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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.
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Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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2. Logic Elements and Logic Array Blocks
in Cyclone IV Devices
This chapter contains feature definitions for logic elements (LEs) and logic array 
blocks (LABs). Details are provided on how LEs work, how LABs contain groups of 
LEs, and how LABs interface with the other blocks in Cyclone® IV devices.

Logic Elements
Logic elements (LEs) are the smallest units of logic in the Cyclone IV device 
architecture. LEs are compact and provide advanced features with efficient logic 
usage. Each LE has the following features:

■ A four-input look-up table (LUT), which can implement any function of four 
variables

■ A programmable register

■ A carry chain connection

■ A register chain connection

■ The ability to drive the following interconnects:

■ Local

■ Row

■ Column

■ Register chain

■ Direct link

■ Register packing support

■ Register feedback support
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Chapter 3: Memory Blocks in Cyclone IV Devices 3–9
Memory Modes
Figure 3–7 shows a timing waveform for read and write operations in single-port 
mode with unregistered outputs. Registering the outputs of the RAM simply delays 
the q output by one clock cycle.

Simple Dual-Port Mode
Simple dual-port mode supports simultaneous read and write operations to different 
locations. Figure 3–8 shows the simple dual-port memory configuration.

Cyclone IV devices M9K memory blocks support mixed-width configurations, 
allowing different read and write port widths. Table 3–3 lists mixed-width 
configurations.

Figure 3–7. Cyclone IV Devices Single-Port Mode Timing Waveform

clk_a

wren_a

address_a

data_a

rden_a

q_a (old data)

a0 a1

A B C D E F

a0(old data) a1(old data)A B D E

q_a (new data) A DB C E F

Figure 3–8. Cyclone IV Devices Simple Dual-Port Memory (1)

Note to Figure 3–8:

(1) Simple dual-port RAM supports input or output clock mode in addition to the read or write clock mode shown. 

data[ ]
wraddress[ ]
wren
byteena[]
wr_addressstall
wrclock
wrclocken
aclr

rdaddress[ ]
rden

q[ ]
rd_addressstall

rdclock
rdclocken

Table 3–3.  Cyclone IV Devices M9K Block Mixed-Width Configurations (Simple Dual-Port Mode) (Part 1 of 2)

Read Port
Write Port

8192 × 1 4096 × 2 2048 × 4 1024 × 8 512 × 16 256 × 32 1024 × 9 512 × 18 256 × 36

8192 × 1 v v v v v v — — —

4096 × 2 v v v v v v — — —

2048 × 4 v v v v v v — — —

1024 × 8 v v v v v v — — —
November 2011 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–25
Clock Feedback Modes
Figure 5–14 shows a waveform example of the phase relationship of the PLL clocks in 
this mode.

Zero Delay Buffer Mode
In zero delay buffer (ZDB) mode, the external clock output pin is phase-aligned with 
the clock input pin for zero delay through the device. When using this mode, use the 
same I/O standard on the input clock and output clocks to guarantee clock alignment 
at the input and output pins. 

Figure 5–15 shows an example waveform of the phase relationship of the PLL clocks 
in ZDB mode.

Figure 5–14. Phase Relationship Between PLL Clocks in Normal Mode 

Note to Figure 5–14: 

(1) The external clock output can lead or lag the PLL internal clock signals.

PLL Reference
Clock at the Input pin

PLL Clock at the
Register Clock Port

External PLL Clock
Outputs (1)

Phase Aligned

Figure 5–15. Phase Relationship Between PLL Clocks in ZDB Mode

PLL Reference Clock
 at the Input Pin

PLL Clock
at the Register Clock Port

External PLL Clock Output
at the Output Pin

Phase Aligned
October 2012 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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tool.
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6–26 Chapter 6: I/O Features in Cyclone IV Devices
High-Speed I/O Interface
You can use I/O pins and internal logic to implement a high-speed differential 
interface in Cyclone IV devices. Cyclone IV devices do not contain dedicated 
serialization or deserialization circuitry. Therefore, shift registers, internal 
phase-locked loops (PLLs), and I/O cells are used to perform serial-to-parallel 
conversions on incoming data and parallel-to-serial conversion on outgoing data. The 
differential interface data serializers and deserializers (SERDES) are automatically 
constructed in the core logic elements (LEs) with the Quartus II software ALTLVDS 
megafunction.

