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3–2 Chapter 3: Memory Blocks in Cyclone IV Devices
Overview
Table 3–1 lists the features supported by the M9K memory.

f For information about the number of M9K memory blocks for Cyclone IV devices, 
refer to the Cyclone IV Device Family Overview chapter in volume 1 of the Cyclone IV 
Device Handbook.

Table 3–1. Summary of M9K Memory Features 

Feature M9K Blocks

Configurations (depth × width)

8192 × 1

4096 × 2

2048 × 4

1024 × 8

1024 × 9

512 × 16

512 × 18

256 × 32

256 × 36

Parity bits v
Byte enable v
Packed mode v
Address clock enable v
Single-port mode v
Simple dual-port mode v
True dual-port mode v
Embedded shift register mode (1) v
ROM mode v
FIFO buffer (1) v
Simple dual-port mixed width support v
True dual-port mixed width support (2) v
Memory initialization file (.mif) v
Mixed-clock mode v
Power-up condition Outputs cleared

Register asynchronous clears Read address registers and output registers only

Latch asynchronous clears Output latches only

Write or read operation triggering Write and read: Rising clock edges

Same-port read-during-write Outputs set to Old Data or New Data

Mixed-port read-during-write Outputs set to Old Data or Don’t Care

Notes to Table 3–1:
(1) FIFO buffers and embedded shift registers that require external logic elements (LEs) for implementing control 

logic.
(2) Width modes of ×32 and ×36 are not available.
Cyclone IV Device Handbook, November 2011 Altera Corporation
Volume 1

http://www.altera.com/literature/hb/cyclone-iv/cyiv-51001.pdf


Chapter 4: Embedded Multipliers in Cyclone IV Devices 4–7
Document Revision History
Document Revision History
Table 4–3 lists the revision history for this chapter.

Table 4–3. Document Revision History

Date Version Changes

February 2010 1.1 Added Cyclone IV E devices in Table 4–1 for the Quartus II software version 
9.1 SP1 release.

November 2009 1.0 Initial release.
February 2010 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–3
Clock Networks
PLL_3_C1 — — — — — — v — — v — — — — — — v — — v
PLL_3_C2 — — — — — v — v — — — — — — — v — v — —

PLL_3_C3 — — — — — — v — v — — — — — — — v — v —

PLL_3_C4 — — — — — — — v — v — — — — — — — v — v
PLL_4_C0 (3) — — — — — v — — v — v — — v — — — — — —

PLL_4_C1 (3) — — — — — — v — — v — v — — v — — — — —

PLL_4_C2 (3) — — — — — v — v — — v — v — — — — — — —

PLL_4_C3 (3) — — — — — — v — v — — v — v — — — — — —

PLL_4_C4 (3) — — — — — — — v — v — — v — v — — — — —

DPCLK2 — — — — — — — — — — — — — — — — v — — —

DPCLK3 (4) — — — — — — — — — — — — — — — — — — v —

DPCLK4 (4) — — — — — — — — — — — — — — — — — v — —

DPCLK5 — — — — — — — — — — — — — — — — — — — v
DPCLK6 (4) — — — — — — — — v — — — — — — — — — — —

DPCLK7 — — — — — — v — — — — — — — — — — — — —

DPCLK8 — — — — — — — — — v — — — — — — — — — —

DPCLK9 (4) — — — — — — — v — — — — — — — — — — — —

DPCLK10 — — — — — — — — — — — — — — v — — — — —

DPCLK11 (4) — — — — — — — — — — — — v — — — — — — —

DPCLK12 (4) — — — — — — — — — — — — — v — — — — — —

DPCLK13 — — — — — — — — — — — v — — — — — — — —

Notes to Table 5–1:

(1) EP4CGX30 information in this table refers to all EP4CGX30 packages except F484 package.
(2) PLL_1 and PLL_2 are multipurpose PLLs while PLL_3 and PLL_4 are general purpose PLLs.
(3) PLL_4 is only available in EP4CGX22 and EP4CGX30 devices in F324 package.
(4) This pin applies to EP4CGX22 and EP4CGX30 devices.

