Intel - EP4CE10F17C9L Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	645
Number of Logic Elements/Cells	10320
Total RAM Bits	423936
Number of I/O	179
Number of Gates	-
Voltage - Supply	0.97V ~ 1.03V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce10f17c9l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

True Dual-Port Mode	
Shift Register Mode	
ROM Mode	
FIFO Buffer Mode	
Clocking Modes	
Independent Clock Mode	
Input or Output Clock Mode	
Read or Write Clock Mode	
Single-Clock Mode	
Design Considerations	
Read-During-Write Operations	
Same-Port Read-During-Write Mode	
Mixed-Port Read-During-Write Mode	
Conflict Resolution	
Power-Up Conditions and Memory Initialization	
Power Management	
Document Revision History	

Chapter 4. Embedded Multipliers in Cyclone IV Devices

Embedded Multiplier Block Overview	4–1
Architecture	4–2
Input Registers	4–3
Multiplier Stage	4–3
Output Registers	4–4
Operational Modes	4–4
18-Bit Multipliers	4–5
9-Bit Multipliers	4–6
Document Revision History	4–7

Chapter 5. Clock Networks and PLLs in Cyclone IV Devices

Clock Networks	
GCLK Network	
Clock Control Block	
GCLK Network Clock Source Generation	
GCLK Network Power Down	
clkena Signals	
PLLs in Cyclone IV Devices	
Cyclone IV PLL Hardware Overview	
External Clock Outputs	
Clock Feedback Modes	
Source-Synchronous Mode	
No Compensation Mode	
Normal Mode	
Zero Delay Buffer Mode	
Deterministic Latency Compensation Mode	
Hardware Features	
Clock Multiplication and Division	
Post-Scale Counter Cascading	
Programmable Duty Cycle	
PLL Control Signals	
Clock Switchover	
Automatic Clock Switchover	
Manual Override	

Clock Feedback Modes

Cyclone IV PLLs support up to five different clock feedback modes. Each mode allows clock multiplication and division, phase shifting, and programmable duty cycle. For the supported feedback modes, refer to Table 5–5 on page 5–18 for Cyclone IV GX PLLs and Table 5–6 on page 5–19 for Cyclone IV E PLLs.

² Input and output delays are fully compensated by the PLL only if you are using the dedicated clock input pins associated with a given PLL as the clock sources.

When driving the PLL using the GCLK network, the input and output delays may not be fully compensated in the Quartus II software.

Source-Synchronous Mode

If the data and clock arrive at the same time at the input pins, the phase relationship between the data and clock remains the same at the data and clock ports of any I/O element input register.

Figure 5–12 shows an example waveform of the data and clock in this mode. Use this mode for source-synchronous data transfers. Data and clock signals at the I/O element experience similar buffer delays as long as the same I/O standard is used.

Source-synchronous mode compensates for delay of the clock network used, including any difference in the delay between the following two paths:

- Data pin to I/O element register input
- Clock input pin to the PLL phase frequency detector (PFD) input

Set the input pin to the register delay chain in the I/O element to zero in the Quartus II software for all data pins clocked by a source-synchronous mode PLL. Also, all data pins must use the **PLL COMPENSATED logic** option in the Quartus II software.

No Compensation Mode

In no compensation mode, the PLL does not compensate for any clock networks. This provides better jitter performance because clock feedback into the PFD does not pass through as much circuitry. Both the PLL internal and external clock outputs are phase shifted with respect to the PLL clock input.

Figure 5–13 shows a waveform example of the phase relationship of the PLL clock in this mode.

Notes to Figure 5–13:

- (1) Internal clocks fed by the PLL are phase-aligned to each other.
- (2) The PLL clock outputs can lead or lag the PLL input clocks.

Normal Mode

An internal clock in normal mode is phase-aligned to the input clock pin. The external clock output pin has a phase delay relative to the clock input pin if connected in this mode. The Quartus II software timing analyzer reports any phase difference between the two. In normal mode, the PLL fully compensates the delay introduced by the GCLK network.

Figure 5–26 shows the dynamic phase shifting waveform.

