#### Intel - EP4CE10F17C6 Datasheet





Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                  |
|--------------------------------|---------------------------------------------------------|
| Number of LABs/CLBs            | 645                                                     |
| Number of Logic Elements/Cells | 10320                                                   |
| Total RAM Bits                 | 423936                                                  |
| Number of I/O                  | 179                                                     |
| Number of Gates                | -                                                       |
| Voltage - Supply               | 1.15V ~ 1.25V                                           |
| Mounting Type                  | Surface Mount                                           |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                         |
| Package / Case                 | 256-LBGA                                                |
| Supplier Device Package        | 256-FBGA (17x17)                                        |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/ep4ce10f17c6 |
|                                |                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1–1 shows the structure of the Cyclone IV GX transceiver.





For more information, refer to the *Cyclone IV Transceivers Architecture* chapter.

## Hard IP for PCI Express (Cyclone IV GX Devices Only)

Cyclone IV GX devices incorporate a single hard IP block for ×1, ×2, or ×4 PCIe (PIPE) in each device. This hard IP block is a complete PCIe (PIPE) protocol solution that implements the PHY-MAC layer, Data Link Layer, and Transaction Layer functionality. The hard IP for the PCIe (PIPE) block supports root-port and end-point configurations. This pre-verified hard IP block reduces risk, design time, timing closure, and verification. You can configure the block with the Quartus II software's PCI Express Compiler, which guides you through the process step by step.



For more information, refer to the PCI Express Compiler User Guide.

### **Address Clock Enable Support**

Cyclone IV devices M9K memory blocks support an active-low address clock enable, which holds the previous address value for as long as the addressstall signal is high (addressstall = '1'). When you configure M9K memory blocks in dual-port mode, each port has its own independent address clock enable.

Figure 3–2 shows an address clock enable block diagram. The address register output feeds back to its input using a multiplexer. The multiplexer output is selected by the address clock enable (addressstall) signal.



 $\label{eq:Figure 3-2. Cyclone IV Devices Address Clock Enable Block Diagram$ 

The address clock enable is typically used to improve the effectiveness of cache memory applications during a cache-miss. The default value for the address clock enable signals is low.

Figure 3–12 shows the Cyclone IV devices M9K memory block in shift register mode.





### **ROM Mode**

Cyclone IV devices M9K memory blocks support ROM mode. A **.mif** initializes the ROM contents of these blocks. The address lines of the ROM are registered. The outputs can be registered or unregistered. The ROM read operation is identical to the read operation in the single-port RAM configuration.

### **FIFO Buffer Mode**

Cyclone IV devices M9K memory blocks support single-clock or dual-clock FIFO buffers. Dual clock FIFO buffers are useful when transferring data from one clock domain to another clock domain. Cyclone IV devices M9K memory blocks do not support simultaneous read and write from an empty FIFO buffer.

**\*** For more information about FIFO buffers, refer to the *Single- and Dual-Clock FIFO Megafunction User Guide.* 

# **Document Revision History**

Table 5–14 lists the revision history for this chapter.

| Table 5–14. Document Revision Hi |
|----------------------------------|
|----------------------------------|

| Date             | Version | Changes                                                                                                                               |
|------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------|
| October 2012 2.4 |         | <ul> <li>Updated "Manual Override" and "PLL Cascading" sections.</li> </ul>                                                           |
|                  | 2.4     | ■ Updated Figure 5–9.                                                                                                                 |
| November 2011    | 0.3     | <ul> <li>Updated the "Dynamic Phase Shifting" section.</li> </ul>                                                                     |
|                  | 2.3     | ■ Updated Figure 5–26.                                                                                                                |
|                  |         | <ul> <li>Updated for the Quartus II software version 10.1 release.</li> </ul>                                                         |
|                  |         | ■ Updated Figure 5–3 and Figure 5–10.                                                                                                 |
| December 2010    | 2.2     | <ul> <li>Updated "GCLK Network Clock Source Generation", "PLLs in Cyclone IV Devices",<br/>and "Manual Override" sections.</li> </ul> |
|                  |         | <ul> <li>Minor text edits.</li> </ul>                                                                                                 |
|                  |         | ■ Updated Figure 5–2, Figure 5–3, Figure 5–4, and Figure 5–10.                                                                        |
| July 2010 2.1    |         | ■ Updated Table 5–1, Table 5–2, and Table 5–5.                                                                                        |
|                  |         | <ul> <li>Updated "Clock Feedback Modes" section.</li> </ul>                                                                           |
|                  |         | <ul> <li>Added Cyclone IV E devices information for the Quartus II software version 9.1 SP1<br/>release.</li> </ul>                   |
|                  |         | <ul> <li>Updated "Clock Networks" section.</li> </ul>                                                                                 |
| February 2010    | 2.0     | ■ Updated Table 5–1 and Table 5–2.                                                                                                    |
|                  |         | Added Table 5–3.                                                                                                                      |
|                  |         | ■ Updated Figure 5–2, Figure 5–3, and Figure 5–9.                                                                                     |
|                  |         | ■ Added Figure 5–4 and Figure 5–10.                                                                                                   |
| November 2009    | 1.0     | Initial release.                                                                                                                      |

