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Chapter 3: Memory Blocks in Cyclone IV Devices 3–9
Memory Modes
Figure 3–7 shows a timing waveform for read and write operations in single-port 
mode with unregistered outputs. Registering the outputs of the RAM simply delays 
the q output by one clock cycle.

Simple Dual-Port Mode
Simple dual-port mode supports simultaneous read and write operations to different 
locations. Figure 3–8 shows the simple dual-port memory configuration.

Cyclone IV devices M9K memory blocks support mixed-width configurations, 
allowing different read and write port widths. Table 3–3 lists mixed-width 
configurations.

Figure 3–7. Cyclone IV Devices Single-Port Mode Timing Waveform

clk_a

wren_a

address_a

data_a

rden_a

q_a (old data)

a0 a1

A B C D E F

a0(old data) a1(old data)A B D E

q_a (new data) A DB C E F

Figure 3–8. Cyclone IV Devices Simple Dual-Port Memory (1)

Note to Figure 3–8:

(1) Simple dual-port RAM supports input or output clock mode in addition to the read or write clock mode shown. 

data[ ]
wraddress[ ]
wren
byteena[]
wr_addressstall
wrclock
wrclocken
aclr

rdaddress[ ]
rden

q[ ]
rd_addressstall

rdclock
rdclocken

Table 3–3.  Cyclone IV Devices M9K Block Mixed-Width Configurations (Simple Dual-Port Mode) (Part 1 of 2)

Read Port
Write Port

8192 × 1 4096 × 2 2048 × 4 1024 × 8 512 × 16 256 × 32 1024 × 9 512 × 18 256 × 36

8192 × 1 v v v v v v — — —

4096 × 2 v v v v v v — — —

2048 × 4 v v v v v v — — —

1024 × 8 v v v v v v — — —
November 2011 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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CLK15/DIFFCLK_6p 
(2) — — — — — — — — — — — — — — —

PLL_1_C0 (3) v — — v — — — — — — — — — — —

PLL_1_C1 (3) — v — — v — — — — — — — — — —

PLL_1_C2 (3) v — v — — — — — — — — — — — —

PLL_1_C3 (3) — v — v — — — — — — — — — — —

PLL_1_C4 (3) — — v — v — — — — — — — — — —

PLL_2_C0 (3) — — — — — v — — v — — — — — —

PLL_2_C1 (3) — — — — — — v — — v — — — — —

PLL_2_C2 (3) — — — — — v — v — — — — — — —

PLL_2_C3 (3) — — — — — — v — v — — — — — —

PLL_2_C4 (3) — — — — — — — v — v — — — — —

PLL_3_C0 — — — — — — — — — — v — — v —

PLL_3_C1 — — — — — — — — — — — v — — v
PLL_3_C2 — — — — — — — — — — v — v — —

PLL_3_C3 — — — — — — — — — — — v — v —

PLL_3_C4 — — — — — — — — — — — — v — v
PLL_4_C0 — — — — — — — — — — — — — — —

PLL_4_C1 — — — — — — — — — — — — — — —

PLL_4_C2 — — — — — — — — — — — — — — —

PLL_4_C3 — — — — — — — — — — — — — — —

PLL_4_C4 — — — — — — — — — — — — — — —

DPCLK0 v — — — — — — — — — — — — — —

DPCLK1 — v — — — — — — — — — — — — —

DPCLK7 (4)

CDPCLK0, or

CDPCLK7 (2), (5)

— — v — — — — — — — — — — — —

Table 5–3. GCLK Network Connections for Cyclone IV E Devices (1) (Part 2 of 3)

GCLK Network Clock 
Sources

GCLK Networks 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14



Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–11
Clock Networks
Figure 5–1 shows the clock control block.

Each PLL generates five clock outputs through the c[4..0] counters. Two of these 
clocks can drive the GCLK through a clock control block, as shown in Figure 5–1.

f For more information about how to use the clock control block in the Quartus II 
software, refer to the ALTCLKCTRL Megafunction User Guide.

Figure 5–1. Clock Control Block

Notes to Figure 5–1:

(1) The clkswitch signal can either be set through the configuration file or dynamically set when using the manual PLL switchover feature. The 
output of the multiplexer is the input clock (fIN) for the PLL.

(2) The clkselect[1..0] signals are fed by internal logic and are used to dynamically select the clock source for the GCLK when the device is in 
user mode.

(3) The static clock select signals are set in the configuration file. Therefore, dynamic control when the device is in user mode is not feasible.
(4) Two out of four PLL clock outputs are selected from adjacent PLLs to drive into the clock control block.
(5) You can use internal logic to enable or disable the GCLK in user mode.
(6) CLK[n] is not available on the left side of Cyclone IV E devices.

