- Signal detect is available in PCIe and Basic modes. You can monitor rx_signaldetect signal as loss of link indicator. rx_signaldetect is asserted when the link partner comes back up.
- You can implement a ppm detector in device core for modes that do not have signal detect to monitor the link. Ppm detector helps in identifying whether the link is alive.
- Data corruption or RX phase comp FIFO overflow or underflow condition in user logic may indicate a loss of link condition.

Apply the following reset sequences when loss of link is detected:

- For Automatic CDR lock mode:
 - a. Monitor rx_freqlocked signal. Loss of link causes rx_freqlocked to be deasserted when CDR moves back to lock-to-data (LTD) mode.
 - b. Assert rx_digitalreset.
 - c. rx_freqlocked toggles over time when CDR switches between lock-to-reference (LTR) and LTD modes.
 - d. If rx_freqlocked goes low at any point, re-assert rx_digitalreset.
 - e. If data corruption or RX phase comp FIFO overflow or underflow condition is observed in user logic, assert rx_digitalreset for 2 parallel clock cycles, then de-assert the signal.

Port Name	Input/ Output	Description								
		This is an optional equalizer DC gain write control.								
		The width of this signal is fixed to 2 bits if you enable either the Use 'logical_channel_address' port for Analog controls reconfiguration option or the Use same control signal for all the channels option in the Analog controls screen. Otherwise, the width of this signal is 2 bits per channel.								
		The following values are the legal settings allowed for this signal:								
		rx_eqdcgain[10] Corresponding ALTGX Corresponding								
rx_eqdcgain [10] ⁽¹⁾	Input	(dB) DC Gain value								
		2′b00 0 0								
		2'b01 1 3 ⁽²⁾								
		2'b10 2 6								
		All other values => N/A								
		For more information, refer to the "Programmable Equalization and DC Gain" section of the <i>Cyclone IV GX Device Datasheet</i> chapter.								
<pre>tx_vodctrl_out [20]</pre>	Output	This is an optional transmit V_{OD} read control signal. This signal reads out the value written into the V_{OD} control register. The width of this output signal depends on the number of channels controlled by the dynamic reconfiguration controller and also the configuration of the Use 'logical_channel_address' port for Analog controls reconfiguration option and the Use same control signal for all the channels option.								
tx_preemp_out [40]	Output	This is an optional pre-emphasis read control signal. This signal reads out the value written by its input control signal. The width of this output signal depends on the number of channels controlled by the dynamic reconfiguration controller and also the configuration of the Use 'logical_channel_address' port for Analog controls reconfiguration option and the Use same control signal for all the channels option.								
rx_eqctrl_out [30]	Output	This is an optional read control signal to read the setting of equalization setting of the ALTGX instance. The width of this output signal depends on the number of channels controlled by the dynamic reconfiguration controller and also the configuration of the Use 'logical_channel_address' port for Analog controls reconfiguration option and the Use same control signal for all the channels option.								
rx_eqdcgain_out [10]	Output	This is an optional equalizer DC gain read control signal. This signal reads out the settings of the ALTGX instance DC gain. The width of this output signal depends on the number of channels controlled by the dynamic reconfiguration controller and also the configuration of the Use 'logical_channel_address' port for Analog controls reconfiguration option and the Use same control signal for all the channels option.								
Transceiver Channel Re	configura	tion Control/Status Signals								
		Set the following values at this signal to activate the appropriate dynamic reconfiguration mode:								
rogonfig mode		3'b000 = PMA controls reconfiguration mode. This is the default value.								
sel[20] ⁽³⁾	Input	3'b001 = Channel reconfiguration mode								
		All other values => N/A								
		reconfig_mode_sel[] is available as an input only when you enable more than one dynamic reconfiguration mode.								

Table 3–2. Dynamic Reconfiguration Controller Port List (ALTGX_RECONFIG Instance) (Part 6 of 7)

There are three methods that you can use to dynamically reconfigure the PMA controls of a transceiver channel:

- "Method 1: Using logical_channel_address to Reconfigure Specific Transceiver Channels" on page 3–14
- "Method 2: Writing the Same Control Signals to Control All the Transceiver Channels" on page 3–16
- "Method 3: Writing Different Control Signals for all the Transceiver Channels at the Same Time" on page 3–19

Method 1: Using logical_channel_address to Reconfigure Specific Transceiver Channels

Enable the logical_channel_address port by selecting the **Use** 'logical_channel_address' port option on the **Analog controls** tab. This method is applicable only for a design where the dynamic reconfiguration controller controls more than one channel.

You can additionally reconfigure either the receiver portion, transmitter portion, or both the receiver and transmitter portions of the transceiver channel by setting the corresponding value on the rx_tx_duplex_sel input port. For more information, refer to Table 3–2 on page 3–4.

