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Section I. Device Core
This section provides a complete overview of all features relating to the Cyclone® IV 
device family, which is the most architecturally advanced, high-performance, 
low-power FPGA in the marketplace. This section includes the following chapters:

■ Chapter 1, Cyclone IV FPGA Device Family Overview

■ Chapter 2, Logic Elements and Logic Array Blocks in Cyclone IV Devices

■ Chapter 3, Memory Blocks in Cyclone IV Devices

■ Chapter 4, Embedded Multipliers in Cyclone IV Devices

■ Chapter 5, Clock Networks and PLLs in Cyclone IV Devices

Revision History
Refer to each chapter for its own specific revision history. For information about when 
each chapter was updated, refer to the Chapter Revision Dates section, which appears 
in the complete handbook.
Cyclone IV Device Handbook,
Volume 1



2–4 Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices
LE Operating Modes
Arithmetic Mode
Arithmetic mode is ideal for implementing adders, counters, accumulators, and 
comparators. An LE in arithmetic mode implements a 2-bit full adder and basic carry 
chain (Figure 2–3). LEs in arithmetic mode can drive out registered and unregistered 
versions of the LUT output. Register feedback and register packing are supported 
when LEs are used in arithmetic mode.

Figure 2–3 shows LEs in arithmetic mode.

The Quartus II Compiler automatically creates carry chain logic during design 
processing. You can also manually create the carry chain logic during design entry. 
Parameterized functions, such as LPM functions, automatically take advantage of 
carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 16 LEs by automatically 
linking LABs in the same column. For enhanced fitting, a long carry chain runs 
vertically, which allows fast horizontal connections to M9K memory blocks or 
embedded multipliers through direct link interconnects. For example, if a design has a 
long carry chain in an LAB column next to a column of M9K memory blocks, any LE 
output can feed an adjacent M9K memory block through the direct link interconnect. 
If the carry chains run horizontally, any LAB which is not next to the column of M9K 
memory blocks uses other row or column interconnects to drive a M9K memory 
block. A carry chain continues as far as a full column.

Figure 2–3. Cyclone IV Device LEs in Arithmetic Mode
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3–4 Chapter 3: Memory Blocks in Cyclone IV Devices
Overview
Figure 3–1 shows how the wren and byteena signals control the RAM operations.

When a byteena bit is deasserted during a write cycle, the old data in the memory 
appears in the corresponding data-byte output. When a byteena bit is asserted during 
a write cycle, the corresponding data-byte output depends on the setting chosen in 
the Quartus® II software. The setting can either be the newly written data or the old 
data at that location.

1 Byte enables are only supported for True Dual-Port memory configurations when 
both the PortA and PortB data widths of the individual M9K memory blocks are 
multiples of 8 or 9 bits.

Packed Mode Support
Cyclone IV devices M9K memory blocks support packed mode. You can implement 
two single-port memory blocks in a single block under the following conditions:

■ Each of the two independent block sizes is less than or equal to half of the M9K 
block size. The maximum data width for each independent block is 18 bits wide.

■ Each of the single-port memory blocks is configured in single-clock mode. For 
more information about packed mode support, refer to “Single-Port Mode” on 
page 3–8 and “Single-Clock Mode” on page 3–15.

Figure 3–1. Cyclone IV Devices byteena Functional Waveform (1)

Note to Figure 3–1:

(1) For this functional waveform, New Data mode is selected.
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–19
PLLs in Cyclone IV Devices
Table 5–6 lists the features available in Cyclone IV E PLLs.

Input clock switchover v 
User mode reconfiguration v 
Loss of lock detection v 
PLL drives TX Serial Clock, TX Load 
Enable, and TX Parallel Clock v v — — v
VCO output drives RX clock data 
recovery (CDR) clock — v
PLL drives FREF for ppm detect v v — — v
Notes to Table 5–5:

(1) This is only applicable to EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices in F672 and F896 package.
(2) This is applicable to all Cyclone IV devices.
(3) This is applicable to all Cyclone IV devices except EP4CGX15 devices in all packages, EP4CGX22, and EP4CGX30 devices in F169 package.
(4) This is only applicable to EP4CGX15, EP4CGX22, and all EP4CGX30 devices except EP4CGX30 in the F484 package..
(5) C counters range from 1 through 512 if the output clock uses a 50% duty cycle. For any output clocks using a non-50% duty cycle, the 

post-scale counters range from 1 through 256.
(6) These clock pins can access the GCLK networks.
(7) These clock pins are only available in EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices and cannot access the GCLK networks. 