For more information about Cyclone IV PLL, refer to the Clock Networks and PLLs in Cyclone IV Devices chapter.

# **Document Revision History**

Table 7–3 lists the revision history for this chapter.

| able 7–3. Document Revision History |         |                                                                                                                     |  |  |
|-------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------|--|--|
| Date                                | Version | Changes                                                                                                             |  |  |
|                                     |         | <ul> <li>Updated Table 7–1 to remove support for the N148 package.</li> </ul>                                       |  |  |
| March 2016                          | 2.6     | ■ Updated note (1) in Figure 7–2 to remove support for the N148 package.                                            |  |  |
|                                     |         | <ul> <li>Updated Figure 7-4 to remove support for the N148 package.</li> </ul>                                      |  |  |
| May 2013                            | 2.5     | Updated Table 7–2 to add new device options and packages.                                                           |  |  |
| February 2013                       | 2.4     | Updated Table 7–2 to add new device options and packages.                                                           |  |  |
| October 2012                        | 2.3     | Updated Table 7–1 and Table 7–2.                                                                                    |  |  |
|                                     |         | <ul> <li>Updated for the Quartus II software version 10.1 release.</li> </ul>                                       |  |  |
| December 2010                       | 2.2     | <ul> <li>Added Cyclone IV E new device package information.</li> </ul>                                              |  |  |
| December 2010                       |         | ■ Updated Table 7–2.                                                                                                |  |  |
|                                     |         | <ul> <li>Minor text edits.</li> </ul>                                                                               |  |  |
| November 2010                       | 2.1     | Updated "Data and Data Clock/Strobe Pins" section.                                                                  |  |  |
|                                     |         | <ul> <li>Added Cyclone IV E devices information for the Quartus II software version 9.1 SP1<br/>release.</li> </ul> |  |  |
| February 2010                       | 2.0     | ■ Updated Table 7–1.                                                                                                |  |  |
| -                                   |         | ■ Added Table 7–2.                                                                                                  |  |  |
|                                     |         | ■ Added Figure 7–5 and Figure 7–6.                                                                                  |  |  |

Та

November 2009

1.0

Initial release.

You can use the Quartus II software with the APU and the appropriate configuration device programming adapter to program serial configuration devices. All serial configuration devices are offered in an 8- or 16-pin small outline integrated circuit (SOIC) package.

In production environments, serial configuration devices are programmed using multiple methods. Altera programming hardware or other third-party programming hardware is used to program blank serial configuration devices before they are mounted onto PCBs. Alternatively, you can use an on-board microprocessor to program the serial configuration device in-system by porting the reference C-based SRunner software driver provided by Altera.

A serial configuration device is programmed in-system by an external microprocessor with the SRunner software driver. The SRunner software driver is a software driver developed for embedded serial configuration device programming, which is easily customized to fit in different embedded systems. The SRunner software driver is able to read a Raw Programming Data (**.rpd**) file and write to serial configuration devices. The serial configuration device programming time, using the SRunner software driver, is comparable to the programming time with the Quartus II software.



### **AP Configuration (Supported Flash Memories)**

The AP configuration scheme is only supported in Cyclone IV E devices. In the AP configuration scheme, Cyclone IV E devices are configured using commodity 16-bit parallel flash memory. These external non-volatile configuration devices are industry standard microprocessor flash memories. The flash memories provide a fast interface to access configuration data. The speed up in configuration time is mainly due to the 16-bit wide parallel data bus, which is used to retrieve data from the flash memory.

Some of the smaller Cyclone IV E devices or package options do not support the AP configuration scheme. Table 8–9 lists the supported AP configuration scheme for each Cyclone IV E devices.