Connecting the PMA Control Ports

The selected PMA control ports remain fixed in width, regardless of the number of channels controlled by the ALTGX_RECONFIG instance:

- tx_vodctrl and tx_vodctrl_out are fixed to 3 bits
- tx preemp and tx preemp out are fixed to 5 bits
- rx_eqdcgain and rx_eqdcgain_out are fixed to 2 bits
- rx_eqctrl and rx_eqctrl_out are fixed to 4 bits

Write Transaction

To complete a write transaction, perform the following steps:

- Set the selected PMA control ports to the desired settings (for example, tx_vodctrl = 3'b001).
- 2. Set the logical_channel_address input port to the logical channel address of the transceiver channel whose PMA controls you want to reconfigure.
- 3. Set the rx_tx_duplex_sel port to **2'b10** so that only the transmit PMA controls are written to the transceiver channel.
- 4. Ensure that the busy signal is low before you start a write transaction.
- 5. Assert the write_all signal for one reconfig_clk clock cycle.

The busy output status signal is asserted high to indicate that the dynamic reconfiguration controller is busy writing the PMA control values. When the write transaction has completed, the busy signal goes low.

Figure 3–8 shows a write transaction waveform with the **Use the same control signal for all the channels** option disabled.

Notes to Figure 3-8:

- (1) In this waveform example, you want to write to only the transmitter portion of the channel.
- (2) In this waveform example, the number of channels controlled by the dynamic reconfiguration controller (the ALTGX_RECONFIG instance) is two and that the tx_vodctrl control port is enabled.

Simultaneous write and read transactions are not allowed.

Read Transaction

The read transaction in Method 3 is identical to that in Method 2. Refer to "Read Transaction" on page 3–18.

[>] This is the slowest method. You have to write all the PMA settings for all channels even if you may only be changing one parameter on the channel. Altera recommends using the logical_channel_address method for time-critical applications.

For each method, you can additionally reconfigure the PMA setting of both transmitter and receiver portion, transmitter portion only, or receiver portion only of the transceiver channel. For more information, refer to "Dynamic Reconfiguration Controller Port List" on page 3–4. You can enable the rx_tx_duplex_sel port by selecting the Use 'rx_tx_duplex_sel' port to enable RX only, TX only or duplex reconfiguration option on the Error checks tab of the ALTGX_RECONFIG MegaWizard Plug-In Manager.

Figure 3–9 shows the ALTGX_RECONFIG connection to the ALTGX instances when set in analog reconfiguration mode. For the port information, refer to the "Dynamic Reconfiguration Controller Port List" on page 3–4.

This chapter provides additional information about the document and Altera.

About this Handbook

This handbook provides comprehensive information about the Altera[®] Cyclone[®] IV family of devices.

How to Contact Altera

To locate the most up-to-date information about Altera products, refer to the following table.

Contact ⁽¹⁾	Contact Method	Address				
Technical support	Website	www.altera.com/support				
Technical training	Website	www.altera.com/training				
recinical training	Email	custrain@altera.com				
Product literature	Website	www.altera.com/literature				
Nontechnical support (general)	Email	nacomp@altera.com				
(software licensing)	Email	authorization@altera.com				

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

The following table shows the typographic conventions this document uses.

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Indicate command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box. For GUI elements, capitalization matches the GUI.
bold type	Indicates directory names, project names, disk drive names, file names, file name extensions, software utility names, and GUI labels. For example, \qdesigns directory, D: drive, and chiptrip.gdf file.
Italic Type with Initial Capital Letters	Indicate document titles. For example, Stratix IV Design Guidelines.
	Indicates variables. For example, $n + 1$.
italic type	Variable names are enclosed in angle brackets (< >). For example, <i><file name=""></file></i> and <i><project name="">.pof</project></i> file.
Initial Capital Letters	Indicate keyboard keys and menu names. For example, the Delete key and the Options menu.
"Subheading Title"	Quotation marks indicate references to sections in a document and titles of Quartus II Help topics. For example, "Typographic Conventions."

***** For more information about receiver input and transmitter output waveforms, and for other differential I/O standards, refer to the *I/O Features in Cyclone IV Devices* chapter.

Table 1–18. Differential SSTL I/O Standard Specifications for Cyclone IV Devices (1)

I/O Standard	v	/ _{ccio} (V)	V _{Swinç}	_{I(DC)} (V)	V _{X(AC)} (V)			V _{Swi} (ng(AC) V)	V _{OX(AC)} (V)			
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Тур	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.36	V _{CCIO}	$V_{CC10}/2 - 0.2$	_	V _{CCI0} /2 + 0.2	0.7	V _{CCI} 0	V _{CCIO} /2 – 0.125		V _{CCI0} /2 + 0.125	
SSTL-18 Class I, II	1.7	1.8	1.90	0.25	V _{CCIO}	V _{CCIO} /2 – 0.175	V _{CCI0} /2 – V 0.175 – +		0.5 V _{CCI}		V _{CCI0} /2 - 0.125		V _{CCI0} /2 + 0.125	

Note to Table 1-18:

(1) Differential SSTL requires a V_{REF} input.