CLKSWITCH (1)

Static Clock Select (3)

Static Clock
Select (3)

Internal Logic

Clock Control Block

Not applicable to
Cyclone IV E devices

DPCLK

CLKSELECT[1..0] (2)
Internal Logic (5)

inclk1
inclk0

CLK[n + 3]
CLK[n + 2]
CLK[n + 1]
CLK[n] (6)

fIN

C0
C1

C2PLL

Global
Clock

Enable/
Disable

C3
C4

CLKSWITCH (1)

inclk1
inclk0

fIN

C0
C1

C2PLL

C3
C4

(4)
October 2012 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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5–36 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
PLL Reconfiguration
Figure 5–23 shows a functional simulation of the PLL reconfiguration feature.

1 When reconfiguring the counter clock frequency, the corresponding counter phase 
shift settings cannot be reconfigured using the same interface. You can reconfigure 
phase shifts in real time using the dynamic phase shift reconfiguration interface. If 
you reconfigure the counter frequency, but wish to keep the same non-zero phase shift 
setting (for example, 90°) on the clock output, you must reconfigure the phase shift 
after reconfiguring the counter clock frequency.

Post-Scale Counters (C0 to C4)
You can configure multiply or divide values and duty cycle of post-scale counters in 
real time. Each counter has an 8-bit high time setting and an 8-bit low time setting. 
The duty cycle is the ratio of output high or low time to the total cycle time, that is the 
sum of the two. Additionally, these counters have two control bits, rbypass, for 
bypassing the counter, and rselodd, to select the output clock duty cycle. 

When the rbypass bit is set to 1, it bypasses the counter, resulting in a divide by one. 
When this bit is set to 0, the PLL computes the effective division of the VCO output 
frequency based on the high and low time counters. For example, if the post-scale 
divide factor is 10, the high and low count values are set to 5 and 5, to achieve a 
50–50% duty cycle. The PLL implements this duty cycle by transitioning the output 
clock from high-to-low on the rising edge of the VCO output clock. However, a 4 and 
6 setting for the high and low count values, respectively, would produce an output 
clock with a 40–60% duty cycle. 

The rselodd bit indicates an odd divide factor for the VCO output frequency with a 
50% duty cycle. For example, if the post-scale divide factor is three, the high and low 
time count values are 2 and 1, respectively, to achieve this division. This implies a 
67%–33% duty cycle. If you need a 50%–50% duty cycle, you must set the rselodd 
control bit to 1 to achieve this duty cycle despite an odd division factor. The PLL 
implements this duty cycle by transitioning the output clock from high-to-low on a 
falling edge of the VCO output clock. When you set rselodd = 1, subtract 0.5 cycles 
from the high time and add 0.5 cycles to the low time.

For example: 

■ High time count = 2 cycles

Figure 5–23. PLL Reconfiguration Scan Chain
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scandataout

configupdate
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areset

D0_old Dn_old Dn
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Cyclone IV Device Handbook, October 2012 Altera Corporation
Volume 1



6–6 Chapter 6: I/O Features in Cyclone IV Devices
OCT Support
The IOE registers in each I/O block share the same source for the preset or clear 
features. You can program preset or clear for each individual IOE, but you cannot use 
both features simultaneously. You can also program the registers to power-up high or 
low after configuration is complete. If programmed to power-up low, an 
asynchronous clear can control the registers. If programmed to power-up high, an 
asynchronous preset can control the registers. This feature prevents the inadvertent 
activation of the active-low input of another device upon power-up. If one register in 
an IOE uses a preset or clear signal, all registers in the IOE must use that same signal if 
they require preset or clear. Additionally, a synchronous reset signal is available for 
the IOE registers. 

f For more information about the input and output pin delay settings, refer to the Area 
and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

PCI-Clamp Diode
Cyclone IV devices provide an optional PCI-clamp diode enabled input and output 
for each I/O pin. Dual-purpose configuration pins support the diode in user mode if 
the specific pins are not used as configuration pins for the selected configuration 
scheme. For example, if you are using the active serial (AS) configuration scheme, you 
cannot use the clamp diode on the ASDO and nCSO pins in user mode. Dedicated 
configuration pins do not support the on-chip diode. 

The PCI-clamp diode is available for the following I/O standards:

■ 3.3-V LVTTL

■ 3.3-V LVCMOS

■ 3.0-V LVTTL

■ 3.0-V LVCMOS

■ 2.5-V LVTTL/LVCMOS

■ PCI

■ PCI-X

If the input I/O standard is one of the listed standards, the PCI-clamp diode is 
enabled by default in the Quartus II software.

OCT Support
Cyclone IV devices feature OCT to provide I/O impedance matching and termination 
capabilities. OCT helps prevent reflections and maintain signal integrity while 
minimizing the need for external resistors in high pin-count ball grid array (BGA) 
packages. Cyclone IV devices provide I/O driver on-chip impedance matching and 
RS OCT for single-ended outputs and bidirectional pins. 