Table 6–7. Differential I/O Standards Supported in Cyclone IV GX I/O Banks 

Differential I/O Standards I/O Bank Location
External Resistor 

Network at 
Transmitter

Transmitter (TX) Receiver (RX)

LVDS
5,6 Not Required v v

3,4,5,6,7,8 Three Resistors

RSDS

5,6 Not Required

v —3,4,7,8 Three Resistors

3,4,5,6,7,8 Single Resistor

mini-LVDS
5,6 Not Required v —

3,4,5,6,7,8 Three Resistors

PPDS
5,6 Not Required v —

3,4,5,6,7,8 Three Resistors

BLVDS (1) 3,4,5,6,7,8 Single Resistor v v
LVPECL (2) 3,4,5,6,7,8 — — v
Differential SSTL-2 (3) 3,4,5,6,7,8 — v v
Differential SSTL-18 (3) 3,4,5,6,7,8 — v v
Differential HSTL-18 (3) 3,4,5,6,7,8 — v v
Differential HSTL-15 (3) 3,4,5,6,7,8 — v v
Differential HSTL-12 (3) 4,5,6,7,8 — v v
Notes to Table 6–7:

(1) Transmitter and Receiver fMAX depend on system topology and performance requirement.
(2) The LVPECL I/O standard is only supported on dedicated clock input pins.
(3) The differential SSTL-2, SSTL-18, HSTL-18, HSTL-15, and HSTL-12 I/O standards are only supported on clock input pins and PLL output clock 

pins. PLL output clock pins do not support Class II interface type of differential SSTL-18, HSTL-18, HSTL-15, and HSTL-12 I/O standards.
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1



Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–61
Configuration
EN_ACTIVE_CLK

The EN_ACTIVE_CLK instruction causes the CLKUSR pin signal to replace the internal 
oscillator as the clock source. When using the EN_ACTIVE_CLK instruction, you must 
enable the internal oscillator for the clock change to occur. After this instruction is 
issued, other JTAG instructions can be issued while the CLKUSR pin signal remains as 
the clock source. The clock source is only reverted back to the internal oscillator by 
issuing the DIS_ACTIVE_CLK instruction or a POR.

DIS_ACTIVE_CLK

The DIS_ACTIVE_CLK instruction breaks the CLKUSR enable latch set by the 
EN_ACTIVE_CLK instruction and causes the clock source to revert back to the internal 
oscillator. After the DIS_ACTIVE_CLK instruction is issued, you must continue to clock 
the CLKUSR pin for 10 clock cycles.

Changing the Start Boot Address of the AP Flash

In the AP configuration scheme (for Cyclone IV E devices only), you can change the 
default configuration boot address of the parallel flash memory to any desired 
address using the APFC_BOOT_ADDR JTAG instruction.

APFC_BOOT_ADDR

The APFC_BOOT_ADDR instruction is for Cyclone IV E devices only and allows you to 
define a start boot address for the parallel flash memory in the AP configuration 
scheme. 

This instruction shifts in a start boot address for the AP flash. When this instruction 
becomes the active instruction, the TDI and TDO pins are connected through a 22-bit 
active boot address shift register. The shifted-in boot address bits get loaded into the 
22-bit AP boot address update register, which feeds into the AP controller. The content 
of the AP boot address update register can be captured and shifted-out of the active 
boot address shift register from TDO. 

The boot address in the boot address shift register and update register are shifted to 
the right (in the LSB direction) by two bits versus the intended boot address. The 
reason for this is that the two LSB of the address are not accessible. When this boot 
address is fed into the AP controller, two 0s are attached in the end as LSB, thereby 
pushing the shifted-in boot address to the left by two bits, which become the actual 
AP boot address the AP controller gets.

If you have enabled the remote update feature, the APFC_BOOT_ADDR instruction sets 
the boot address for the factory configuration only.