CLK[17,19,20,21]p can be used as single-ended clock input pins.
(8) Only applicable if the input clock jitter is in the input jitter tolerance specifications.
(9) The smallest phase shift is determined by the voltage-controlled oscillator (VCO) period divided by eight. For degree increments, Cyclone IV GX 

devices can shift all output frequencies in increments of at least 45°. Smaller degree increments are possible depending on the frequency and 
divide parameters. 

(10) This is applicable to the EP4CGX30, EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices in F484 package.

Table 5–5. Cyclone IV GX PLL Features (Part 2 of 2)

Features

Availability

General Purpose PLLs Multipurpose PLLs

PLL_1 
(1), (10)

PLL_2 
(1), (10)

PLL_
3 (2)

PLL_
4 (3)

PLL_1
(4)

PLL_2
(4)

PLL_5 
(1), (10)

PLL_6 
(1), (10)

PLL_7
(1)

PLL_8
(1)

Table 5–6. Cyclone IV E PLL Features (Part 1 of 2)

Hardware Features Availability

C (output counters) 5

M, N, C counter sizes 1 to 512 (1)

Dedicated clock outputs 1 single-ended or 1 differential pair

Clock input pins 4 single-ended or 2 differential pairs

Spread-spectrum input clock tracking v (2)

PLL cascading Through GCLK

Compensation modes Source-Synchronous Mode, No Compensation 
Mode, Normal Mode, and Zero Delay Buffer Mode

Phase shift resolution Down to 96-ps increments (3)

Programmable duty cycle v 
Output counter cascading v
Input clock switchover v
User mode reconfiguration v
October 2012 Altera Corporation Cyclone IV Device Handbook,
Volume 1



5–30 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Hardware Features
In this mode, the activeclock signal mirrors the clkswitch signal. As both blocks are 
still functional during the manual switch, neither clkbad signals go high. Because the 
switchover circuit is positive edge-sensitive, the falling edge of the clkswitch signal 
does not cause the circuit to switch back from inclk1 to inclk0. When the clkswitch 
signal goes high again, the process repeats. The clkswitch signal and the automatic 
switch only works depending on the availability of the clock that is switched to. If the 
clock is unavailable, the state machine waits until the clock is available.

1 When CLKSWITCH = 1, it overrides the automatic switch-over function. As long as 
clkswitch signal is high, further switch-over action is blocked.

Manual Clock Switchover
PLLs of Cyclone IV devices support manual switchover, in which the clkswitch 
signal controls whether inclk0 or inclk1 is the input clock to the PLL. The 
characteristics of a manual switchover are similar to the manual override feature in an 
automatic clock switchover, in which the switchover circuit is edge-sensitive. When 
the clkswitch signal goes high, the switchover sequence starts. The falling edge of the 
clkswitch signal does not cause the circuit to switch back to the previous input clock. 

f For more information about PLL software support in the Quartus II software, refer to 
the ALTPLL Megafunction User Guide.

Guidelines
Use the following guidelines to design with clock switchover in PLLs:

■ Clock loss detection and automatic clock switchover require the inclk0 and 
inclk1 frequencies be within 20% of each other. Failing to meet this requirement 
causes the clkbad0 and clkbad1 signals to function improperly.

Figure 5–19. Clock Switchover Using the clkswitch Control (1)

Note to Figure 5–19:

(1) Both inclk0 and inclk1 must be running when the clkswitch signal goes high to start a manual clock switchover 
event.
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8. Configuration and Remote System
Upgrades in Cyclone IV Devices
This chapter describes the configuration and remote system upgrades in Cyclone® IV 
devices. Cyclone IV (Cyclone IV GX and Cyclone IV E) devices use SRAM cells to 
store configuration data. You must download the configuration data to Cyclone IV 
devices each time the device powers up because SRAM memory is volatile.

Cyclone IV devices are configured using one of the following configuration schemes:

■ Active serial (AS)

■ Active parallel (AP) (supported in Cyclone IV E devices only)

■ Passive serial (PS)

■ Fast passive parallel (FPP) (not supported in EP4CGX15, EP4CGX22, and 
EP4CGX30 [except for the F484 package] devices)

■ JTAG

Cyclone IV devices offer the following configuration features: 

■ Configuration data decompression (“Configuration Data Decompression” on 
page 8–2)

■ Remote system upgrade (“Remote System Upgrade” on page 8–69)

System designers face difficult challenges, such as shortened design cycles, evolving 
standards, and system deployments in remote locations. Cyclone IV devices help 
overcome these challenges with inherent re-programmability and dedicated circuitry 
to perform remote system upgrades. Remote system upgrades help deliver feature 
enhancements and bug fixes without costly recalls, reduced time-to-market, and 
extended product life. 