The PHASESTEP signal is latched on the negative edge of SCANCLK (a,c) and must remain asserted for at least two SCANCLK cycles. Deassert PHASESTEP after PHASEDONE goes low. On the second SCANCLK rising edge (b,d) after PHASESTEP is latched, the values of PHASEUPDOWN and PHASECOUNTERSELECT are latched and the PLL starts dynamic phase-shifting for the specified counters, and in the indicated direction. PHASEDONE is deasserted synchronous to SCANCLK at the second rising edge (b,d) and remains low until the PLL finishes dynamic phase-shifting. Depending on the VCO and SCANCLK frequencies, PHASEDONE low time may be greater than or less than one SCANCLK cycle.

You can perform another dynamic phase-shift after the PHASEDONE signal goes from low to high. Each PHASESTEP pulse enables one phase shift. PHASESTEP pulses must be at least one SCANCLK cycle apart.

For information about the ALTPLL_RECONFIG MegaWizard[™] Plug-In Manager, refer to the *ALTPLL_RECONFIG Megafunction User Guide*.

Spread-Spectrum Clocking

Cyclone IV devices can accept a spread-spectrum input with typical modulation frequencies. However, the device cannot automatically detect that the input is a spread-spectrum signal. Instead, the input signal looks like deterministic jitter at the input of the PLL. PLLs of Cyclone IV devices can track a spread-spectrum input clock as long as it is in the input jitter tolerance specifications and the modulation frequency of the input clock is below the PLL bandwidth, that is specified in the fitter report. Cyclone IV devices cannot generate spread-spectrum signals internally.

PLL Specifications

Tor information about PLL specifications, refer to the *Cyclone IV Device Datasheet* chapter.

The R_S shown in Figure 6–2 is the intrinsic impedance of the transistors that make up the I/O buffer.

Figure 6–2. Cyclone IV Devices R_s OCT with Calibration

OCT with calibration is achieved using the OCT calibration block circuitry. There is one OCT calibration block in each of I/O banks 2, 4, 5, and 7 for Cyclone IV E devices and I/O banks 4, 5, and 7 for Cyclone IV GX devices. Each calibration block supports each side of the I/O banks. Because there are two I/O banks sharing the same calibration block, both banks must have the same V_{CCIO} if both banks enable OCT calibration. If two related banks have different V_{CCIO}, only the bank in which the calibration block resides can enable OCT calibration.

Figure 6–10 on page 6–18 shows the top-level view of the OCT calibration blocks placement.

Each calibration block comes with a pair of RUP and RDN pins. When used for calibration, the RUP pin is connected to V_{CCIO} through an external 25- Ω ±1% or 50- Ω ±1% resistor for an R_S OCT value of 25 Ω or 50 Ω , respectively. The RDN pin is connected to GND through an external 25- Ω ±1% or 50- Ω ±1% resistor for an R_S OCT value of 25 Ω or 50 Ω , respectively. The RDN pin is connected to GND through an external 25- Ω ±1% or 50- Ω ±1% resistor for an R_S OCT value of 25 Ω or 50 Ω , respectively. The external resistors are compared with the internal resistance using comparators. The resultant outputs of the comparators are used by the OCT calibration block to dynamically adjust buffer impedance.

During calibration, the resistance of the RUP and RDN pins varies.

			V _{ccio} Leve	l (in V)	C	olumn I/O P	Row I/O Pins ⁽¹⁾		
I/O Standard	Туре	Standard Support	Input	Output	CLK, DQS	PLL_OUT	User I/O Pins	CLK, DQS	User I/O Pins
LVPECL (7)	Differential	_	2.5	_	\checkmark	—	_	\checkmark	—

Table 6–3. Cyclone IV Devices Supported I/O Standards and Constraints (Part 3 of 3)

Notes to Table 6-3:

(1) Cyclone IV GX devices only support right I/O pins.

(2) The PCI-clamp diode must be enabled for 3.3-V/3.0-V LVTTL/LVCMOS.

(3) The Cyclone IV architecture supports the MultiVolt I/O interface feature that allows Cyclone IV devices in all packages to interface with I/O systems that have different supply voltages.

(4) Cyclone IV GX devices do not support 1.2-V V_{CCIO} in banks 3 and 9. I/O pins in bank 9 are dual-purpose I/O pins that are used as configuration or GPIO pins. Configuration scheme is not support at 1.2 V, therefore bank 9 can not be powered up at 1.2-V V_{CCIO}.

(5) Differential HSTL and SSTL outputs use two single-ended outputs with the second output programmed as inverted. Differential HSTL and SSTL inputs treat differential inputs as two single-ended HSTL and SSTL inputs and only decode one of them. Differential HSTL and SSTL are only supported on CLK pins.