1 The APFC_BOOT_ADDR instruction is retained after reconfiguration while the system 
board is still powered on. However, you must reprogram the instruction whenever 
you restart the system board.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Remote System Upgrade
■ External configuration reset (nCONFIG) assertion

■ User watchdog timer time out

Table 8–24 lists the contents of the current state logic in the status register, when the 
remote system upgrade master state machine is in factory configuration or 
application configuration accessing the factory information or application 
information, respectively. The status register bit in Table 8–24 lists the bit positions in 
a 32-bit logic. 

The previous two application configurations are available in the previous state 
registers (previous state register 1 and previous state register 2), but only for 
debugging purposes.

Table 8–24. Remote System Upgrade Current State Logic Contents In Status Register 

Remote System Upgrade 
Master State Machine

Status 
Register Bit Definition Description

Factory information (1)

31:30 Master state machine 
current state

The current state of the remote system upgrade 
master state machine

29:24 Reserved bits Padding bits that are set to all 0’s

23:0 Boot address
The current 24-bit boot address that was used by 
the configuration scheme as the start address to 
load the current configuration.

Application information 1 (2)

31:30 Master state machine 
current state

The current state of the remote system upgrade 
master state machine

29 User watchdog timer 
enable bit

The current state of the user watchdog enable, 
which is active high

28:0 User watchdog timer 
time-out value

The current entire 29-bit watchdog time-out 
value.

Application information 2 (2)

31:30 Master state machine 
current state

The current state of the remote system upgrade 
master state machine

29:24 Reserved bits Padding bits that are set to all 0’s

23:0 Boot address The current 24-bit boot address that was used as 
the start address to load the current configuration

Notes to Table 8–24:

(1) The remote system upgrade master state machine is in factory configuration.
(2) The remote system upgrade master state machine is in application configuration.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Document Revision History
Table 10–3 lists the revision history for this chapter.

Table 10–3. Document Revision History

Date Version Changes

December 2013 1.3 ■ Updated the “EXTEST_PULSE” section.

November 2011 1.2
■ Updated the “BST Operation Control” section.

■ Updated Table 10–2.

February 2010 1.1

■ Added Cyclone IV E devices in Table 10–1 and Table 10–2 for the Quartus II 
software version 9.1 SP1 release.

■ Updated Figure 10–1 and Figure 10–2.

■ Minor text edits.

November 2009 1.0 Initial release.
December 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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The following describes the 8B/10B encoder behavior in reset condition (as shown in 
Figure 1–7):

■ During reset, the 8B/10B encoder ignores the inputs (tx_datain and 
tx_ctrlenable ports) from the FPGA fabric and outputs the K28.5 pattern from 
the RD- column continuously until the tx_digitalreset port is deasserted. 

■ Upon deassertion of the tx_digitalreset port, the 8B/10B encoder starts with a 
negative disparity and transmits three K28.5 code groups for synchronization 
before it starts encoding and transmitting data on its output. 

■ Due to some pipelining of the transmitter PCS, some "don't cares" (10'hxxx) are 
sent before the three synchronizing K28.5 code groups.

The encoder supports forcing the running disparity to either positive or negative 
disparity with tx_forcedisp and tx_dispval ports. Figure 1–8 shows an example of 
tx_forcedisp and tx_dispval port use, where data is shown in hexadecimal radix.

In this example, a series of K28.5 code groups are continuously sent. The stream 
alternates between a positive disparity K28.5 (RD+) and a negative disparity K28.5 
(RD-) to maintain a neutral overall disparity. The current running disparity at time 
n + 1 indicates that the K28.5 in time n + 2 should be encoded with a negative 
disparity. Because tx_forcedisp is high at time n + 2, and tx_dispval is low, the K28.5 

Figure 1–7. 8B/10B Encoder Behavior in Reset Condition

Figure 1–8. Force Running Disparity Operation

tx_digitalreset

clock

During reset

dataout[9..0] K28.5- K28.5- K28.5- xxx xxx K28.5+K28.5- K28.5- Dx.y+

Don’t cares after reset Synchronization Normal
operation

tx_ctrlenable

clock

n n + 1 n + 2 n + 3 n + 4

tx_forcedisp

tx_dispval

Current Disparity RD- RD+ RD+ RD- RD- RD+RD- RD+

dataout[9..0] 17C 283 17C 17C283 283

txin[7..0] BC

n + 5 n + 6 n + 7
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Transmitter Output Buffer
Figure 1–11 shows the transmitter output buffer block diagram.