Table 1–19. Differential HSTL I/O Standard Specifications for Cyclone IV Devices ⁽¹⁾

I/O Standard Mi	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V)				V _{DIF(AC)} (V)	
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Mi n	Max	
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85	_	0.95	0.85		0.95	0.4	_	
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	_	0.79	0.71		0.79	0.4	_	
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	$0.48 \times V_{CCIO}$	_	0.52 x V _{CCI0}	0.48 x V _{CCI0}		0.52 x V _{CCI0}	0.3	0.48 x V _{CCI0}	

Note to Table 1-19:

(1) Differential HSTL requires a V_{REF} input.

 Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices ⁽¹⁾ (Part 1 of 2)

1/0 Standard	V _{CCIO} (V)			V _{ID} (mV)			V _{ICM} (V) ⁽²⁾			V _{OD} (mV) ⁽³⁾			V _{0S} (V) ⁽³⁾		
iju Stanuaru	Min Typ Max		Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max	
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80							
(Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{ D}_{\text{MAX}} \\ \leq 700 \text{ Mbps} \end{array}$	1.80	_	_	_	—	—	—	
(0)						1.05	D _{MAX} > 700 Mbps	1.55							
						0.05	$D_{MAX} \leq ~500~Mbps$	1.80							
(Column	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{D}_{\text{MAX}} \\ \leq 700 \text{ Mbps} \end{array}$	1.80	_	_	_	_	—	—	
1,00)						1.05	D _{MAX} > 700 Mbps	1.55							
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80							
LVDS (Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{D}_{\text{MAX}} \\ \leq \ 700 \text{ Mbps} \end{array}$	1.80	247	_	600	1.125	1.25	1.375	
						1.05	D _{MAX} > 700 Mbps	1.55							

Figure 1–4 shows the differential receiver input waveform.

Figure 1–5 shows the transmitter output waveform.

Table 1–22 lists the typical V_{OD} for Tx term that equals 100 Ω .

Table 1–22. Typical V_{0D} Setting, Tx Term = 100 Ω

Sumbol	V _{oD} Setting (mV)									
Symbol	1	2	3	4 (1)	5	6				
V _{OD} differential peak to peak typical (mV)	400	600	800	900	1000	1200				

Note to Table 1-22:

(1) This setting is required for compliance with the PCIe protocol.

Table 1–23 lists the Cyclone IV GX transceiver block AC specifications.

Symbol/	Conditions	C6			C7, I7			C8			11	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UNIT	
PCIe Transmit Jitter Generation ⁽³⁾												
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	UI	
PCIe Receiver Jitter Tolerance ⁽³⁾												
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	> 0.6			> 0.6			> 0.6			UI	
GIGE Transmit Jitter Generation ⁽⁴⁾												
Deterministic jitter	Pattern – CBPAT	_	_	0.14			0.14			0.14	UI	
(peak-to-peak)												
Total jitter (peak-to-peak)	Pattern = CRPAT	—	—	0.279		—	0.279	_	—	0.279	UI	
GIGE Receiver Jitter Tolerance ⁽⁴⁾												
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.4		> 0.4		> 0.4		UI				
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.66		> 0.66			> 0.66			UI		

Table 1–23. Transceiver Block AC Specification for Cyclone IV GX Devices (1), (2)

Notes to Table 1-23:

(1) Dedicated refclk pins were used to drive the input reference clocks.

(2) The jitter numbers specified are valid for the stated conditions only.

(3) The jitter numbers for PIPE are compliant to the PCIe Base Specification 2.0.

(4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Core Performance Specifications

The following sections describe the clock tree specifications, PLLs, embedded multiplier, memory block, and configuration specifications for Cyclone IV Devices.

Clock Tree Specifications

Table 1–24 lists the clock tree specifications for Cyclone IV devices.

 Table 1–24.
 Clock Tree Performance for Cyclone IV Devices (Part 1 of 2)

Device	Performance									
	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L ⁽¹⁾	A7	UNIT	
EP4CE6	500	437.5	402	362	265	437.5	362	402	MHz	
EP4CE10	500	437.5	402	362	265	437.5	362	402	MHz	
EP4CE15	500	437.5	402	362	265	437.5	362	402	MHz	
EP4CE22	500	437.5	402	362	265	437.5	362	402	MHz	
EP4CE30	500	437.5	402	362	265	437.5	362	402	MHz	
EP4CE40	500	437.5	402	362	265	437.5	362	402	MHz	