(6) PPDS, mini-LVDS, and RSDS are only supported on output pins.

- (7) LVPECL is only supported on clock inputs.
- (8) Bus LVDS (BLVDS) output uses two single-ended outputs with the second output programmed as inverted. BLVDS input uses LVDS input buffer.
- (9) 1.2-V HSTL input is supported at both column and row I/Os regardless of Class I or Class II.
- (10) True LVDS, RSDS, and mini-LVDS I/O standards are supported in left and right I/O pins, while emulated LVDS, RSDS, and mini-LVDS I/O standards are supported in the top, bottom, and right I/O pins.

Cyclone IV devices support PCI and PCI-X I/O standards at 3.0-V V_{CCIO}. The 3.0-V PCI and PCI-X I/O are fully compatible for direct interfacing with 3.3-V PCI systems without requiring any additional components. The 3.0-V PCI and PCI-X outputs meet the V_{IH} and V_{IL} requirements of 3.3-V PCI and PCI-X inputs with sufficient noise margin.

For more information about the 3.3/3.0/2.5-V LVTTL & LVCMOS multivolt I/O support, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

Termination Scheme for I/O Standards

This section describes recommended termination schemes for voltage-referenced and differential I/O standards.

The 3.3-V LVTTL, 3.0-V LVTTL and LVCMOS, 2.5-V LVTTL and LVCMOS, 1.8-V LVTTL and LVCMOS, 1.5-V LVCMOS, 1.2-V LVCMOS, 3.0-V PCI, and PCI-X I/O standards do not specify a recommended termination scheme per the JEDEC standard

Figure 6–11. Cyclone IV GX I/O Banks for EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 ^{(1), (2), (9)}

Notes to Figure 6–11:

- (1) This is a top view of the silicon die. For exact pin locations, refer to the pin list and the Quartus II software.
- (2) True differential (PPDS, LVDS, mini-LVDS, and RSDS I/O standards) outputs are supported in row I/O banks 5 and 6 only. External resistors are needed for the differential outputs in column I/O banks.
- (3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
- (4) The HSTL-12 Class II is supported in column I/O banks 4, 7, and 8.
- (5) The differential SSTL-18 and SSTL-2, differential HSTL-18, and HSTL-15 I/O standards are supported only on clock input pins and phase-locked loops (PLLs) output clock pins. PLL output clock pins do not support Class II interface type of differential SSTL-18, HSTL-18, HSTL-15, and HSTL-12 I/O standards.
- (6) The differential HSTL-12 I/O standard is only supported on clock input pins and PLL output clock pins. Differential HSTL-12 Class II is supported only in column I/O banks 4, 7, and 8.
- (7) BLVDS output uses two single-ended outputs with the second output programmed as inverted. BLVDS input uses the LVDS input buffer.
- (8) The PCI-X I/O standard does not meet the IV curve requirement at the linear region.
- (9) The OCT block is located in the shaded banks 4, 5, and 7.
- (10) The dedicated clock input I/O banks 3A, 3B, 8A, and 8B can be used either for HSSI input reference clock pins or clock input pins.
- (11) Single-ended clock input support is available for dedicated clock input I/O banks 3B and 8B.

March 2016

Altera Corporation

Each Cyclone IV I/O bank has a VREF bus to accommodate voltage-referenced I/O standards. Each VREF pin is the reference source for its V_{REF} group. If you use a V_{REF} group for voltage-referenced I/O standards, connect the VREF pin for that group to the appropriate voltage level. If you do not use all the V_{REF} groups in the I/O bank for voltage-referenced I/O standards, you can use the VREF pin in the unused voltage-referenced groups as regular I/O pins. For example, if you have SSTL-2 Class I input pins in I/O bank 1 and they are all placed in the VREFB1N[0] group, VREFB1N[0] must be powered with 1.25 V, and the remaining VREFB1N[1..3] pins (if available) are used as I/O pins. If multiple V_{REF} groups are used in the same I/O bank, the VREF pins must all be powered by the same voltage level because the VREF pins are shorted together within the same I/O bank.