The Cyclone IV GX transmitter output buffers support the 1.5-V PCML I/O standard 
and are powered by VCCH_GXB power pins with 2.5-V supply. The 2.5-V supply on 
VCCH_GXB pins are regulated internally to 1.5-V for the transmitter output buffers. The 
transmitter output buffers support the following additional features:

■ Programmable differential output voltage (VOD)—customizes the VOD up to 
1200 mV to handle different trace lengths, various backplanes, and various 
receiver requirements.

■ Programmable pre-emphasis—boosts high-frequency components in the 
transmitted signal to maximize the data eye opening at the far-end. The 
high-frequency components might be attenuated in the transmission media due to 
data-dependent jitter and intersymbol interference (ISI) effects. The requirement 
for pre-emphasis increases as the data rates through legacy backplanes increase.

■ Programmable differential on-chip termination (OCT)—provides calibrated OCT 
at differential 100  or 150 with on-chip transmitter common mode voltage 
(VCM) at 0.65 V. VCM is tri-stated when you disable the OCT to use external 
termination.

1 Disable OCT to use external termination if the link requires a 85  termination, such 
as when you are interfacing with certain PCIe Gen1 or Gen2 capable devices. 

f The Cyclone IV GX transmitter output buffers are current-mode drivers. The resulting 
VOD voltage is therefore a function of the transmitter termination value. For lists of 
supported VOD settings, refer to the Cyclone IV Device Data Sheet.

Figure 1–11. Transmitter Output Buffer Block Diagram

Note to Figure 1–11:

(1) Receiver detect function is specific for PCIe protocol implementation only. For more information, refer to “PCI 
Express (PIPE) Mode” on page 1–52.

GXB_TXp

GXB_TXn

Programmable
Pre-emphasis

and VOD

Receiver
Detect (1)

50 or 75 

50 or 75 

+ VCM-

http://www.altera.com/literature/hb/cyclone-iv/cyiv-53001.pdf
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The calibration block internally generates a constant internal reference voltage, 
independent of PVT variations and uses this voltage and the external reference 
resistor on the RREF pin to generate constant reference currents. The OCT calibration 
circuit calibrates the OCT resistors present in the transceiver channels. Figure 1–41 
shows the calibration block diagram.

PCI-Express Hard IP Block
Figure 1–42 shows the block diagram of the PCIe hard IP block implementing the 
PHY MAC, Data Link Layer, and Transaction Layer for PCIe interfaces. The PIPE 
interface is used as the interface between the transceiver and the hard IP block. 

Figure 1–41. Input Signals to the Calibration Blocks (1)

Notes to Figure 1–41:

(1) All transceiver channels use the same calibration block clock and power down signals.
(2) Connect a 2 k (tolerance max ± 1%) external resistor to the RREF pin to ground. The RREF resistor connection in 

the board must be free from any external noise.
(3) Supports up to 125 MHz clock frequency. Use either dedicated global clock or divide-down logic from the FPGA fabric 

to generate a slow clock on the local clock routing.
(4) The calibration block restarts the calibration process following deassertion of the cal_blk_powerdown signal.

RREF pin (2)

cal_blk_clk (3)

cal_blk_powerdown (4)

OCT Calibration Control

Reference
Signal

Internal
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Voltage
Generator

OCT Calibration
Circuit

Analog Block
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Analog Block
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Figure 1–42. PCI Express Hard IP High-Level Block Diagram 
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Figure 1–59 shows an example of rate match FIFO insertion in the case where one 
symbol must be inserted. Because the rate match FIFO can only insert /I2/ ordered 
sets, it inserts one /I2/ ordered set (two symbols inserted). 

1 The rate match FIFO does not insert or delete code groups automatically to overcome 
FIFO empty or full conditions. In this case, the rate match FIFO asserts the 
rx_rmfifofull and rx_rmfifoempty flags for at least two recovered clock cycles to 
indicate rate match FIFO full and empty conditions, respectively. You must then assert 
the rx_digitalreset signal to reset the receiver PCS blocks.