 Table 8–9.
 Supported AP Configuration Scheme for Cyclone IV E Devices

| Device   | Package Options |      |      |      |      |              |              |              |              |
|----------|-----------------|------|------|------|------|--------------|--------------|--------------|--------------|
| Device   | E144            | M164 | M256 | U256 | F256 | F324         | U484         | F484         | F780         |
| EP4CE6   | —               | —    | —    | —    | —    | —            | —            | —            | —            |
| EP4CE10  | _               | _    |      |      |      | _            | _            | _            | _            |
| EP4CE15  | —               | —    | —    | —    | —    | —            | —            | ~            | —            |
| EP4CE22  | —               | —    | —    | _    | —    | —            | —            | —            | —            |
| EP4CE30  | —               | —    | —    | _    | _    | $\checkmark$ | —            | ~            | $\checkmark$ |
| EP4CE40  | —               | —    | —    | _    | _    | $\checkmark$ | $\checkmark$ | ~            | $\checkmark$ |
| EP4CE55  | —               | —    | —    | —    | —    | —            | ~            | ~            | ~            |
| EP4CE75  | _               | _    | _    | _    | _    | _            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| EP4CE115 |                 |      |      |      |      | _            | _            | ~            | ~            |

You can use a download cable to configure multiple Cyclone IV device configuration pins. nCONFIG, nSTATUS, DCLK, DATA[0], and CONF\_DONE are connected to every device in the chain. All devices in the chain utilize and enter user mode at the same time because all CONF DONE pins are tied together.

In addition, the entire chain halts configuration if any device detects an error because the nSTATUS pins are tied together. Figure 8–18 shows the PS configuration for multiple Cyclone IV devices using a MasterBlaster, USB-Blaster, ByteBlaster II, or ByteBlasterMV cable.





#### Notes to Figure 8-18:

- (1) You must connect the pull-up resistor to the same supply voltage as the  $V_{CCA}$  supply.
- (2) The pull-up resistors on DATA[0] and DCLK are only required if the download cable is the only configuration scheme used on your board. This ensures that DATA[0] and DCLK are not left floating after configuration. For example, if you also use a configuration device, the pull-up resistors on DATA[0] and DCLK are not required.
- (3) Pin 6 of the header is a V<sub>I0</sub> reference voltage for the MasterBlaster output driver. V<sub>I0</sub> must match the V<sub>CCA</sub> of the device. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*. When using the ByteBlasterMV download cable, this pin is a no connect. When using USB-Blaster, ByteBlaster II, and EthernetBlaster cables, this pin is connected to nCE when it is used for AS programming. Otherwise, it is a no connect.
- (4) Connect the pull-up resistor to the  $V_{CCIO}$  supply voltage of the I/O bank in which the nCE pin resides.
- (5) The nCEO pin of the last device in the chain is left unconnected or used as a user I/O pin.
- (6) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect MSEL for PS configuration schemes, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to V<sub>CCA</sub> or GND.
- (7) Power up the V<sub>CC</sub> of the ByteBlaster II, USB-Blaster, or ByteBlasterMV cable with a 2.5 V supply from V<sub>CCA</sub>. Third-party programmers must switch to 2.5 V. Pin 4 of the header is a V<sub>CC</sub> power supply for the MasterBlaster cable. The MasterBlaster cable can receive power from either 5.0- or 3.3-V circuit boards, DC power supply, or 5.0 V from the USB cable. For this value, refer to the MasterBlaster Serial/USB Communications Cable User Guide.

JTAG instructions have precedence over any other configuration modes. Therefore, JTAG configuration can take place without waiting for other configuration modes to complete. For example, if you attempt JTAG configuration in Cyclone IV devices during PS configuration, PS configuration terminates and JTAG configuration begins. If the MSEL pins are set to AS mode, the Cyclone IV device does not output a DCLK signal when JTAG configuration takes place.

The four required pins for a device operating in JTAG mode are TDI, TDO, TMS, and TCK. All the JTAG input pins are powered by the  $V_{CCIO}$  pin and support the LVTTL I/O standard only. All user I/O pins are tri-stated during JTAG configuration. Table 8-14 explains the function of each JTAG pin.