1 When using RS OCT, programmable current strength is not available. 

There are two ways to implement OCT in Cyclone IV devices: 

■ OCT with calibration

■ OCT without calibration
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1
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6–34 Chapter 6: I/O Features in Cyclone IV Devices
High-Speed I/O Standards Support
LVPECL I/O Support in Cyclone IV Devices
The LVPECL I/O standard is a differential interface standard that requires a 2.5-V 
VCCIO. This standard is used in applications involving video graphics, 
telecommunications, data communications, and clock distribution. Cyclone IV 
devices support the LVPECL input standard at the dedicated clock input pins only. 
The LVPECL receiver requires an external 100- termination resistor between the two 
signals at the input buffer.

f For the LVPECL I/O standard electrical specification, refer to the Cyclone IV Device 
Datasheet chapter.

AC coupling is required when the LVPECL common mode voltage of the output 
buffer is higher than the Cyclone IV devices LVPECL input common mode voltage. 

Figure 6–18 shows the AC-coupled termination scheme. The 50- resistors used at the 
receiver are external to the device. DC-coupled LVPECL is supported if the LVPECL 
output common mode voltage is in the Cyclone IV devices LVPECL input buffer 
specification (refer to Figure 6–19).

Figure 6–19 shows the LVPECL DC-coupled termination.

Figure 6–18. LVPECL AC-Coupled Termination (1)

Note to Figure 6–18:

(1) The LVPECL AC-coupled termination is applicable only when an Altera FPGA transmitter is used.

Figure 6–19. LVPECL DC-Coupled Termination (1)

Note to Figure 6–19:

(1) The LVPECL DC-coupled termination is applicable only when an Altera FPGA transmitter is used.

Cyclone IV Device 
LVPECL Receiver
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Cyclone IV Devices Memory Interfaces Pin Support
f For more information about device package outline, refer to the Device Packaging 
Specifications webpage.

DQS pins are listed in the Cyclone IV pin tables as DQSXY, in which X indicates the DQS 
grouping number and Y indicates whether the group is located on the top (T), bottom 
(B), or right (R) side of the device. Similarly, the corresponding DQ pins are marked as 
DQXY, in which the X denotes the DQ grouping number and Y denotes whether the 
group is located on the top (T), bottom (B), or right (R) side of the device. For example, 
DQS2T indicates a DQS pin belonging to group 2, located on the top side of the device. 
Similarly, the DQ pins belonging to that group is shown as DQ2T.

1 Each DQ group is associated with its corresponding DQS pins, as defined in the Cyclone 
IV pin tables. For example:

■ For DDR2 or DDR SDRAM, ×8 DQ group DQ3B[7..0] pins are associated with 
the DQS3B pin (same 3B group index)

■ For QDR II SRAM, ×9 Q read-data group DQ3T[8..0] pins are associated with 
DQS0T/CQ0T and DQS1T/CQ0T# pins (same 0T group index)

The Quartus® II software issues an error message if a DQ group is not placed properly 
with its associated DQS. 

EP4CE40

EP4CE55

EP4CE75

484-pin UBGA

Left 4 4 2 2 1 1

Right 4 4 2 2 1 1

Bottom 4 4 2 2 1 1

Top 4 4 2 2 1 1

484-pin FBGA

Left 4 4 2 2 1 1

Right 4 4 2 2 1 1

Bottom 4 4 2 2 1 1

Top 4 4 2 2 1 1

780-pin FBGA

Left 4 4 2 2 1 1

Right 4 4 2 2 1 1

Bottom 6 6 2 2 1 1

Top 6 6 2 2 1 1

Notes to Table 7–2:

(1) Some of the DQ pins can be used as RUP and RDN pins. You cannot use these groups if you are using these pins as RUP and RDN pins for 
OCT calibration.

(2) Some of the DQ pins can be used as RUP pins while the DM pins can be used as RDN pins. You cannot use these groups if you are using the 
RUP and RDN pins for OCT calibration.

(3) There is no DM pin support for these groups.
(4) PLLCLKOUT3n and PLLCLKOUT3p pins are shared with the DQ or DM pins to gain ×8 DQ group. You cannot use these groups if you are using 

PLLCLKOUT3n and PLLCLKOUT3p.

Table 7–2. Cyclone IV E Device DQS and DQ Bus Mode Support for Each Side of the Device (Part 3 of 3)

Device Package Side
Number 

×8 
Groups

Number 
×9 

Groups

Number 
×16 

Groups

Number 
×18 

Groups

Number 
×32 

Groups

Number 
×36 

Groups
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Configuration
the device, must be stored in the external host device. Figure 8–19 shows the 
configuration interface connections between the Cyclone IV devices and an external 
device for single-device configuration.

After nSTATUS is released, the device is ready to receive configuration data and the 
configuration stage begins. When nSTATUS is pulled high, the external host device 
places the configuration data one byte at a time on the DATA[7..0]pins.