Table 5–1. GCLK Network Connections for EP4CGX15, EP4CGX22, and EP4CGX30 (1), (2) (Part 2 of 2)

GCLK Network Clock 
Sources

GCLK Networks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
October 2012 Altera Corporation Cyclone IV Device Handbook,
Volume 1



5–8
Chapter 5:

Clock Netw
orks and PLLs in Cyclone

IV
Devices

Clock Netw
orks

Cyclone IV Device H
andbook,

O
ctober 2012

Altera Corporation
Volum

e 1

v — — v —

— — — — —

— — — — —

— — — — —

— — — — —

— — — — —

— — — — —

— — — — —

— — — — —

— — — — —

— — — — —

— — — — —

— — — — —

— — — — —

— — — — —

— — — — —

v — — v —

— v — — v
v — v — —

— v — v —

— — v — v
— — — — —

— — — — —

— — — — —

15 16 17 18 19
CLK15/DIFFCLK_6p 
(2) — — — — — — — — — — — — — — —

PLL_1_C0 (3) v — — v — — — — — — — — — — —

PLL_1_C1 (3) — v — — v — — — — — — — — — —

PLL_1_C2 (3) v — v — — — — — — — — — — — —

PLL_1_C3 (3) — v — v — — — — — — — — — — —

PLL_1_C4 (3) — — v — v — — — — — — — — — —

PLL_2_C0 (3) — — — — — v — — v — — — — — —

PLL_2_C1 (3) — — — — — — v — — v — — — — —

PLL_2_C2 (3) — — — — — v — v — — — — — — —

PLL_2_C3 (3) — — — — — — v — v — — — — — —

PLL_2_C4 (3) — — — — — — — v — v — — — — —

PLL_3_C0 — — — — — — — — — — v — — v —

PLL_3_C1 — — — — — — — — — — — v — — v
PLL_3_C2 — — — — — — — — — — v — v — —

PLL_3_C3 — — — — — — — — — — — v — v —

PLL_3_C4 — — — — — — — — — — — — v — v
PLL_4_C0 — — — — — — — — — — — — — — —

PLL_4_C1 — — — — — — — — — — — — — — —

PLL_4_C2 — — — — — — — — — — — — — — —

PLL_4_C3 — — — — — — — — — — — — — — —

PLL_4_C4 — — — — — — — — — — — — — — —

DPCLK0 v — — — — — — — — — — — — — —

DPCLK1 — v — — — — — — — — — — — — —

DPCLK7 (4)

CDPCLK0, or

CDPCLK7 (2), (5)

— — v — — — — — — — — — — — —

Table 5–3. GCLK Network Connections for Cyclone IV E Devices (1) (Part 2 of 3)

GCLK Network Clock 
Sources

GCLK Networks 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14



Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–23
Clock Feedback Modes
Clock Feedback Modes
Cyclone IV PLLs support up to five different clock feedback modes. Each mode 
allows clock multiplication and division, phase shifting, and programmable duty 
cycle. For the supported feedback modes, refer to Table 5–5 on page 5–18 for 
Cyclone IV GX PLLs and Table 5–6 on page 5–19 for Cyclone IV E PLLs.

1 Input and output delays are fully compensated by the PLL only if you are using the 
dedicated clock input pins associated with a given PLL as the clock sources. 

When driving the PLL using the GCLK network, the input and output delays may not 
be fully compensated in the Quartus II software. 

Source-Synchronous Mode
If the data and clock arrive at the same time at the input pins, the phase relationship 
between the data and clock remains the same at the data and clock ports of any I/O 
element input register. 

Figure 5–12 shows an example waveform of the data and clock in this mode. Use this 
mode for source-synchronous data transfers. Data and clock signals at the I/O 
element experience similar buffer delays as long as the same I/O standard is used.

Source-synchronous mode compensates for delay of the clock network used, 
including any difference in the delay between the following two paths:

■ Data pin to I/O element register input

■ Clock input pin to the PLL phase frequency detector (PFD) input

1 Set the input pin to the register delay chain in the I/O element to zero in the 
Quartus II software for all data pins clocked by a source-synchronous mode PLL. 
Also, all data pins must use the PLL COMPENSATED logic option in the Quartus II 
software.

Figure 5–12. Phase Relationship Between Data and Clock in Source-Synchronous Mode

Data pin

PLL reference
clock at input pin

Data at register

Clock at register
October 2012 Altera Corporation Cyclone IV Device Handbook,
Volume 1



5–40 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
PLL Reconfiguration
Table 5–13 lists the PLL counter selection based on the corresponding 
PHASECOUNTERSELECT setting.