- When VREF pins are used as regular I/Os, they have higher pin capacitance than regular user I/O pins. This has an impact on the timing if the pins are used as inputs and outputs.
- **For more information about VREF pin capacitance**, refer to the pin capacitance section in the *Cyclone IV Device Datasheet* chapter.
- For information about how to identify V_{REF} groups, refer to the Cyclone IV Device Pin-Out files or the Quartus II Pin Planner tool.

Table 6–4 and Table 6–5 summarize the number of VREF pins in each I/O bank for the Cyclone IV device family.

Table 6-4. Number of VREF Pins Per I/O Bank for Cyclone IV E Devices (Part 1 of 2)

Device		EP4CE6			EP4CE10				EDADE1E	E146E13				EP4CE22			EP4CE30				Er46E40			EP4CE55			EP4CE75		ED APE11E	EL46E113
i/0 Bank (1)	144-EQPF	256-UBGA	256-FBGA	144-EQPF	256-UBGA	256-FBGA	144-EQPF	164-MBGA	256-MBGA	256-UBGA	256-FBGA	484-FBGA	144-EQPF	256-UBGA	256-FBGA	324-FBGA	484-FBGA	780-FBGA	324-FBGA	484-UBGA	484-FBGA	780-FBGA	484-UBGA	484-FBGA	780-FBGA	484-UBGA	484-FBGA	780-FBGA	484-FBGA	780-FBGA
1	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
2	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
3	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
4	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
5	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
6	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
7	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3

In Cyclone IV devices, the DM pins are preassigned in the device pinouts. The Quartus II Fitter treats the DQ and DM pins in a DQS group equally for placement purposes. The preassigned DQ and DM pins are the preferred pins to use.

Some DDR2 SDRAM and DDR SDRAM devices support error correction coding (ECC), a method of detecting and automatically correcting errors in data transmission. In 72-bit DDR2 or DDR SDRAM, there are eight ECC pins and 64 data pins. Connect the DDR2 and DDR SDRAM ECC pins to a separate DQS or DQ group in Cyclone IV devices. The memory controller needs additional logic to encode and decode the ECC data.

Address and Control/Command Pins

The address signals and the control or command signals are typically sent at a single data rate. You can use any of the user I/O pins on all I/O banks of Cyclone IV devices to generate the address and control or command signals to the memory device.

Cyclone IV devices do not support QDR II SRAM in the burst length of two.

Memory Clock Pins

In DDR2 and DDR SDRAM memory interfaces, the memory clock signals (CK and CK#) are used to capture the address signals and the control or command signals. Similarly, QDR II SRAM devices use the write clocks (K and K#) to capture the address and command signals. The CK/CK# and K/K# signals are generated to resemble the write-data strobe using the DDIO registers in Cyclone IV devices.

CK/CK# pins must be placed on differential I/O pins (DIFFIO in Pin Planner) and in the same bank or on the same side as the data pins. You can use either side of the device for wraparound interfaces. As seen in the Pin Planner Pad View, CK0 cannot be located in the same row and column pad group as any of the interfacing DQ pins.

Cyclone IV Devices Memory Interfaces Features

This section discusses Cyclone IV memory interfaces, including DDR input registers, DDR output registers, OCT, and phase-lock loops (PLLs).

DDR Input Registers

The DDR input registers are implemented with three internal logic element (LE) registers for every DQ pin. These LE registers are located in the logic array block (LAB) adjacent to the DDR input pin.

- External configuration reset (nCONFIG) assertion
- User watchdog timer time out

Table 8–24 lists the contents of the current state logic in the status register, when the remote system upgrade master state machine is in factory configuration or application configuration accessing the factory information or application information, respectively. The status register bit in Table 8–24 lists the bit positions in a 32-bit logic.

Remote System Upgrade Master State Machine	Status Register Bit	Definition	Description
	31:30	Master state machine current state	The current state of the remote system upgrade master state machine
Factory information (1)	29:24	Reserved bits	Padding bits that are set to all 0's
	23:0	Boot address	The current 24-bit boot address that was used by the configuration scheme as the start address to load the current configuration.
	31:30	Master state machine current state	The current state of the remote system upgrade master state machine
Application information 1 ⁽²⁾	29	User watchdog timer enable bit	The current state of the user watchdog enable, which is active high
	28:0	User watchdog timer time-out value	The current entire 29-bit watchdog time-out value.
	31:30	Master state machine current state	The current state of the remote system upgrade master state machine
Application information 2 ⁽²⁾	29:24	Reserved bits	Padding bits that are set to all 0's
	23:0	Boot address	The current 24-bit boot address that was used as the start address to load the current configuration

Table 8-24.	Remote S	vstem Upgrade	Current State L	oaic Contents I	n Status Regis	ster
		Jotom opgrado		ogio contonto i	n etatae negi	

Notes to Table 8-24:

(1) The remote system upgrade master state machine is in factory configuration.