Serial RapidIO Mode
Serial RapidIO mode provides the non-bonded (×1) transceiver channel datapath 
configuration for SRIO protocol implementation. The Cyclone IV GX transceiver 
provides the PMA and the following PCS functions:

■ 8B/10B encoding and decoding

■ lane synchronization state machine

1 Cyclone IV GX transceivers do not have built-in support for some PCS functions such 
as pseudo-random idle sequence generation and lane alignment in ×4 bonded 
channel configuration. If required, you must implement these functions in a user 
logics or external circuits.

The RapidIO Trade Association defines a high-performance, packet-switched 
interconnect standard to pass data and control information between microprocessors, 
digital signals, communications, network processes, system memories, and peripheral 
devices. The SRIO physical layer specification defines serial protocol running at 
1.25 Gbps, 2.5 Gbps, and 3.125 Gbps in either single-lane (×1) or bonded four-lane (×4) 
at each line rate. Cyclone IV GX transceivers support single-lane (×1) configuration at 
all three line rates. Four ×1 channels configured in Serial RapidIO mode can be 
instantiated to achieve one non-bonded ×4 SRIO link. When implementing four ×1 
SRIO channels, the receivers do not have lane alignment or deskew capability. 

Figure 1–59. Example of Rate Match FIFO Insertion in GIGE Mode

First /I2/
Ordered Set

Second /I2/
Ordered Set

rx_rmfifodatainserted

dataout K28.5Dx.y

Dx.y

K28.5 D16.2

K28.5 D16.2

K28.5D16.2 D16.2 Dx.y

datain K28.5 D16.2
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RX PCS

rx_coreclk Output Clock signal Optional read clock port for the RX phase compensation 
FIFO.

rx_phase_comp_fifo
_error Output

Synchronous to tx_clkout 
(non-bonded modes) or 
coreclkout (bonded modes)

RX phase compensation FIFO full or empty indicator.

■ A high level indicates FIFO is either full or empty.

rx_bitslipboundarys
electout Output Asynchronous signal. 

Indicate the number of bits slipped in the word aligner 
configured in manual alignment mode.

■ Values range from 0 to 9.

RX PMA

rx_datain Input N/A Receiver serial data input port.

rx_freqlocked Output Asynchronous signal

Receiver CDR lock state indicator

■ A high level indicates the CDR is in LTD state.

■ A low level indicates the CDR is in LTR state.

rx_locktodata Input Asynchronous signal

Receiver CDR LTD state control signal

■ A high level forces the CDR to LTD state

■ When deasserted, the receiver CDR lock state 
depends on the rx_locktorefclk signal level.

rx_locktorefclk Input Asynchronous signal

Receiver CDR LTR state control signal. 

■ The rx_locktorefclk and rx_locktodata 
signals control whether the receiver CDR states as 
follows:
[rx_locktodata:rx_locktorefclk]

■ 2'b00—receiver CDR is in automatic lock mode

■ 2b'01—receiver CDR is in manual lock mode (LTR 
state)

■ 2b'1x—receiver CDR is in manual lock mode (LTD 
state)

rx_signaldetect Output Asynchronous signal

Signal threshold detect indicator.

■ Available in Basic mode when 8B/10B 
encoder/decoder is used, and in PIPE mode.

■ A high level indicates that the signal present at the 
receiver input buffer is above the programmed signal 
detection threshold value.

rx_recovclkout Output Clock signal
CDR low-speed recovered clock

■ Only available in the GIGE mode for applications such 
as Synchronous Ethernet.

Table 1–27. Receiver Ports in ALTGX Megafunction for Cyclone IV GX (Part 3 of 3)

Block Port Name Input/
Output Clock Domain Description
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User Reset and Power-Down Signals
Each transceiver channel in the Cyclone IV GX device has individual reset signals to 
reset its physical coding sublayer (PCS) and physical medium attachment (PMA). The 
transceiver block also has a power-down signal that affects the multipurpose 
phase-locked loops (PLLs), general purpose PLLs, and all the channels in the 
transceiver block.