To perform one dynamic phase-shift, follow these steps:

1. Set PHASEUPDOWN and PHASECOUNTERSELECT as required.

2. Assert PHASESTEP for at least two SCANCLK cycles. Each PHASESTEP pulse allows one 
phase shift.

3. Deassert PHASESTEP after PHASEDONE goes low.

4. Wait for PHASEDONE to go high.

5. Repeat steps 1 through 4 as many times as required to perform multiple phase-
shifts.

PHASEUPDOWN and PHASECOUNTERSELECT signals are synchronous to SCANCLK and must 
meet the tsu and th requirements with respect to the SCANCLK edges.

1 You can repeat dynamic phase-shifting indefinitely. For example, in a design where 
the VCO frequency is set to 1,000 MHz and the output clock frequency is set to 
100 MHz, performing 40 dynamic phase shifts (each one yields 125 ps phase shift) 
results in shifting the output clock by 180, in other words, a phase shift of 5 ns.

scanclk

Free running clock from core used in 
combination with phasestep to enable or 
disable dynamic phase shifting. Shared with 
scanclk for dynamic reconfiguration.

GCLK or I/O pins 
PLL 
reconfiguration 
circuit

phasedone

When asserted, it indicates to core logic that 
the phase adjustment is complete and PLL is 
ready to act on a possible second adjustment 
pulse. Asserts based on internal PLL timing. 
De-asserts on the rising edge of scanclk.

PLL reconfiguration 
circuit

Logic array or 
I/O pins 

Table 5–12. Dynamic Phase Shifting Control Signals (Part 2 of 2)

Signal Name Description Source Destination

Table 5–13. Phase Counter Select Mapping

phasecounterselect
Selects

[2] [1] [0]

0 0 0 All Output Counters

0 0 1 M Counter

0 1 0 C0 Counter

0 1 1 C1 Counter

1 0 0 C2 Counter

1 0 1 C3 Counter

1 1 0 C4 Counter
Cyclone IV Device Handbook, October 2012 Altera Corporation
Volume 1



Chapter 6: I/O Features in Cyclone IV Devices 6–33
High-Speed I/O Standards Support
A resistor network is required to attenuate the output voltage swing to meet RSDS, 
mini-LVDS, and PPDS specifications when using emulated transmitters. You can 
modify the resistor network values to reduce power or improve the noise margin. 

The resistor values chosen must satisfy Equation 6–1.

1 Altera recommends that you perform simulations using Cyclone IV devices IBIS 
models to validate that custom resistor values meet the RSDS, mini-LVDS, or PPDS 
requirements.

It is possible to use a single external resistor instead of using three resistors in the 
resistor network for an RSDS interface, as shown in Figure 6–17. The external 
single-resistor solution reduces the external resistor count while still achieving the 
required signaling level for RSDS. However, the performance of the single-resistor 
solution is lower than the performance with the three-resistor network.

Figure 6–17 shows the RSDS interface with a single resistor network on the top and 
bottom I/O banks.

Note to Figure 6–16: 

(1) RS and RP values are pending characterization.

Equation 6–1. Resistor Network

Figure 6–16. RSDS, Mini-LVDS, or PPDS Interface with External Resistor Network on the Top and 
Bottom I/O Banks (1)

RS
RP

2
-------

RS
RP

2
-------+

-------------------- 50 =

Figure 6–17. RSDS Interface with Single Resistor Network on the Top and Bottom I/O Banks (1)

Note to Figure 6–17: 

(1) RP value is pending characterization.

RSDS Receiver

100 Ω
 50 Ω

Cyclone IV Device 

Single Resistor Network

Emulated
RSDS Transmitter

RP

 50 Ω
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–21
Configuration
You can use the Quartus II software with the APU and the appropriate configuration 
device programming adapter to program serial configuration devices. All serial 
configuration devices are offered in an 8- or 16-pin small outline integrated circuit 
(SOIC) package.

In production environments, serial configuration devices are programmed using 
multiple methods. Altera programming hardware or other third-party programming 
hardware is used to program blank serial configuration devices before they are 
mounted onto PCBs. Alternatively, you can use an on-board microprocessor to 
program the serial configuration device in-system by porting the reference C-based 
SRunner software driver provided by Altera.

A serial configuration device is programmed in-system by an external microprocessor 
with the SRunner software driver. The SRunner software driver is a software driver 
developed for embedded serial configuration device programming, which is easily 
customized to fit in different embedded systems. The SRunner software driver is able 
to read a Raw Programming Data (.rpd) file and write to serial configuration devices. 
The serial configuration device programming time, using the SRunner software 
driver, is comparable to the programming time with the Quartus II software.

f For more information about the SRunner software driver, refer to AN 418: SRunner: 
An Embedded Solution for Serial Configuration Device Programming and the source code 
at the Altera website.