(2) The remote system upgrade master state machine is in application configuration.

The previous two application configurations are available in the previous state registers (previous state register 1 and previous state register 2), but only for debugging purposes.

For example, when operating an EP4CGX150 transmitter channel at 3.125 Gbps without byte serializer, the FPGA fabric frequency is 312.5 MHz (3.125 Gbps/10). This implementation violates the frequency limit and is not supported. Channel operation at 3.125 Gbps is supported when byte serializer is used, where the FPGA fabric frequency is 156.25 MHz (3.125 Gbps/20).

The byte serializer forwards the least significant byte first, followed by the most significant byte.

8B/10B Encoder

The optional 8B/10B encoder generates 10-bit code groups with proper disparity from the 8-bit data and 1-bit control identifier as shown in Figure 1–5.

The encoder is compliant with Clause 36 of the *IEEE 802.3 Specification*.

Figure 1–5. 8B/10B Encoder Block Diagram

The 1-bit control identifier (tx_ctrlenable) port controls the 8-bit translation to either a 10-bit data word (Dx.y) or a 10-bit control word (Kx.y). Figure 1–6 shows the 8B/10B encoding operation with the tx_ctrlenable port, where the second 8'hBC data is encoded as a control word when tx_ctrlenable port is asserted, while the rest of the data is encoded as a data word.

The IEEE 802.3 8B/10B encoder specification identifies only a set of 8-bit characters for which the tx_ctrlenable port should be asserted. If you assert tx_ctrlenable port for any other set of characters, the 8B/10B encoder might encode the output 10-bit code as an invalid code (it does not map to a valid Dx.y or Kx.y code), or an unintended valid Dx.y code, depending on the value entered. It is possible for a downstream 8B/10B decoder to decode an invalid control word into a valid Dx.y code without asserting any code error flags. Altera recommends not to assert tx ctrlenable port for unsupported 8-bit characters.

synchronization state machine mode. In bit-slip mode, you can dynamically enable the receiver bit reversal using the rx_revbitorderwa port. When enabled, the 8-bit or 10-bit data D[7..0] or D[9..0] at the output of the word aligner is rewired to D[0..7] or D[0..9] respectively. Figure 1–20 shows the receiver bit reversal feature.

Note to Figure 1-20:

(1) The rx_revbitordwa port is dynamic and is only available when the word aligner is configured in bit-slip mode.

- When using the receiver bit reversal feature to receive MSB-to-LSB transmission, reversal of the word alignment pattern is required.
- Receiver bit-slip indicator—provides the number of bits slipped in the word aligner for synchronization with rx_bitslipboundaryselectout signal. For usage details, refer to "Receive Bit-Slip Indication" on page 1–76.

Deskew FIF0

This module is only available when used for the XAUI protocol and is used to align all four channels to meet the maximum skew requirement of 40 UI (12.8 ns) as seen at the receiver of the four lanes. The deskew operation is compliant to the PCS deskew state machine diagram specified in clause 48 of the IEEE P802.3ae specification.

The deskew circuitry consists of a 16-word deep deskew FIFO in each of the four channels, and control logics in the central control unit of the transceiver block that controls the deskew FIFO write and read operations in each channel.

For details about the deskew FIFO operations for channel deskewing, refer to "XAUI Mode" on page 1–67.

Figure 1–63 shows the transceiver channel datapath and clocking when configured in XAUI mode.

Notes to Figure 1-63:

- (1) Channel 1 low-speed recovered clock.
- (2) Low-speed recovered clock.
- (3) High-speed recovered clock.