1 All reset and power-down signals are asynchronous.

Table 2–1 lists the reset signals available for each transceiver channel. 

Table 2–1. Transceiver Channel Reset Signals 

Signal ALTGX MegaWizard Plug-In 
Manager Configurations Description

tx_digitalreset (1)

■ Transmitter Only 

■ Receiver and Transmitter 

Provides asynchronous reset to all digital logic in 
the transmitter PCS, including the XAUI transmit 
state machine. 

The minimum pulse width for this signal is two 
parallel clock cycles.

rx_digitalreset (1)

■ Receiver Only

■ Receiver and Transmitter

Resets all digital logic in the receiver PCS, 
including:

■ XAUI receiver state machines

■ GIGE receiver state machines

■ XAUI channel alignment state machine

■ BIST-PRBS verifier

■ BIST-incremental verifier

The minimum pulse width for this signal is two 
parallel clock cycles.

rx_analogreset 

■ Receiver Only

■ Receiver and Transmitter

Resets the receiver CDR present in the receiver 
channel. 

The minimum pulse width is two parallel clock 
cycles.

Note to Table 2–1:

(1) Assert this signal until the clocks coming out of the multipurpose PLL and receiver CDR are stabilized. Stable parallel clocks are essential for 
proper operation of transmitter and receiver phase-compensation FIFOs in the PCS.
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As shown in Figure 2–5, perform the following reset procedure for the receiver CDR 
in manual lock mode configuration:

1. After power up, assert pll_areset for a minimum period of 1 s (the time 
between markers 1 and 2). 

2. Keep the tx_digitalreset, rx_analogreset, rx_digitalreset, and 
rx_locktorefclk signals asserted and the rx_locktodata signal deasserted during 
this time period. After you deassert the pll_areset signal, the multipurpose PLL 
starts locking to the input reference clock.

3. After the multipurpose PLL locks, as indicated by the pll_locked signal going 
high (marker 3), deassert the tx_digitalreset signal (marker 4). For the receiver 
operation, after deassertion of the busy signal, wait for two parallel clock cycles to 
deassert the rx_analogreset signal. 

4. In a bonded channel group, wait for at least tLTR_LTD_Manual, then deassert 
rx_locktorefclk and assert rx_locktodata (marker 7). At this point, the receiver 
CDR of all the channels enters into lock-to-data mode and starts locking to the 
received data.

5. After asserting the rx_locktodata signal, wait for at least tLTD_Manual before 
deasserting rx_digitalreset (the time between markers 7 and 8). At this point, 
the transmitter and receiver are ready for data traffic.

Non-Bonded Channel Configuration 
In non-bonded channels, each channel in the ALTGX MegaWizard Plug-In Manager 
instance contains its own tx_digitalreset, rx_analogreset, rx_digitalreset, and 
rx_freqlocked signals.

You can reset each channel independently. For example, if there are four non-bonded 
channels, the ALTGX MegaWizard Plug-In Manager provides four each of the 
following signals: tx_digitalreset, rx_analogreset, rx_digitalreset, and 
rx_freqlocked.

Table 2–6 lists the reset and power-down sequences for one channel in a non-bonded 
configuration under the stated functional modes.

1 Follow the same reset sequence for all the other channels in the non-bonded 
configuration.

Table 2–6. Reset and Power-Down Sequences for Non-Bonded Channel Configurations

Channel Set Up Receiver CDR Mode Refer to

Transmitter Only Basic ×1 “Transmitter Only Channel” on page 2–11

Receiver Only Automatic lock mode “Receiver Only Channel—Receiver CDR in Automatic 
Lock Mode” on page 2–11

Receiver Only Manual lock mode “Receiver Only Channel—Receiver CDR in Manual Lock 
Mode” on page 2–12

Receiver and Transmitter Automatic lock mode “Receiver and Transmitter Channel—Receiver CDR in 
Automatic Lock Mode” on page 2–13

Receiver and Transmitter Manual lock mode “Receiver and Transmitter Channel—Receiver CDR in 
Manual Lock Mode” on page 2–14
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As shown in Figure 2–12, perform the following reset procedure when using the 
dynamic reconfiguration controller to change the configuration of the transceiver 
channel:

1. After power up and establishing that the transceiver is operating as desired, write 
the desired new value in the appropriate registers (including 
reconfig_mode_sel[2:0]) and subsequently assert the write_all signal (marker 
1) to initiate the dynamic reconfiguration. 

f For more information, refer to the Cyclone IV Dynamic Reconfiguration 
chapter. 