AP Configuration (Supported Flash Memories)
The AP configuration scheme is only supported in Cyclone IV E devices. In the AP 
configuration scheme, Cyclone IV E devices are configured using commodity 16-bit 
parallel flash memory. These external non-volatile configuration devices are industry 
standard microprocessor flash memories. The flash memories provide a fast interface 
to access configuration data. The speed up in configuration time is mainly due to the 
16-bit wide parallel data bus, which is used to retrieve data from the flash memory.

Some of the smaller Cyclone IV E devices or package options do not support the AP 
configuration scheme. Table 8–9 lists the supported AP configuration scheme for each 
Cyclone IV E devices.

Table 8–9. Supported AP Configuration Scheme for Cyclone IV E Devices

Device
Package Options

E144 M164 M256 U256 F256 F324 U484 F484 F780

EP4CE6 — — — — — — — — —

EP4CE10 — — — — — — — — —

EP4CE15 — — — — — — — v —

EP4CE22 — — — — — — — — —

EP4CE30 — — — — — v — v v
EP4CE40 — — — — — v v v v
EP4CE55 — — — — — — v v v
EP4CE75 — — — — — — v v v
EP4CE115 — — — — — — — v v
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1

http://www.altera.com/literature/an/an418.pdf
http://www.altera.com/literature/an/an418.pdf


8–26 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
Byte-Wide Multi-Device AP Configuration
The simpler method for multi-device AP configuration is the byte-wide multi-device 
AP configuration. In the byte-wide multi-device AP configuration, the LSB of the 
DATA[7..0]pin from the flash and master device (set to the AP configuration scheme) 
is connected to the slave devices set to the FPP configuration scheme, as shown in 
Figure 8–8.

Word-Wide Multi-Device AP Configuration
The more efficient setup is one in which some of the slave devices are connected to the 
LSB of the DATA[7..0]and the remaining slave devices are connected to the MSB of 
the DATA[15..8]. In the word-wide multi-device AP configuration, the nCEO pin of the 
master device enables two separate daisy chains of slave devices, allowing both 
chains to be programmed concurrently, as shown in Figure 8–9.

Figure 8–8. Byte-Wide Multi-Device AP Configuration

Notes to Figure 8–8: 

(1) Connect the pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the pull-up resistor to the VCCIO supply voltage of the I/O bank in which the nCE pin resides.
(3) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(4) The MSEL pin settings vary for different configuration voltage standards and POR time. You must set the master device in AP mode and the slave 

devices in FPP mode. To connect MSEL[3..0] for the master device in AP mode and the slave devices in FPP mode, refer to Table 8–5 on 
page 8–9. Connect the MSEL pins directly to VCCA or GND.

(5) The AP configuration ignores the WAIT signal during configuration mode. However, if you are accessing flash during user mode with user logic, 
you can optionally use the normal I/O to monitor the WAIT signal from the Micron P30 or P33 flash. 

(6) Connect the repeater buffers between the Cyclone IV E master device and slave devices for DATA[15..0] and DCLK. All I/O inputs must maintain 
a maximum AC voltage of 4.1 V. The output resistance of the repeater buffers must fit the maximum overshoot equation outlined in “Configuration 
and JTAG Pin I/O Requirements” on page 8–5.
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–29
Configuration
Figure 8–10 shows the AP configuration with multiple bus masters.

Figure 8–10. AP Configuration with Multiple Bus Masters

Notes to Figure 8–10: 

(1) Connect the pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(3) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect MSEL[3..0], refer to Table 8–5 on page 8–9. 

Connect the MSEL pins directly to VCCA or GND.
(4) The AP configuration ignores the WAIT signal during configuration mode. However, if you are accessing flash during user mode with user logic, 

you can optionally use the normal I/O to monitor the WAIT signal from the Micron P30 or P33 flash. 
(5) When cascading Cyclone IV E devices in a multi-device AP configuration, connect the repeater buffers between the master device and slave 

devices for DATA[15..0] and DCLK. All I/O inputs must maintain a maximum AC voltage of 4.1 V. The output resistance of the repeater buffers 
must fit the maximum overshoot equation outlined in “Configuration and JTAG Pin I/O Requirements” on page 8–5.