Block	Port Name	Input/ Output	Clock Domain	Description			
				Transceiver block power down.			
	gxb_powerdown	Input	Asynchronous signal	 When asserted, all digital and analog circuitry in the PCS, HSSI, CDR, and PCIe modules are powered down. 			
				 Asserting the gxb_powerdown signal does not power down the refclk buffers. 			
			Asynchronous signal.	Transmitter PCS reset			
Reset & Power Down	tx_digitalreset	Input	width is two parallel clock cycles.	 When asserted, the transmitter PCS blocks are reset. 			
			Asynchronous signal.	Receiver PMA reset.			
	rx_analogreset	Input	The minimum pulse width is two parallel clock cycles.	 When asserted, analog circuitry in the receiver PMA block is reset. 			
			Asynchronous signal.	Dessiver DCC reset			
	rx_digitalreset	Input	The minimum pulse width is two parallel clock cycles.	 When asserted, the receiver PCS blocks are reset. 			
				Dynamic reconfiguration clock.			
	reconfig clk	Innut	Clock signal	 Also used for offset cancellation except in PIPE mode. 			
Reconfiguration	recomg_ow	mput	olock signal	 For the supported frequency range for this clock, refer to the Cyclone IV Device Data Sheet chapter. 			
	reconfig_togxb	Input	Asynchronous signal	From the dynamic reconfiguration controller.			
	reconfig_fromgxb	Output	Asynchronous signal	To the dynamic reconfiguration controller.			
Calibration Block	cal_blk_clk	Input	Clock signal	Clock for the transceiver calibration block.			
Calibration Diock	cal_blk_powerdown	Input	Asynchronous signal	Calibration block power down control.			
				BIST or PRBS test completion indicator.			
	rx_bistdone	Output	Asynchronous signal	 A high level during BIST test mode indicates the verifier either receives complete pattern cycle or detects an error and stays asserted until being reset using the rx_digitalreset port. 			
Test Mode				 A high level during PRBS test mode indicates the verifier receives complete pattern cycle and stays asserted until being reset using the rx_digitalreset port. 			
				BIST or PRBS verifier error indicator			
	rx_bisterr	Output	Asynchronous signal	 In BIST test mode, the signal stays asserted upon detecting an error until being reset using the rx_digitalreset port. 			
				 In PRBS test mode, the signal asserts for a minimum of 3 rx_clkout clock cycles upon detecting an error and deasserts if the following PRBS sequence contains no error. 			

Table 1–29. Multipurpose PLL, General Purpose PLL and Miscellaneous Ports in ALTGX Megafunction for Cyclone IV GX (Part 2 of 2)

PCIe Initialization/Compliance Phase

After the device is powered up, a PCIe-compliant device goes through the compliance phase during initialization. The rx_digitalreset signal must be deasserted during this compliance phase to achieve transitions on the pipephydonestatus signal, as expected by the link layer. The rx_digitalreset signal is deasserted based on the assertion of the rx_freqlocked signal.

During the initialization/compliance phase, do not use the rx_freqlocked signal to trigger a deassertion of the rx_digitalreset signal. Instead, perform the following reset sequence:

- 1. After power up, assert pll_areset for a minimum period of 1 μ s (the time between markers 1 and 2). Keep the tx_digitalreset, rx_analogreset, and rx_digitalreset signals asserted during this time period. After you deassert the pll_areset signal, the multipurpose PLL starts locking to the input reference clock.
- 2. After the multipurpose PLL locks, as indicated by the pll_locked signal going high (marker 3), deassert tx_digitalreset. For a receiver operation, after deassertion of busy signal, wait for two parallel clock cycles to deassert the rx_analogreset signal. After rx_analogreset is deasserted, the receiver CDR starts locking to the receiver input reference clock.
- 3. Deassert both the rx_analogreset signal (marker 6) and rx_digitalreset signal (marker 7) together, as indicated in Figure 2–10. After deasserting rx_digitalreset, the pipephydonestatus signal transitions from the transceiver channel to indicate the status to the link layer. Depending on its status, pipephydonestatus helps with the continuation of the compliance phase. After successful completion of this phase, the device enters into the normal operation phase.

PCIe Normal Phase

For the normal PCIe phase:

- 1. After completion of the Initialization/Compliance phase, during the normal operation phase at the Gen1 data rate, when the rx_freqlocked signal is deasserted (marker 9 in Figure 2–10).
- 2. Wait for the rx_freqlocked signal to go high again. In this phase, the received data is valid (not electrical idle) and the receiver CDR locks to the incoming data. Proceed with the reset sequence after assertion of the rx_freqlocked signal.
- 3. After the rx_freqlocked signal goes high, wait for at least t_{LTD_Manual} before asserting rx_digitalreset (marker 12 in Figure 2–10) for two parallel receive clock cycles so that the receiver phase compensation FIFO is initialized. For bonded PCIe Gen 1 mode (×2 and ×4), wait for all the rx_freqlocked signals to go high, then wait for t_{LTD_Manual} before asserting rx_digitalreset for 2 parallel clock cycles.