**Pin Name Pin Type** Description Serial input pin for instructions as well as test and programming data. Data shifts in on the Test data rising edge of TCK. If the JTAG interface is not required on the board, the JTAG circuitry is TDI disabled by connecting this pin to  $V_{CC}$ . TDI pin has weak internal pull-up resistors (typically 25 input kΩ). Serial data output pin for instructions as well as test and programming data. Data shifts out on Test data the falling edge of TCK. The pin is tri-stated if data is not being shifted out of the device. If the TDO output JTAG interface is not required on the board, the JTAG circuitry is disabled by leaving this pin unconnected. Input pin that provides the control signal to determine the transitions of the TAP controller state machine. Transitions in the state machine occur on the rising edge of TCK. Therefore, Test mode TMS must be set up before the rising edge of TCK. TMS is evaluated on the rising edge of TCK. TMS select If the JTAG interface is not required on the board, the JTAG circuitry is disabled by connecting this pin to  $V_{CC}$ . TMS pin has weak internal pull-up resistors (typically 25 k $\Omega$ ). The clock input to the BST circuitry. Some operations occur at the rising edge, while others Test clock occur at the falling edge. If the JTAG interface is not required on the board, the JTAG circuitry TCK input

Table 8–14. Dedicated JTAG Pins

You can download data to the device through the USB-Blaster, MasterBlaster, ByteBlaster II, or ByteBlasterMV download cable, or the EthernetBlaster communications cable during JTAG configuration. Configuring devices with a cable is similar to programming devices in-system. Figure 8-23 and Figure 8-24 show the JTAG configuration of a single Cyclone IV device.

is disabled by connecting this pin to GND. The TCK pin has an internal weak pull-down resistor.

| Pin Name                  | User Mode                                           | Configuration<br>Scheme | Pin Type                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|-----------------------------------------------------|-------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONF_DONE                 | N/A                                                 | All                     | Bidirectional<br>open-drain | <ul> <li>Status output—the target Cyclone IV device drives the CONF_DONE pin low before and during configuration. After all the configuration data is received without error and the initialization cycle starts, the target device releases CONF_DONE.</li> <li>Status input—after all the data is received and CONF_DONE goes high, the target device initializes and enters user mode. The CONF_DONE pin must have an</li> </ul>                                                    |
|                           |                                                     |                         |                             | external 10-kΩ pull-up resistor in order for the device to initialize.<br>Driving CONF_DONE low after configuration and initialization does not affect the configured device. Do not connect hus                                                                                                                                                                                                                                                                                       |
|                           |                                                     |                         |                             | holds or ADC to CONF_DONE pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nCE                       | N/A                                                 | All                     | Input                       | Active-low chip enable. The nCE pin activates the Cyclone IV device with a low signal to allow configuration. You must hold nCE pin low during configuration, initialization, and user-mode. In a single-device configuration, you must tie the nCE pin low. In a multi-device configuration, nCE of the first device is tied low while its nCEO pin is connected to nCE of the next device in the chain. You must hold the nCE pin low for successful JTAG programming of the device. |
| nCEO                      | N/A if<br>option is on.<br>I/O if option<br>is off. | All                     | Output<br>open-drain        | Output that drives low when configuration is complete. In a single-device configuration, you can leave this pin floating or use it as a user I/O pin after configuration. In a multi-device configuration, this pin feeds the $nCE$ pin of the next device. The $nCEO$ of the last device in the chain is left floating or used as a user I/O pin after configuration.                                                                                                                 |
|                           |                                                     |                         |                             | If you use the nCEO pin to feed the nCE pin of the next device, use an external 10-k $\Omega$ pull-up resistor to pull the nCEO pin high to the V <sub>CCIO</sub> voltage of its I/O bank to help the internal weak pull-up resistor.                                                                                                                                                                                                                                                  |
|                           |                                                     |                         |                             | If you use the nCEO pin as a user I/O pin after configuration, set the state of the pin on the <b>Dual-Purpose Pin</b> settings.                                                                                                                                                                                                                                                                                                                                                       |
| nCSO,<br>FLASH_nCE<br>(1) |                                                     | AS, AP (2)              | Output                      | Output control signal from the Cyclone IV device to the serial configuration device in AS mode that enables the configuration device. This pin functions as nCSO in AS mode and FLASH_nCE in AP mode.                                                                                                                                                                                                                                                                                  |
|                           | I/O                                                 |                         |                             | Output control signal from the Cyclone IV device to the parallel flash in AP mode that enables the flash. Connects to the $CE\#$ pin on the Micron P30 or P33 flash. <sup>(2)</sup>                                                                                                                                                                                                                                                                                                    |
|                           |                                                     |                         |                             | This pin has an internal pull-up resistor that is always active.                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Table 8-20 | . Dedicated | Configuration | Pins on th | ne Cyclone | IV Device | (Part 2 of 4) |
|------------|-------------|---------------|------------|------------|-----------|---------------|
|------------|-------------|---------------|------------|------------|-----------|---------------|

The hard IP block supports 1, 2, or 4 initial lane configurations with a maximum payload of 256 bytes at Gen1 frequency. The application interface is 64 bits with a data width of 16 bits per channel running at up to 125 MHz. As a hard macro and a verified block, it uses very few FPGA resources, while significantly reducing design risk and the time required to achieve timing closure. It is compliant with the PCI Express Base Specification 1.1. You do not have to pay a licensing fee to use this module. Configuring the hard IP block requires using the PCI Express Compiler.