Cyclone IV devices receive configuration data on the DATA[7..0] pins and the clock is 
received on the DCLK pin. Data is latched into the device on the rising edge of DCLK. 
Data is continuously clocked into the target device until CONF_DONE goes high. The 
CONF_DONE pin goes high one byte early in FPP configuration mode. The last byte is 
required for serial configuration (AS and PS) modes. 

1 Two DCLK falling edges are required after CONF_DONE goes high to begin initialization 
of the device.

Supplying a clock on CLKUSR does not affect the configuration process. After the 
CONF_DONE pin goes high, CLKUSR is enabled after the time specified as tCD2CU. After 
this time period elapses, Cyclone IV devices require 3,192 clock cycles to initialize 
properly and enter user mode. For more information about the supported CLKUSR fMAX 
value for Cyclone IV devices, refer to Table 8–13 on page 8–44. 

The INIT_DONE pin is released and pulled high when initialization is complete. The 
external host device must be able to detect this low-to-high transition, which signals 
the device has entered user mode. When initialization is complete, the device enters 
user mode. In user mode, the user I/O pins no longer have weak pull-up resistors and 
function as assigned in your design.

Figure 8–19. Single-Device FPP Configuration Using an External Host

Notes to Figure 8–19:
(1) Connect the pull-up resistor to a supply that provides an acceptable input signal for the device. VCC must be high 

enough to meet the VIH specification of the I/O on the device and the external host.
(2) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(3) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, 

refer to Table 8–4 on page 8–8 and Table 8–5 on page 8–9. Connect the MSEL pins directly to VCCA or GND.
(4) All I/O inputs must maintain a maximum AC voltage of 4.1 V. DATA[7..0] and DCLK must fit the maximum overshoot 

outlined in Equation 8–1 on page 8–5.

External Host
(MAX II Device or
Microprocessor)

Memory

ADDR
Cyclone IV Device

nSTATUS
CONF_DONE

10 k

nCE nCEO

DATA[7..0]

GND

VCCIO(1) VCCIO(1)

10 k
MSEL[3..0] 

N.C. (2)

DATA[7..0] (4)
nCONFIG
DCLK (4)

(3)
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Configuration
JTAG instructions have precedence over any other configuration modes. Therefore, 
JTAG configuration can take place without waiting for other configuration modes to 
complete. For example, if you attempt JTAG configuration in Cyclone IV devices 
during PS configuration, PS configuration terminates and JTAG configuration begins. 
If the MSEL pins are set to AS mode, the Cyclone IV device does not output a DCLK 
signal when JTAG configuration takes place.

The four required pins for a device operating in JTAG mode are TDI, TDO, TMS, and TCK. 
All the JTAG input pins are powered by the VCCIO pin and support the LVTTL I/O 
standard only. All user I/O pins are tri-stated during JTAG configuration. Table 8–14 
explains the function of each JTAG pin.

You can download data to the device through the USB-Blaster, MasterBlaster, 
ByteBlaster II, or ByteBlasterMV download cable, or the EthernetBlaster 
communications cable during JTAG configuration. Configuring devices with a cable is 
similar to programming devices in-system. Figure 8–23 and Figure 8–24 show the 
JTAG configuration of a single Cyclone IV device. 

Table 8–14. Dedicated JTAG Pins 

Pin Name Pin Type Description

TDI
Test data 
input

Serial input pin for instructions as well as test and programming data. Data shifts in on the 
rising edge of TCK. If the JTAG interface is not required on the board, the JTAG circuitry is 
disabled by connecting this pin to VCC. TDI pin has weak internal pull-up resistors (typically 25 
k).

TDO
Test data 
output

Serial data output pin for instructions as well as test and programming data. Data shifts out on 
the falling edge of TCK. The pin is tri-stated if data is not being shifted out of the device. If the 
JTAG interface is not required on the board, the JTAG circuitry is disabled by leaving this pin 
unconnected.

TMS
Test mode 
select

Input pin that provides the control signal to determine the transitions of the TAP controller 
state machine. Transitions in the state machine occur on the rising edge of TCK. Therefore, 
TMS must be set up before the rising edge of TCK. TMS is evaluated on the rising edge of TCK. 
If the JTAG interface is not required on the board, the JTAG circuitry is disabled by connecting 
this pin to VCC. TMS pin has weak internal pull-up resistors (typically 25 k).

TCK
Test clock 
input

The clock input to the BST circuitry. Some operations occur at the rising edge, while others 
occur at the falling edge. If the JTAG interface is not required on the board, the JTAG circuitry 
is disabled by connecting this pin to GND. The TCK pin has an internal weak pull-down resistor.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Transmitter Output Buffer
Figure 1–11 shows the transmitter output buffer block diagram.