Figure 3–4 shows the write transaction waveform for Method 1.

Figure 3-4. Write Transaction Waveform—Use 'logical_channel_address port' Option

Notes to Figure 3-4:

- (1) In this waveform example, you are writing to only the transmitter portion of the channel.
- (2) In this waveform example, the number of channels connected to the dynamic reconfiguration controller is four. Therefore, the
- logical_channel_address port is 2 bits wide.

Read Transaction

For example, to read the existing V_{OD} values from the transmit V_{OD} control registers of the transmitter portion of a specific channel controlled by the ALTGX_RECONFIG instance, perform the following steps:

- Set the logical_channel_address input port to the logical channel address of the transceiver channel whose PMA controls you want to read (for example, tx_vodctrl_out).
- 2. Set the rx_tx_duplex_sel port to **2'b10** so that only the transmit PMA controls are read from the transceiver channel.
- 3. Ensure that the busy signal is low before you start a read transaction.
- 4. Assert the read signal for one reconfig_clk clock cycle. This initiates the read transaction.

The busy output status signal is asserted high to indicate that the dynamic reconfiguration controller is busy reading the PMA control values. When the read transaction has completed, the busy signal goes low. The data_valid signal is asserted to indicate that the data available at the read control signal is valid.

Clocking/Interface Options

The following describes the **Clocking/Interface** options available in Cyclone IV GX devices. The core clocking setup describes the transceiver core clocks that are the write and read clocks of the Transmit Phase Compensation FIFO and the Receive Phase Compensation FIFO, respectively. Core clocking is classified as transmitter core clocking and receiver core clocking.

Table 3–6 lists the supported clocking interface settings for channel reconfiguration mode in Cyclone IV GX devices.

ALTGX Setting	Description					
Dynamic Reconfiguration Channel Internal and Interface Settings						
	Select one of the available options:					
How should the receivers be	Share a single transmitter core clock between receivers					
clocked?	Use the respective channel transmitter core clocks					
	 Use the respective channel receiver core clocks 					
	Select one of the available options:					
How should the transmitters be	Share a single transmitter core clock between transmitters					
	 Use the respective channel transmitter core clocks 					

 Table 3–6. Dynamic Reconfiguration Clocking Interface Settings in Channel Reconfiguration

 Mode

Transmitter core clocking refers to the clock that is used to write the parallel data from the FPGA fabric into the Transmit Phase Compensation FIFO. You can use one of the following clocks to write into the Transmit Phase Compensation FIFO:

- tx_coreclk—you can use a clock of the same frequency as tx_clkout from the FPGA fabric to provide the write clock to the Transmit Phase Compensation FIFO. If you use tx_coreclk, it overrides the tx_clkout options in the ALTGX MegaWizard Plug-In Manager.
- tx_clkout—the Quartus II software automatically routes tx_clkout to the FPGA fabric and back into the Transmit Phase Compensation FIFO.

I/O	,	V _{CCIO} (V))		V _{REF} (V)	V _{TT} (V) ⁽²⁾				
Standard	Min	Тур	yp Max Min Typ Max		Max	Min	Тур	Max		
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95	
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79	
HSTL-12	1 14	12	1 26	0.48 x V _{CCIO} <i>(</i> 3)	0.5 x V _{CCIO} <i>(3)</i>	0.52 x V _{CCI0} <i>(3)</i>		0.5 x	_	
Class I, II	1.14	1.2	1.20	0.47 x V _{CCI0} (4)	0.5 x V _{CCIO} (4)	0.53 x V _{CCI0} (4)		V _{CCIO}		

Table 1–16.	Single-Ended SSTL and HSTL I/O Reference	Voltage Sr	necifications for C	vclone IV Devices ⁽¹⁾
		· · · · · · · · · · · · · · · · · · ·	poolitioutions for e	yolollo IY Borloos

Notes to Table 1–16:

(1) For an explanation of terms used in Table 1–16, refer to "Glossary" on page 1–37.

(2) $\,\,V_{TT}$ of the transmitting device must track V_{REF} of the receiving device.