For more information about the hard IP block, refer to the *PCI Express Compiler User Guide*.

Figure 1–43 shows the lane placement requirements when implementing PCIe with hard IP block.



Figure 1–43. PCIe with Hard IP Block Lane Placement Requirements (1)

#### Note to Figure 1-43:

(1) Applicable for PCle ×1, ×2, and ×4 implementations with hard IP blocks only.

PCIe Lane 0

## **Transceiver Functional Modes**

The Cyclone IV GX transceiver supports the functional modes as listed in Table 1–14 for protocol implementation.

| Functional Mode       | Protocol                                      | Key Feature                                                                                                                                                                                                     | Reference                                 |
|-----------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Basic                 | Proprietary, SATA, V-<br>by-One, Display Port | Low latency PCS, transmitter in electrical idle, signal detect at receiver, wider spread asynchronous SSC                                                                                                       | "Basic Mode" on<br>page 1–48              |
| PCI Express<br>(PIPE) | PCIe Gen1 with PIPE<br>Interface              | PIPE ports, receiver detect, transmitter in electrical<br>idle, electrical idle inference, signal detect at receiver,<br>fast recovery, protocol-compliant word aligner and<br>rate match FIFO, synchronous SSC | "PCI Express (PIPE)<br>Mode" on page 1–52 |
| GIGE                  | GbE                                           | Running disparity preservation, protocol-compliant<br>word aligner, recovered clock port for applications<br>such as Synchronous Ethernet                                                                       | "GIGE Mode" on<br>page 1–59               |
| Serial RapidIO        | SRIO                                          | Protocol-compliant word aligner                                                                                                                                                                                 | "Serial RapidIO Mode"<br>on page 1–64     |
| XAUI                  | XAUI                                          | Deskew FIFO, protocol-compliant word aligner and rate match FIFO                                                                                                                                                | "XAUI Mode" on<br>page 1–67               |

Table 1–14. Transceiver Functional Modes for Protocol Implementation (Part 1 of 2)

### **Clock Frequency Compensation**

In GIGE mode, the rate match FIFO compensates up to  $\pm 100$  ppm (200 ppm total) difference between the upstream transmitter and the local receiver reference clock. The GIGE protocol requires the transmitter to send idle ordered sets /I1/ (/K28.5/D5.6/) and /I2/ (/K28.5/D16.2/) during inter-packet gaps, adhering to the rules listed in the IEEE 802.3 specification.

The rate match operation begins after the synchronization state machine in the word aligner indicates synchronization has been acquired by driving the rx\_syncstatus signal high. The rate match FIFO deletes or inserts both symbols of the /I2/ ordered sets (/K28.5/ and /D16.2/) to prevent the rate match FIFO from overflowing or underflowing. It can insert or delete as many /I2/ ordered sets as necessary to perform the rate match operation.

If you have the auto-negotiation state machine in the FPGA, note that the rate match FIFO is capable of inserting or deleting the first two bytes (/K28.5//D2.2/) of /C2/ ordered sets during auto-negotiation. However, the insertion or deletion of the first two bytes of /C2/ ordered sets can cause the auto-negotiation link to fail. For more information, refer to the Altera Knowledge Base Support Solution.

The status flags rx\_rmfifodatadeleted and rx\_rmfifodatainserted to indicate rate match FIFO deletion and insertion events, respectively, are forwarded to the FPGA fabric. These two flags are asserted for two clock cycles for each deleted and inserted /I2/ ordered set.

Figure 1–58 shows an example of rate match FIFO deletion where three symbols must be deleted. Because the rate match FIFO can only delete /I2/ ordered sets, it deletes two /I2/ ordered sets (four symbols deleted).



#### Figure 1–58. Example of Rate Match FIFO Deletion in GIGE Mode

Figure 1–72 shows the two paths in reverse serial loopback mode.

Figure 1–72. Reverse Serial Loopback <sup>(1)</sup>



Notes to Figure 1-72:

- (1) Grayed-Out Blocks are Not Active in this mode.
- (2) Post-CDR reverse serial loopback path.
- (3) Pre-CDR reverse serial loopback path.