The Cyclone IV GX transmitter output buffers support the 1.5-V PCML I/O standard 
and are powered by VCCH_GXB power pins with 2.5-V supply. The 2.5-V supply on 
VCCH_GXB pins are regulated internally to 1.5-V for the transmitter output buffers. The 
transmitter output buffers support the following additional features:

■ Programmable differential output voltage (VOD)—customizes the VOD up to 
1200 mV to handle different trace lengths, various backplanes, and various 
receiver requirements.

■ Programmable pre-emphasis—boosts high-frequency components in the 
transmitted signal to maximize the data eye opening at the far-end. The 
high-frequency components might be attenuated in the transmission media due to 
data-dependent jitter and intersymbol interference (ISI) effects. The requirement 
for pre-emphasis increases as the data rates through legacy backplanes increase.

■ Programmable differential on-chip termination (OCT)—provides calibrated OCT 
at differential 100  or 150 with on-chip transmitter common mode voltage 
(VCM) at 0.65 V. VCM is tri-stated when you disable the OCT to use external 
termination.

1 Disable OCT to use external termination if the link requires a 85  termination, such 
as when you are interfacing with certain PCIe Gen1 or Gen2 capable devices. 

f The Cyclone IV GX transmitter output buffers are current-mode drivers. The resulting 
VOD voltage is therefore a function of the transmitter termination value. For lists of 
supported VOD settings, refer to the Cyclone IV Device Data Sheet.

Figure 1–11. Transmitter Output Buffer Block Diagram

Note to Figure 1–11:

(1) Receiver detect function is specific for PCIe protocol implementation only. For more information, refer to “PCI 
Express (PIPE) Mode” on page 1–52.

GXB_TXp

GXB_TXn

Programmable
Pre-emphasis

and VOD
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50 or 75 
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http://www.altera.com/literature/hb/cyclone-iv/cyiv-53001.pdf
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Receiver Channel Datapath
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In a DC-coupled link, the transmitter DC common mode voltage is seen unblocked at 
the receiver input buffer as shown in Figure 1–13. The link common mode voltage 
depends on the transmitter common mode voltage and the receiver common mode 
voltage. When using the receiver OCT and on-chip biasing circuitry in a DC coupled 
link, you must ensure the transmitter common mode voltage is compatible with the 
receiver common mode requirements. If you disable the OCT, you must terminate and 
bias the receiver externally and ensure compatibility between the transmitter and the 
receiver common mode voltage. 

Figure 1–14 shows the receiver input buffer block diagram.

The receiver input buffers support the following features:

Figure 1–13. DC-Coupled Link with OCT

Figure 1–14. Receiver Input Buffer Block Diagram
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Byte Deserializer
The byte deserializer halves the FPGA fabric-transceiver interface frequency while 
doubles the parallel data width to the FPGA fabric. 

For example, when operating an EP4CGX150 receiver channel at 3.125 Gbps with 
deserialization factor of 10, the receiver PCS datapath runs at 312.5 MHz. The byte 
deserializer converts the 10-bit data at 312.5 MHz into 20-bit data at 156.25 MHz 
before forwarding the data to the FPGA fabric.

Byte Ordering
In the 16- or 20-bit FPGA fabric-transceiver interface, the byte deserializer receives 
one data byte (8 or 10 bits) and deserializes it into two data bytes (16 or 20 bits). 
Depending on when the receiver PCS logic comes out of reset, the byte ordering at the 
output of the byte deserializer may not match the original byte ordering of the 
transmitted data. The byte misalignment resulting from byte deserialization is 
unpredictable because it depends on which byte is being received by the byte 
deserializer when it comes out of reset.

Figure 1–23 shows a scenario where the most significant byte and the least significant 
byte of the two-byte transmitter data appears straddled across two word boundaries 
after the data is deserialized at the receiver.

The byte ordering block restores the proper byte ordering by performing the 
following actions:

■ Look for the user-programmed byte ordering pattern in the byte-deserialized data

■ Inserts a user-programmed pad byte if the user-programmed byte ordering 
pattern is found in the most significant byte position

You must select a byte ordering pattern that you know appears at the least significant 
byte position of the parallel transmitter data.

The byte ordering block is supported in the following receiver configurations:

■ 16-bit FPGA fabric-transceiver interface, 8B/10B disabled, and the word aligner in 
manual alignment mode. Program a custom 8-bit byte ordering pattern and 8-bit 
pad byte.

■ 16-bit FPGA fabric-transceiver interface, 8B/10B enabled, and the word aligner in 
automatic synchronization state machine mode. Program a custom 9-bit byte 
ordering pattern and 9-bit pad byte. The MSB of the 9-bit byte ordering pattern 
and pad byte represents the control identifier of the 8B/10B decoded data.