2. Assert the tx_digitalreset, rx_analogreset, and rx_digitalreset signals. 

3. As soon as write_all is asserted, the dynamic reconfiguration controller starts to 
execute its operation. This is indicated by the assertion of the busy signal (marker 
2). 

4. Wait for the assertion of the channel_reconfig_done signal (marker 4) that 
indicates the completion of dynamic reconfiguration in this mode.

5. Deassert the tx_digitalreset signal (marker 5). This signal must be deasserted 
after assertion of the channel_reconfig_done signal (marker 4) and before the 
deassertion of the rx_analogreset signal (marker 6).

6. Wait for at least five parallel clock cycles after assertion of the 
channel_reconfig_done signal (marker 4) to deassert the rx_analogreset signal 
(marker 6).

7. Lastly, wait for the rx_freqlocked signal to go high. After rx_freqlocked goes 
high (marker 7), wait for tLTD_Auto to deassert the rx_digitalreset signal (marker 
8). At this point, the receiver is ready for data traffic.

Power Down
The Quartus II software automatically selects the power-down channel feature, which 
takes effect when you configure the Cyclone IV GX device. All unused transceiver 
channels and blocks are powered down to reduce overall power consumption. The 
gxb_powerdown signal is an optional transceiver block signal. It powers down all 
transceiver channels and all functional blocks in the transceiver block. The minimum 
pulse width for this signal is 1 s. After power up, if you use the gxb_powerdown 
signal, wait for deassertion of the busy signal, then assert the gxb_powerdown signal for 
a minimum of 1 s. Lastly, follow the sequence shown in Figure 2–13.

http://www.altera.com/literature/hb/cyclone-iv/cyiv_52003.pdf
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Figure 3–9 shows the connection for PMA reconfiguration mode.

Transceiver Channel Reconfiguration Mode
You can dynamically reconfigure the transceiver channel from an existing functional 
mode to a different functional mode by selecting the Channel Reconfiguration option 
in ALTGX and ALTGX_RECONFIG MegaWizards. The blocks that are reconfigured 
by channel reconfiguration mode are the PCS and RX PMA blocks of a transceiver 
channel.

1 For more information about reconfiguring the RX PMA blocks of the transceiver 
channel using channel reconfiguration mode, you can refer to “Data Rate 
Reconfiguration Mode Using RX Local Divider” on page 3–26.

In channel reconfiguration, only a write transaction can occur; no read transactions 
are allowed. You can optionally choose to trigger write_all once by selecting the 
continuous write operation in the ALTGX_RECONFIG MegaWizard Plug-In 
Manager. The Quartus II software then continuously writes all the words required for 
reconfiguration.

For channel reconfiguration, .mif files are required to dynamically reconfigure the 
transceivers channels in channel reconfiguration modes. The .mif carries the 
reconfiguration information that will be used to reconfigure the transceivers channel 
dynamically on-the-fly. The .mif contents is generated automatically when you select 
the Generate GXB Reconfig MIF option in the Quartus II software setting. For 
different .mif settings, you need to later reconfigure and recompile the ALTGX 
MegaWizard to generate the .mif based on the required reconfiguration settings. 

The dynamic reconfiguration controller can optionally perform a continuos write 
operation or a regular write operation of the .mif contents in terms of word size 
(16-bit data) to the transceivers channel that is selected for reconfiguration.