## **Self Test Modes**

Each transceiver channel in the Cyclone IV GX device contains modules for pattern generator and verifier. Using these built-in features, you can verify the functionality of the functional blocks in the transceiver channel without requiring user logic. The self test functionality is provided as an optional mechanism for debugging transceiver channels.

There are three types of supported pattern generators and verifiers:

- Built-in self test (BIST) incremental data generator and verifier—test the complete transmitter PCS and receiver PCS datapaths for bit errors with parallel loopback before the PMA blocks.
- Pseudo-random binary sequence (PRBS) generator and verifier—the PRBS generator and verifier interface with the serializer and deserializer in the PMA blocks. The advantage of using a PRBS data stream is that the randomness yields an environment that stresses the transmission medium. In the data stream, you can observe both random jitter and deterministic jitter using a time interval analyzer, bit error rate tester, or oscilloscope.
- High frequency and low frequency pattern generator—the high frequency patterns generate alternate ones and zeros and the low frequency patterns generate five ones and five zeroes. These patterns do not have a corresponding verifier.

The self-test features are only supported in Basic mode.

### **All Supported Functional Modes Except the PCIe Functional Mode**

This section describes reset sequences for transceiver channels in bonded and non-bonded configurations. Timing diagrams of some typical configurations are shown to facilitate proper reset sequence implementation. In these functional modes, you can set the receiver CDR either in automatic lock or manual lock mode.

In manual lock mode, the receiver CDR locks to the reference clock (lock-to-reference) or the incoming serial data (lock-to-data), depending on the logic levels on the rx\_locktorefclk and rx\_locktodata signals. With the receiver CDR in manual lock mode, you can either configure the transceiver channels in the Cyclone IV GX device in a non-bonded configuration or a bonded configuration. In a bonded configuration, for example in XAUI mode, four channels are bonded together.

Table 2–4 lists the lock-to-reference (LTR) and lock-to-data (LTD) controller lock modes for the rx\_locktorefclk and rx\_locktodata signals.

| rx_locktorefclk | rx_locktodata | LTR/LTD Controller Lock Mode |
|-----------------|---------------|------------------------------|
| 1               | 0             | Manual, LTR Mode             |
| —               | 1             | Manual, LTD Mode             |
| 0               | 0             | Automatic Lock Mode          |

Table 2–4. Lock-To-Reference and Lock-To-Data Modes

### **Bonded Channel Configuration**

In a bonded channel configuration, you can reset all the bonded channels simultaneously. Examples of bonded channel configurations are the XAUI, PCIe Gen1 ×2 and ×4, and Basic ×2 and ×4 functional modes. In Basic ×2 and ×4 functional mode, you can bond **Transmitter Only** channels together.

In XAUI mode, the receiver and transmitter channels are bonded. Each of the receiver channels in this mode has its own rx\_freqlocked output status signals. You must consider the timing of these signals in the reset sequence.

Table 2–5 lists the reset and power-down sequences for bonded configurations under the stated functional modes.

| Table 2–5. | Reset and | Power-Down | Sequences 1 | for Bonded | Channel | Configurations |
|------------|-----------|------------|-------------|------------|---------|----------------|
|------------|-----------|------------|-------------|------------|---------|----------------|

| Channel Set Up           | Receiver CDR Mode                               | Refer to                                                                              |  |  |
|--------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Transmitter Only         | Basic ×2 and ×4                                 | "Transmitter Only Channel" on page 2–7                                                |  |  |
| Receiver and Transmitter | Automatic lock mode for XAUI<br>functional mode | "Receiver and Transmitter Channel—Receiver<br>CDR in Automatic Lock Mode" on page 2–8 |  |  |
| Receiver and Transmitter | Manual lock mode for XAUI functional mode       | "Receiver and Transmitter Channel—Receiver<br>CDR in Manual Lock Mode" on page 2–9    |  |  |

In PCIe mode simulation, you must assert the tx\_forceelecidle signal for at least one parallel clock cycle before transmitting normal data for correct simulation behavior.