Figure 1–23. Example of Byte Deserializer at the Receiver

Byte
Serializer

Byte
Deserializer

Transmitter Receiver

D2

D1

tx_datain[15..8]

tx_datain[7..0]

rx_dataout[15..8]

rx_dataout[7..0]

D2

D1

D2
xx D1 D2 D3 D4 D5 D6 xx

D1

D1

xx

D3

D2

D5

D4

xx

D6



1–62 Chapter 1: Cyclone IV Transceivers Architecture
Transceiver Functional Modes

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

Figure 1–57 shows an example of even numbers of /Dx.y/ between the last 
automatically sent /K28.5/ and the first user-sent /K28.5/. The first user-sent 
/K28.5/ code group received at an odd code group boundary in cycle n + 3 takes the 
receiver synchronization state machine in Loss-of-Sync state. The first 
synchronization ordered-set /K28.5/Dx.y/ in cycles n + 3 and n + 4 is discounted and 
three additional ordered sets are required for successful synchronization.

Running Disparity Preservation with Idle Ordered Set
During idle ordered sets transmission in GIGE mode, the transmitter ensures a 
negative running disparity at the end of an idle ordered set. Any /Dx.y/, except for 
/D21.5/ (part of /C1/ ordered set) or /D2.2/ (part of /C2/ ordered set) following a 
/K28.5/ is automatically replaced with either of the following:

■ A /D5.6/ (/I1/ ordered set) if the running disparity before /K28.5/ is positive

■ A /D16.2/ (/I2/ ordered set) if the running disparity before /K28.5/ is negative

Lane Synchronization
In GIGE mode, the word aligner is configured in automatic synchronization state 
machine mode that complies with the IEEE P802.3ae standard. A synchronization 
ordered set is a /K28.5/ code group followed by an odd number of valid /Dx.y/ code 
groups. Table 1–19 lists the synchronization state machine parameters that 
implements the GbE-compliant synchronization.

Figure 1–57. Example of Reset Condition in GIGE Mode

tx_digitalreset

clock

n n + 1 n + 2 n + 3 n + 4

tx_dataout K28.5 xxx K28.5 K28.5 Dx.y Dx.y K28.5 Dx.yK28.5 K28.5 Dx.y K28.5 Dx.y

Table 1–19. Synchronization State Machine Parameters (1)

Parameter Value

Number of valid synchronization ordered sets received to achieve 
synchronization 3

Number of erroneous code groups received to lose synchronization 4

Number of continuous good code groups received to reduce the error count by 
one 4

Note to Table 1–19:

(1) The word aligner supports 7-bit and 10-bit pattern lengths in GIGE mode.
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Document Revision History
Table 1–30 lists the revision history for this chapter.

Table 1–30. Document Revision History

Date Version Changes

February 2015 3.7

■ Updated the GiGE row in Table 1–14.

■ Updated the “GIGE Mode” section.

■ Updated the note in the “Clock Frequency Compensation” section. 

October 2013 3.6 Updated Figure 1–15 and Table 1–4.

May 2013 3.5 Updated Table 1–27 by setting “rx_locktodata” and “rx_locktorefclk” to “Input”

October 2012 3.4

■ Updated the data rate for the V-by-one protocol and the F324 package support in 
HD-SDI in Table 1–1.

■ Updated note (1) to Figure 1–27.

■ Added latency information to Figure 1–67.

November 2011 3.3
■ Updated “Word Aligner” and “Basic Mode” sections.

■ Updated Figure 1–37.

December 2010 3.2

■ Updated for the Quartus II software version 10.1 release.

■ Updated Table 1–1, Table 1–5, Table 1–11, Table 1–14, Table 1–24, Table 1–25, 
Table 1–26, Table 1–27, Table 1–28, and Table 1–29.

■ Updated “8B/10B Encoder”, “Transmitter Output Buffer”, “Receiver Input Buffer”, 
“Clock Data Recovery”, “Miscellaneous Transmitter PCS Features”, “Miscellaneous 
Receiver PCS Feature”, “Input Reference Clocking”, “PCI Express (PIPE) Mode”, 
“Channel Deskewing”, “Lane Synchronization”, “Serial Loopback”, and “Self Test 
Modes” sections.

■ Added Figure 1–9, Figure 1–10, Figure 1–19, Figure 1–20, and Figure 1–43.

■ Updated Figure 1–53, Figure 1–55, Figure 1–59, Figure 1–60, Figure 1–69, 
Figure 1–70, Figure 1–71, Figure 1–72, Figure 1–73, and Figure 1–74.

November 2010 3.1 Updated Introductory information.

July 2010 3.0

■ Updated information for the Quartus II software version 10.0 release.

■ Reset control, power down, and dynamic reconfiguration information moved to 
new Cyclone IV Reset Control and Power Down and Cyclone IV Dynamic 
Reconfiguration chapters.
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Clocking/Interface Options

The following describes the Clocking/Interface options available in Cyclone IV GX 
devices. The core clocking setup describes the transceiver core clocks that are the 
write and read clocks of the Transmit Phase Compensation FIFO and the Receive 
Phase Compensation FIFO, respectively. Core clocking is classified as transmitter core 
clocking and receiver core clocking. 