Figure 3–9. ALTGX and ALTGX_RECONFIG Connection for PMA Reconfiguration Mode 

Note to Figure 3–9:

(1) This block can be reconfigured in PMA reconfiguration mode.
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TX PCS 

Analog
Reconfig
Control
Logic

TX PMA
              (1)

reconfig_clk

read

write_all

tx_vodctrl[2..0]

reconfig_togxb[3..0]

busy

tx_preemp[4..0]
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IOH 
(mA)

–8.1

–16.4

–6.7

–13.4

–8

–16

–8

–16

–8

–14
Table 1–16. Single-Ended SSTL and HSTL I/O Reference Voltage Specifications for Cyclone IV Devices (1)

I/O 
Standard

VCCIO (V) VREF (V) VTT (V) (2)

Min Typ Max Min Typ Max Min Typ Max

SSTL-2 
Class I, II 2.375 2.5 2.625 1.19 1.25 1.31 VREF – 

0.04 VREF
VREF + 
0.04

SSTL-18 
Class I, II 1.7 1.8 1.9 0.833 0.9 0.969 VREF – 

0.04 VREF
VREF + 
0.04

HSTL-18 
Class I, II 1.71 1.8 1.89 0.85 0.9 0.95 0.85 0.9 0.95

HSTL-15 
Class I, II 1.425 1.5 1.575 0.71 0.75 0.79 0.71 0.75 0.79

HSTL-12 
Class I, II 1.14 1.2 1.26

0.48 x VCCIO (3) 0.5 x VCCIO (3) 0.52 x VCCIO (3)

— 0.5 x 
VCCIO

—
0.47 x VCCIO (4) 0.5 x VCCIO (4) 0.53 x VCCIO (4)

Notes to Table 1–16:

(1) For an explanation of terms used in Table 1–16, refer to “Glossary” on page 1–37. 
(2) VTT of the transmitting device must track VREF of the receiving device.
(3) Value shown refers to DC input reference voltage, VREF(DC).
(4) Value shown refers to AC input reference voltage, VREF(AC).

Table 1–17. Single-Ended SSTL and HSTL I/O Standards Signal Specifications for Cyclone IV Devices

I/O 
Standard

VIL(DC) (V) VIH(DC) (V) VIL(AC) (V) VIH(AC) (V) VOL (V) VOH (V) IOL 
(mA)Min Max Min Max Min Max Min Max Max Min

SSTL-2 
Class I — VREF – 

0.18
VREF + 
0.18 — — VREF – 

0.35
VREF + 
0.35 — VTT – 

0.57
VTT + 
0.57 8.1

SSTL-2 
Class II — VREF – 

0.18
VREF + 
0.18 — — VREF – 

0.35
VREF + 
0.35 — VTT – 

0.76
VTT + 
0.76 16.4

SSTL-18 
Class I — VREF – 

0.125
VREF + 
0.125 — — VREF – 

0.25
VREF + 
0.25 — VTT – 

0.475
VTT + 
0.475 6.7

SSTL-18 
Class II — VREF – 

0.125
VREF + 
0.125 — — VREF – 

0.25
VREF + 
0.25 — 0.28 VCCIO – 

0.28 13.4

HSTL-18 
Class I — VREF – 

0.1
VREF + 

0.1 — — VREF – 
0.2

VREF + 
0.2 — 0.4 VCCIO – 

0.4 8

HSTL-18 
Class II — VREF – 

0.1
VREF + 

0.1 — — VREF – 
0.2

VREF + 
0.2 — 0.4 VCCIO – 

0.4 16

HSTL-15 
Class I — VREF – 

0.1
VREF + 

0.1 — — VREF – 
0.2

VREF + 
0.2 — 0.4 VCCIO – 

0.4 8

HSTL-15 
Class II — VREF – 

0.1
VREF + 

0.1 — — VREF – 
0.2

VREF + 
0.2 — 0.4 VCCIO – 

0.4 16

HSTL-12 
Class I –0.15 VREF – 

0.08
VREF + 
0.08 VCCIO + 0.15 –0.24 VREF – 

0.15
VREF + 
0.15

VCCIO + 
0.24

0.25 × 
VCCIO

0.75 × 
VCCIO

8

HSTL-12 
Class II –0.15 VREF – 

0.08
VREF + 
0.08 VCCIO + 0.15 –0.24 VREF – 

0.15
VREF + 
0.15

VCCIO + 
0.24

0.25 × 
VCCIO

0.75 × 
VCCIO

14
December 2016 Altera Corporation Cyclone IV Device Handbook,
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