## **Reference Information**

For more information about some useful reference terms used in this chapter, refer to the links listed in Table 2–7.

| Terms Used in this Chapter              | Useful Reference Points |
|-----------------------------------------|-------------------------|
| Automatic Lock Mode                     | page 2–8                |
| Bonded channel configuration            | page 2–6                |
| busy                                    | page 2–3                |
| Dynamic Reconfiguration Reset Sequences | page 2–19               |
| gxb_powerdown                           | page 2–3                |
| LTD                                     | page 2–6                |
| LTR                                     | page 2–6                |
| Manual Lock Mode                        | page 2–9                |
| Non-Bonded channel configuration        | page 2–10               |
| PCIe                                    | page 2–17               |
| pll_locked                              | page 2–3                |
| pll_areset                              | page 2–3                |
| rx_analogreset                          | page 2–2                |
| rx_digitalreset                         | page 2–2                |
| rx_freqlocked                           | page 2–3                |
| tx_digitalreset                         | page 2–2                |

#### Table 2–7. Reference Information

#### **Option 3: Use the Respective Channel Receiver Core Clocks**

- Enable this option if you want the individual channel's rx\_clkout signal to provide the read clock to its respective Receive Phase Compensation FIFO.
- This option is typically enabled when the channel is reconfigured from a Basic or Protocol configuration with or without rate matching to another Basic or Protocol configuration with or without rate matching.

Figure 3–15 shows the respective rx\_clkout of each channel clocking the respective receiver channels of a transceiver block.





### **PLL Reconfiguration Mode**

Cyclone IV GX device support the PLL reconfiguration support through the ALTPLL\_RECONFIG MegaWizard. You can use this mode to reconfigure the multipurpose PLL or general purpose PLL used to clock the transceiver channel without affecting the remaining blocks of the channel. When you reconfigure the multipurpose PLL or general purpose PLL of a transceiver block to run at a different data rate, all the transceiver channels listening to this multipurpose PLL or general purpose PLL also get reconfigure the multipurpose PLL or general purpose PLL also get reconfigure the multipurpose PLL or general purpose to the new data rate. Channel settings are not affected. When you reconfigure the multipurpose PLL or general purpose PLL to support a different data rate, you must ensure that the functional mode of the transceiver channel supports the reconfigured data rate.

The PLL reconfiguration mode can be enabled by selecting the **Enable PLL Reconfiguration** option in the ALTGX MegaWizard under **Reconfiguration Setting** tab. For multipurpose PLL or general purpose PLL reconfiguration, **.mif** files are required to dynamically reconfigure the PLL setting in order to change the output frequency of the transceiver PLL to support different data rates.

| Chapter Revision Dates  |        |
|-------------------------|--------|
| Additional Information  |        |
| How to Contact Altera   | Info-1 |
| Typographic Conventions | Info-2 |

## Section I. Device Datasheet

### Chapter 1. Cyclone IV Device Datasheet

| Operating Conditions                              | 1–1  |
|---------------------------------------------------|------|
| Absolute Maximum Ratings                          | 1–2  |
| Maximum Allowed Overshoot or Undershoot Voltage   | 1–2  |
| Recommended Operating Conditions                  | 1–4  |
| ESD Performance                                   | 1–6  |
| DC Characteristics                                | 1–7  |
| Supply Current                                    | 1–7  |
| Bus Hold                                          | 1–7  |
| OCT Specifications                                | 1–8  |
| Pin Capacitance                                   | 1–10 |
| Internal Weak Pull-Up and Weak Pull-Down Resistor | 1–11 |
| Hot-Socketing                                     | 1–11 |
| Schmitt Trigger Input                             | 1–12 |
| I/O Standard Specifications                       | 1–12 |
| Power Consumption                                 | 1–16 |
| Switching Characteristics                         | 1–16 |
| Transceiver Performance Specifications            | 1–17 |
| Core Performance Specifications                   | 1–23 |
| Clock Tree Specifications                         | 1–23 |
| PLL Specifications                                | 1–24 |
| Embedded Multiplier Specifications                | 1–26 |
| Memory Block Specifications                       | 1–26 |
| Configuration and JTAG Specifications             | 1–26 |
| Periphery Performance                             | 1–27 |
| High-Speed I/O Specifications                     | 1–28 |
| External Memory Interface Specifications          | 1–32 |
| Duty Cycle Distortion Specifications              | 1–33 |
| OCT Calibration Timing Specification              | 1–33 |
| IOE Programmable Delay                            | 1–34 |
| I/O Timing                                        | 1–37 |
| Glossary                                          | 1–37 |
| Document Revision History                         | 1–42 |

# **1. Cyclone IV Device Datasheet**

This chapter describes the electrical and switching characteristics for Cyclone<sup>®</sup> IV devices. Electrical characteristics include operating conditions and power consumption. Switching characteristics include transceiver specifications, core, and periphery performance. This chapter also describes I/O timing, including programmable I/O element (IOE) delay and programmable output buffer delay.