(3) Value shown refers to DC input reference voltage, $V_{\text{REF(DC)}}.$

(4) Value shown refers to AC input reference voltage, $V_{\text{REF(AC)}}$.

Table 1–17.	Single-Ended SSTL	and HSTL I/O Standards Si	gnal Specifications for C	yclone IV Devices
-------------	-------------------	---------------------------	---------------------------	-------------------

I/0	VIL	_{DC)} (V)	VIII	_{I(DC)} (V)	VIL	_(AC) (V)	V _{IH}	_(AC) (V)	V _{OL} (V)	_{DL} (V) V _{OH} (V) I _{OL}		I _{oh}	
Standard	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)	
SSTL-2 Class I	_	V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	—	V _{TT} – 0.57	V _{TT} + 0.57	8.1	-8.1	
SSTL-2 Class II	_	V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	_	V _Π – 0.76	V _{TT} + 0.76	16.4	-16.4	
SSTL-18 Class I	_	V _{REF} – 0.125	V _{REF} + 0.125	_	_	V _{REF} – 0.25	V _{REF} + 0.25	—	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7	
SSTL-18 Class II	_	V _{REF} – 0.125	V _{REF} + 0.125	_	_	V _{REF} – 0.25	V _{REF} + 0.25	—	0.28	V _{CCI0} – 0.28	13.4	-13.4	
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	—	0.4	V _{CCIO} – 0.4	8	-8	
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	16	-16	
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	8	-8	
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	16	-16	
HSTL-12 Class I	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCI0}	0.75 × V _{CCIO}	8	-8	
HSTL-12 Class II	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCI0}	0.75 × V _{CCIO}	14	-14	

Table 1–42 and Table 1–43 list the IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.

			Max Offset									
Parameter	Paths Affected	of	Min Offset	Fa	ast Corn	er		SI	ow Corr	er		Unit
		Setting		C6	17	A7	C6	C7	C8	17	A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.211	1.211	2.177	2.340	2.433	2.388	2.508	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.307	1.203	1.203	2.19	2.387	2.540	2.430	2.545	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.437	0.402	0.402	0.747	0.820	0.880	0.834	0.873	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.693	0.665	0.665	1.200	1.379	1.532	1.393	1.441	ns

Notes to Table 1-42:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

		Number of Setting				Max	Offset					
Parameter	Paths Affected	of	Min Offset	Fa	ast Corn	er		SI	ow Corn	er		Unit
		Setting		C6	17	A7	C6	C7	C8	17	A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.209	1.209	2.201	2.386	2.510	2.429	2.548	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.207	1.207	2.202	2.402	2.558	2.447	2.557	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.458	0.419	0.419	0.783	0.861	0.924	0.875	0.915	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.686	0.657	0.657	1.185	1.360	1.506	1.376	1.422	ns

Table 1–43. IOE Programmable Delay on Row Pins for Cyclone IV E 1.2 V Core Voltage Devices (1), (2)

Notes to Table 1-43:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

er	Term	Definitions									
	t _C	High-speed receiver and transmitter input and output clock period.									
	Channel-to- channel-skew (TCCS)	High-speed I/O block: The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew. The clock is included in the TCCS measurement.									
Ī	t _{cin}	Delay from the clock pad to the I/O input register.									
Ī	t _{co}	Delay from the clock pad to the I/O output.									
	t _{cout}	Delay from the clock pad to the I/O output register.									
	t _{DUTY}	High-speed I/O block: Duty cycle on high-speed transmitter output clock.									
	t _{FALL}	Signal high-to-low transition time (80–20%).									
	t _H	Input register hold time.									
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$.									
	t _{INJITTER}	Period jitter on the PLL clock input.									
	t _{outjitter_dedclk}	Period jitter on the dedicated clock output driven by a PLL.									
	t _{outjitter_i0}	Period jitter on the general purpose I/O driven by a PLL.									
	t _{pllcin}	Delay from the PLL inclk pad to the I/O input register.									
	t _{plicout}	Delay from the PLL inclk pad to the I/O output register.									
		Transmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O Standards: Single-Ended Waveform									
		Positive Channel (p) = V _{OH}									
	-	V _{ob} V _{os} Negative Channel (n) = V _{oL}									
	I ransmitter	Ground									
	Waveform										
		Differential Waveform (Mathematical Function of Positive & Negative Channel)									