Table 3–6 lists the supported clocking interface settings for channel reconfiguration 
mode in Cyclone IV GX devices. 

Transmitter core clocking refers to the clock that is used to write the parallel data from 
the FPGA fabric into the Transmit Phase Compensation FIFO. You can use one of the 
following clocks to write into the Transmit Phase Compensation FIFO:

■ tx_coreclk—you can use a clock of the same frequency as tx_clkout from the 
FPGA fabric to provide the write clock to the Transmit Phase Compensation FIFO. 
If you use tx_coreclk, it overrides the tx_clkout options in the ALTGX 
MegaWizard Plug-In Manager.

■ tx_clkout—the Quartus II software automatically routes tx_clkout to the FPGA 
fabric and back into the Transmit Phase Compensation FIFO. 

Table 3–6. Dynamic Reconfiguration Clocking Interface Settings in Channel Reconfiguration 
Mode

ALTGX Setting Description

Dynamic Reconfiguration Channel Internal and Interface Settings

How should the receivers be 
clocked?

Select one of the available options:

■ Share a single transmitter core clock between receivers

■ Use the respective channel transmitter core clocks

■ Use the respective channel receiver core clocks

How should the transmitters be 
clocked?

Select one of the available options:

■ Share a single transmitter core clock between transmitters

■ Use the respective channel transmitter core clocks



Chapter 3: Cyclone IV Dynamic Reconfiguration 3–29
Dynamic Reconfiguration Modes

November 2011 Altera Corporation Cyclone IV Device Handbook,
Volume 2

Option 1: Share a Single Transmitter Core Clock Between Transmitters

■ Enable this option if you want tx_clkout of the first channel (channel 0) of the 
transceiver block to provide the write clock to the Transmitter Phase 
Compensation FIFOs of the remaining channels in the transceiver block.

■ This option is typically enabled when all the channels of a transceiver block have 
the same functional mode and data rate and are reconfigured to the identical 
functional mode and data rate.

Figure 3–11 shows the sharing of channel 0’s tx_clkout between all four regular 
channels of a transceiver block.

Figure 3–11. Option 1 for Transmitter Core Clocking (Channel Reconfiguration Mode)
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Table 1–26 lists the embedded multiplier specifications for Cyclone IV devices.

Memory Block Specifications
Table 1–27 lists the M9K memory block specifications for Cyclone IV devices.

Configuration and JTAG Specifications
Table 1–28 lists the configuration mode specifications for Cyclone IV devices.

Table 1–26. Embedded Multiplier Specifications for Cyclone IV Devices

Mode
Resources Used Performance

Unit
Number of Multipliers C6 C7, I7, A7 C8 C8L, I8L C9L

9 × 9-bit multiplier 1 340 300 260 240 175 MHz

18 × 18-bit multiplier 1 287 250 200 185 135 MHz

Table 1–27. Memory Block Performance Specifications for Cyclone IV Devices

Memory Mode

Resources Used Performance

Unit
LEs M9K 

Memory C6 C7, I7, A7 C8 C8L, I8L C9L

M9K Block

FIFO 256 × 36 47 1 315 274 238 200 157 MHz

Single-port 256 × 36 0 1 315 274 238 200 157 MHz

Simple dual-port 256 × 36 CLK 0 1 315 274 238 200 157 MHz

True dual port 512 × 18 single CLK 0 1 315 274 238 200 157 MHz

Table 1–28. Passive Configuration Mode Specifications for Cyclone IV Devices (1)

Programming Mode VCCINT Voltage Level (V) DCLK fMAX Unit

Passive Serial (PS)
1.0 (3) 66 MHz

1.2 133 MHz

Fast Passive Parallel (FPP) (2)
1.0 (3) 66 MHz

1.2 (4) 100 MHz

Notes to Table 1–28:

(1) For more information about PS and FPP configuration timing parameters, refer to the Configuration and Remote 
System Upgrades in Cyclone IV Devices chapter.

(2) FPP configuration mode supports all Cyclone IV E devices (except for E144 package devices) and EP4CGX50, 
EP4CGX75, EP4CGX110, and EP4CGX150 only.

(3) VCCINT = 1.0 V is only supported for Cyclone IV E 1.0 V core voltage devices.
(4) Cyclone IV E devices support 1.2 V VCCINT. Cyclone IV E 1.2 V core voltage devices support 133 MHz DCLK fMAX for 

EP4CE6, EP4CE10, EP4CE15, EP4CE22, EP4CE30, and EP4CE40 only.
Cyclone IV Device Handbook, December 2016 Altera Corporation
Volume 3
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1 ms

pported at the 

d at the output 

 C8, I7, and A7 

Unit
Max

Unit
x

5 MHz

5 MHz

5 MHz

5 MHz

5 MHz

MHz

Mbps

Mbps

Mbps

Mbps

Mbps

Mbps

%

ps

ps

ps

ps
tLOCK 
(3) — — — 1 — — 1 — — 1 — — 1 — —

Notes to Table 1–31:

(1) Applicable for true RSDS and emulated RSDS_E_3R transmitter.
(2) Cyclone IV E devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated RSDS transmitter is su

output pin of all I/O Banks.
Cyclone IV GX devices—true RSDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated RSDS transmitter is supporte
pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.