This chapter includes the following sections:

- "Operating Conditions" on page 1–1
- "Power Consumption" on page 1–16
- "Switching Characteristics" on page 1–16
- "I/O Timing" on page 1–37
- "Glossary" on page 1–37

## **Operating Conditions**

When Cyclone IV devices are implemented in a system, they are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of Cyclone IV devices, you must consider the operating requirements described in this chapter.

Cyclone IV devices are offered in commercial, industrial, extended industrial and, automotive grades. Cyclone IV E devices offer –6 (fastest), –7, –8, –8L, and –9L speed grades for commercial devices, –8L speed grades for industrial devices, and –7 speed grade for extended industrial and automotive devices. Cyclone IV GX devices offer –6 (fastest), –7, and –8 speed grades for commercial devices and –7 speed grade for industrial devices.



• For more information about the supported speed grades for respective Cyclone IV devices, refer to the *Cyclone IV FPGA Device Family Overview* chapter.

Cyclone IV E devices are offered in core voltages of 1.0 and 1.2 V. Cyclone IV E devices with a core voltage of 1.0 V have an 'L' prefix attached to the speed grade.

In this chapter, a prefix associated with the operating temperature range is attached to the speed grades; commercial with a "C" prefix, industrial with an "I" prefix, and automotive with an "A" prefix. Therefore, commercial devices are indicated as C6, C7, C8, C8L, or C9L per respective speed grade. Industrial devices are indicated as I7, I8, or I8L. Automotive devices are indicated as A7.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein exceept as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.





Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX devices.

| Table 1-44. | IOE Programmable Dela | y on Column Pins for C | yclone IV GX Devices <sup>(1), (2)</sup> |
|-------------|-----------------------|------------------------|------------------------------------------|
|-------------|-----------------------|------------------------|------------------------------------------|

| Parameter                                                             | Paths<br>Affected                 | Number<br>of<br>Settings | Min<br>Offset | Max Offset  |       |             |       |       |       |      |
|-----------------------------------------------------------------------|-----------------------------------|--------------------------|---------------|-------------|-------|-------------|-------|-------|-------|------|
|                                                                       |                                   |                          |               | Fast Corner |       | Slow Corner |       |       |       | Unit |
|                                                                       |                                   |                          |               | C6          | 17    | C6          | C7    | C8    | 17    |      |
| Input delay from pin to internal cells                                | Pad to I/O<br>dataout to<br>core  | 7                        | 0             | 1.313       | 1.209 | 2.184       | 2.336 | 2.451 | 2.387 | ns   |
| Input delay from pin to<br>input register                             | Pad to I/O<br>input register      | 8                        | 0             | 1.312       | 1.208 | 2.200       | 2.399 | 2.554 | 2.446 | ns   |
| Delay from output<br>register to output pin                           | I/O output<br>register to<br>pad  | 2                        | 0             | 0.438       | 0.404 | 0.751       | 0.825 | 0.886 | 0.839 | ns   |
| Input delay from<br>dual-purpose clock pin<br>to fan-out destinations | Pad to global<br>clock<br>network | 12                       | 0             | 0.713       | 0.682 | 1.228       | 1.41  | 1.566 | 1.424 | ns   |

Notes to Table 1-44:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

| Parameter                                                             | Paths<br>Affected                | Number<br>of<br>Settings | Min<br>Offset | Max Offset  |       |             |       |       |       |      |
|-----------------------------------------------------------------------|----------------------------------|--------------------------|---------------|-------------|-------|-------------|-------|-------|-------|------|
|                                                                       |                                  |                          |               | Fast Corner |       | Slow Corner |       |       |       | Unit |
|                                                                       |                                  |                          |               | C6          | 17    | C6          | C7    | C8    | 17    |      |
| Input delay from pin to internal cells                                | Pad to I/O<br>dataout to<br>core | 7                        | 0             | 1.314       | 1.210 | 2.209       | 2.398 | 2.526 | 2.443 | ns   |
| Input delay from pin to<br>input register                             | Pad to I/O<br>input register     | 8                        | 0             | 1.313       | 1.208 | 2.205       | 2.406 | 2.563 | 2.450 | ns   |
| Delay from output<br>register to output pin                           | I/O output<br>register to<br>pad | 2                        | 0             | 0.461       | 0.421 | 0.789       | 0.869 | 0.933 | 0.884 | ns   |
| Input delay from<br>dual-purpose clock pin<br>to fan-out destinations | Pad to global<br>clock network   | 12                       | 0             | 0.712       | 0.682 | 1.225       | 1.407 | 1.562 | 1.421 | ns   |

Table 1–45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

#### Notes to Table 1-45:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software