(6) The other master device must fit the maximum overshoot equation outlined in “Configuration and JTAG Pin I/O Requirements” on page 8–5.
(7) The other master device can control the AP configuration bus by driving the nCE to high with an output high on the I/O pin.
(8) The other master device can pulse nCONFIG if it is under system control and not tied to VCCIO.
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8–74 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Remote System Upgrade
Dedicated Remote System Upgrade Circuitry
This section describes the implementation of the Cyclone IV device remote system 
upgrade dedicated circuitry. The remote system upgrade circuitry is implemented in 
hard logic. This dedicated circuitry interfaces with the user-defined factory 
application configurations implemented in the Cyclone IV device logic array to 
provide the complete remote configuration solution. The remote system upgrade 
circuitry contains the remote system upgrade registers, a watchdog timer, and state 
machines that control those components. Figure 8–33 shows the data path of the 
remote system upgrade block.

Figure 8–33. Remote System Upgrade Circuit Data Path (1)

Notes to Figure 8–33:

(1) The RU_DOUT, RU_SHIFTnLD, RU_CAPTnUPDT, RU_CLK, RU_DIN,RU_nCONFIG, and RU_nRSTIMER signals are internally controlled 
by the ALTREMOTE_UPDATE megafunction.

(2) The RU_CLK refers to the ALTREMOTE_UPDATE megafunction block "clock" input. For more information, refer to the Remote Update Circuitry 
(ALTREMOTE_UPDATE) Megafunction User Guide.
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Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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9–4 Chapter 9: SEU Mitigation in Cyclone IV Devices
Error Detection Block
1 WYSIWYG is an optimization technique that performs optimization on a VQM 
(Verilog Quartus Mapping) netlist in the Quartus II software.

Error Detection Block
Table 9–3 lists the types of CRC detection to check the configuration bits.

This section focuses on the first type—the 32-bit CRC when the device is in user 
mode.

Error Detection Registers
There are two sets of 32-bit registers in the error detection circuitry that store the 
computed CRC signature and pre-calculated CRC value. A non-zero value on the 
signature register causes the CRC_ERROR pin to set high. 

Figure 9–1 shows the block diagram of the error detection block and the two related 
32-bit registers: the signature register and the storage register.

Table 9–3. Types of CRC Detection to Check the Configuration Bits

First Type of CRC Detection Second Type of CRC Detection

■ CRAM error checking ability (32-bit CRC) 
during user mode, for use by the 
CRC_ERROR pin.

■ There is only one 32-bit CRC value. This 
value covers all the CRAM data.

■ 16-bit CRC embedded in every configuration data frame.

■ During configuration, after a frame of data is loaded into the device, the 
pre-computed CRC is shifted into the CRC circuitry.

■ Simultaneously, the CRC value for the data frame shifted-in is calculated. 
If the pre-computed CRC and calculated CRC values do not match, 
nSTATUS is set low.

■ Every data frame has a 16-bit CRC. Therefore, there are many 16-bit CRC 
values for the whole configuration bit stream.

■ Every device has a different length of configuration data frame.

Figure 9–1. Error Detection Block Diagram
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The byte ordering block operates in either word-alignment-based byte ordering or 
user-controlled byte ordering modes.

In word-alignment-based byte ordering mode, the byte ordering block starts looking 
for the byte ordering pattern in the byte-deserialized data and restores the order if 
necessary when it detects a rising edge on the rx_syncstatus signal. Whenever the 
byte ordering pattern is found, the rx_byteorderalignstatus signal is asserted 
regardless if the pad byte insertion is necessary. If the byte ordering block detects 
another rising edge on the rx_syncstatus signal from the word aligner, it deasserts 
the rx_byteorderalignstatus signal and repeats the byte ordering operation.

In user-controlled byte ordering mode, the byte ordering operation is user-triggered 
using rx_enabyteord port. A rising edge on rx_enabyteord port triggers the byte 
ordering block to start looking for the byte ordering pattern in the byte-deserialized 
data and restores the order if necessary. When the byte ordering pattern is found, the 
rx_byteorderalignstatus signal is asserted regardless if a pad byte insertion is 
necessary.

RX Phase Compensation FIFO
The RX phase compensation FIFO compensates for the phase difference between the 
parallel receiver clock and the FPGA fabric interface clock, when interfacing the 
receiver channel to the FPGA fabric (directly or through the PIPE and PCIe hard IP 
blocks). The FIFO is four words deep, with latency between two to three parallel clock 
cycles.