(3) tLOCK is the time required for the PLL to lock from the end-of-device configuration.
(4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7,

speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–31. RSDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) (Part 2 of 2)

Symbol Modes
C6 C7, I7 C8, A7 C8L, I8L C9L

Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 1 of 2)

Symbol Modes
C6 C7, I7 C8, A7 C8L, I8L C9L

Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Ma

fHSCLK (input 
clock 
frequency)

×10 5 — 85 5 — 85 5 — 85 5 — 85 5 — 72.

×8 5 — 85 5 — 85 5 — 85 5 — 85 5 — 72.

×7 5 — 85 5 — 85 5 — 85 5 — 85 5 — 72.

×4 5 — 85 5 — 85 5 — 85 5 — 85 5 — 72.

×2 5 — 85 5 — 85 5 — 85 5 — 85 5 — 72.

×1 5 — 170 5 — 170 5 — 170 5 — 170 5 — 145

Device 
operation in 
Mbps

×10 100 — 170 100 — 170 100 — 170 100 — 170 100 — 145

×8 80 — 170 80 — 170 80 — 170 80 — 170 80 — 145

×7 70 — 170 70 — 170 70 — 170 70 — 170 70 — 145

×4 40 — 170 40 — 170 40 — 170 40 — 170 40 — 145

×2 20 — 170 20 — 170 20 — 170 20 — 170 20 — 145

×1 10 — 170 10 — 170 10 — 170 10 — 170 10 — 145

tDUTY — 45 — 55 45 — 55 45 — 55 45 — 55 45 — 55

TCCS — — — 200 — — 200 — — 200 — — 200 — — 200

Output jitter
(peak to peak) — — — 500 — — 500 — — 550 — — 600 — — 700

tRISE

20 – 80%,

CLOAD = 
5 pF

— 500 — — 500 — — 500 — — 500 — — 500 —

tFALL

20 – 80%,

CLOAD = 
5 pF

— 500 — — 500 — — 500 — — 500 — — 500 —
December 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 3
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Glossary
V

VCM(DC) DC common mode input voltage.

VDIF(AC) AC differential input voltage: The minimum AC input differential voltage required for switching.

VDIF(DC) DC differential input voltage: The minimum DC input differential voltage required for switching.

VICM Input common mode voltage: The common mode of the differential signal at the receiver.

VID
Input differential voltage swing: The difference in voltage between the positive and 
complementary conductors of a differential transmission at the receiver.

VIH
Voltage input high: The minimum positive voltage applied to the input that is accepted by the 
device as a logic high.

VIH(AC) High-level AC input voltage.

VIH(DC) High-level DC input voltage. 

VIL
Voltage input low: The maximum positive voltage applied to the input that is accepted by the 
device as a logic low.

VIL (AC) Low-level AC input voltage. 

VIL (DC) Low-level DC input voltage. 

VIN DC input voltage.

VOCM Output common mode voltage: The common mode of the differential signal at the transmitter.

VOD
Output differential voltage swing: The difference in voltage between the positive and 
complementary conductors of a differential transmission at the transmitter. VOD = VOH – VOL.

VOH
Voltage output high: The maximum positive voltage from an output that the device considers is 
accepted as the minimum positive high level.

VOL
Voltage output low: The maximum positive voltage from an output that the device considers is 
accepted as the maximum positive low level.

VOS Output offset voltage: VOS = (VOH + VOL) / 2.

VOX (AC)
AC differential output cross point voltage: the voltage at which the differential output signals 
must cross. 

VREF Reference voltage for the SSTL and HSTL I/O standards. 

VREF (AC)
AC input reference voltage for the SSTL and HSTL I/O standards. VREF(AC) = VREF(DC) + noise. The 
peak-to-peak AC noise on VREF must not exceed 2% of VREF(DC).

VREF (DC) DC input reference voltage for the SSTL and HSTL I/O standards.

VSWING (AC)
AC differential input voltage: AC input differential voltage required for switching. For the SSTL 
differential I/O standard, refer to Input Waveforms.

VSWING (DC)
DC differential input voltage: DC input differential voltage required for switching. For the SSTL 
differential I/O standard, refer to Input Waveforms.

VTT Termination voltage for the SSTL and HSTL I/O standards.

VX (AC)
AC differential input cross point voltage: The voltage at which the differential input signals must 
cross. 

W — —

X — —

Y — —

Z — —
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