Figure 1–24 shows the RX phase compensation FIFO block diagram.

1 The FIFO can operate in registered mode, contributing to only one parallel clock cycle 
of latency in the Deterministic Latency functional mode. For more information, refer 
to “Deterministic Latency Mode” on page 1–73. For more information about FIFO 
clocking, refer to “FPGA Fabric-Transceiver Interface Clocking” on page 1–43.

Miscellaneous Receiver PCS Feature
The receiver PCS supports the following additional feature:

■ Output bit-flip—reverses the bit order at a byte level at the output of the receiver 
phase compensation FIFO. For example, if the 16-bit parallel receiver data at the 
output of the receiver phase compensation FIFO is '10111100 10101101' 
(16'hBCAD), enabling this option reverses the data on rx_dataout port to 
'00111101 10110101' (16'h3DB5).

Figure 1–24. RX Phase Compensation FIFO Block Diagram

Note to Figure 1–24:

(1) Parameter x refers to the transceiver channel width, where 8, 10, 16, or 20 bits are supported.
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Table 3–7 lists the ALTGX megafunction ports for PLL Reconfiguration mode.

f For more information about the ALTPLL_RECONFIG megafunction port list, 
description and usage, refer to the Phase-Locked Loop Reconfiguration 
(ALTPL_RECONFIG) Megafunction User Guide.

Table 3–7. ALTGX Megafunction Port List for PLL Reconfiguration Mode  

Port Name (1) Input/ 
Output Description Comments

pll_areset [n..0] Input

Resets the transceiver PLL. The 
pll_areset are asserted in two 
conditions:

■ Used to reset the transceiver PLL 
during the reset sequence. During 
reset sequence, this signal is user 
controlled.

■ After the transceiver PLL is 
reconfigured, this signal is 
asserted high by the 
ALTPLL_RECONFIG controller. At 
this time, this signal is not user 
controlled. 

You must connect the pll_areset port of ALTGX to the 
pll_areset port of the ALTPLL_RECONFIG 
megafunction. 

The ALTPLL_RECONFIG controller asserts the 
pll_areset port at the next rising clock edge after the 
pll_reconfig_done signal from the ALTGX 
megafunction goes high. After the pll_reconfig_done 
signal goes high, the transceiver PLL is reset. When the 
PLL reconfiguration is completed, this reset is 
performed automatically by the ALTPLL_RECONFIG 
megafunction and is not user controlled. 

pll_scandata
[n..0]

Input
Receives the scan data input from 
the ALTPLL_RECONFIG 
megafunction.

The reconfigurable transceiver PLL received the scan 
data input through this port for the dynamically 
reconfigurable bits from the ALTPLL_RECONFIG 
controller. 

pll_scanclk
[n..0]

Input Drives the scanclk port on the 
reconfigurable transceiver PLL.

Connect the pll_scanclk port of the ALTGX 
megafunction to the ALTPLL_RECONFIG scanclk port. 

pll_scanclkena
[n..0] Input

Acts as a clock enable for the 
scanclk port on the reconfigurable 
transceiver PLL.

Connect the pll_scanclkena port of the ALTGX 
megafunction to the ALTPLL_RECONFIG scanclk port.

pll_configupdate
[n..0] Input Drives the configupdate port on 

the reconfigurable transceiver PLL.

This port is connected to the pll_configupdate port 
from the ALTPLL_RECONFIG controller. After the final 
data bit is sent out, the ALTPLL_RECONFIG controller 
asserts this signal. 

pll_reconfig_done[n..0] Output This signal is asserted to indicate the 
reconfiguration process is done.

Connect the pll_reconfig_done port to the 
pll_scandone port on the ALTPLL_RECONFIG 
controller. The transceiver PLL scandone output signal 
drives this port and determines when the PLL is 
reconfigured.

pll_scandataout
[n..0] Output This port scan out the current 

configuration of the transceiver PLL.

Connect the pll_scandataout port to the 
pll_scandataout port of the ALTPLL_RECONFIG 
controller. This port reads the current configuration of 
the transceiver PLL and send it to the 
ALTPLL_RECONFIG megafunction. 

Note to Table 3–7:

(1) <n> = (number of transceiver PLLs configured in the ALTGX MegaWizard)  - 1.

www.altera.com/literature/ug/ug_altpll_reconfig.pdf
www.altera.com/literature/ug/ug_altpll_reconfig.pdf
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