Configuration
This section describes Cyclone IV device configuration and includes the following 
topics:

■ “Configuration Features” on page 8–2

■ “Configuration Requirement” on page 8–3

■ “Configuration Process” on page 8–6

■ “Configuration Scheme” on page 8–8

■ “AS Configuration (Serial Configuration Devices)” on page 8–10

■ “AP Configuration (Supported Flash Memories)” on page 8–21

■ “PS Configuration” on page 8–32
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8–6 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
Configuration Process
This section describes Cyclone IV device configuration requirements and includes the 
following topics:

■ “Power Up” on page 8–6

■ “Reset” on page 8–6

■ “Configuration” on page 8–6

■ “Configuration Error” on page 8–7

■ “Initialization” on page 8–7

■ “User Mode” on page 8–7

f For more information about the Altera® FPGA configuration cycle state machine, refer 
to the Configuring Altera FPGAs chapter in volume 1 of the Configuration Handbook.

Power Up
If the device is powered up from the power-down state, VCCINT, VCCA, and VCCIO (for 
the I/O banks in which the configuration and JTAG pins reside) must be powered up 
to the appropriate level for the device to exit from POR. 

Reset
After power up, Cyclone IV devices go through POR. POR delay depends on the MSEL 
pin settings, which correspond to your configuration scheme. During POR, the device 
resets, holds nSTATUS and CONF_DONE low, and tri-states all user I/O pins (for PS and 
FPP configuration schemes only). 

1 To tri-state the configuration bus for AS and AP configuration schemes, you must tie 
nCE high and nCONFIG low. 

The user I/O pins and dual-purpose I/O pins have weak pull-up resistors, which are 
always enabled (after POR) before and during configuration. When the device exits 
POR, all user I/O pins continue to tri-state. While nCONFIG is low, the device is in 
reset. When nCONFIG goes high, the device exits reset and releases the open-drain 
nSTATUS pin, which is then pulled high by an external 10-k pull-up resistor. After 
nSTATUS is released, the device is ready to receive configuration data and the 
configuration stage starts.

f For more information about the value of the weak pull-up resistors on the I/O pins 
that are on before and during configuration, refer to the Cyclone IV Device Datasheet 
chapter.

Configuration
Configuration data is latched into the Cyclone IV device at each DCLK cycle. However, 
the width of the data bus and the configuration time taken for each scheme are 
different. After the device receives all the configuration data, the device releases the 
open-drain CONF_DONE pin, which is pulled high by an external 10-kpull-up resistor. 
A low-to-high transition on the CONF_DONE pin indicates that the configuration is 
complete and initialization of the device can begin. 
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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8–14 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
The first Cyclone IV device in the chain is the configuration master and it controls the 
configuration of the entire chain. Other Altera devices that support PS configuration 
can also be part of the chain as configuration slaves. 

1 In the multi-device AS configuration, the board trace length between the serial 
configuration device and the master device of the Cyclone IV device must follow the 
recommendations in Table 8–7 on page 8–18. 

The nSTATUS and CONF_DONE pins on all target devices are connected together with 
external pull-up resistors, as shown in Figure 8–3 on page 8–13. These pins are 
open-drain bidirectional pins on the devices. When the first device asserts nCEO (after 
receiving all its configuration data), it releases its CONF_DONE pin. However, the 
subsequent devices in the chain keep this shared CONF_DONE line low until they receive 
their configuration data. When all target devices in the chain receive their 
configuration data and release CONF_DONE, the pull-up resistor drives a high level on 
CONF_DONE line and all devices simultaneously enter initialization mode.

1 Although you can cascade Cyclone IV devices, serial configuration devices cannot be 
cascaded or chained together.

If the configuration bitstream size exceeds the capacity of a serial configuration 
device, you must select a larger configuration device, enable the compression feature, 
or both. When configuring multiple devices, the size of the bitstream is the sum of the 
individual device’s configuration bitstream.

Configuring Multiple Cyclone IV Devices with the Same Design
Certain designs require that you configure multiple Cyclone IV devices with the same 
design through a configuration bitstream, or a .sof. You can do this through the 
following methods:

■ Multiple .sof

■ Single .sof

1 For both methods, the serial configuration devices cannot be cascaded or chained 
together.

Multiple SRAM Object Files

Two copies of the .sof are stored in the serial configuration device. Use the first copy 
to configure the master device of the Cyclone IV device and the second copy to 
configure all remaining slave devices concurrently. All slave devices must have the 
same density and package. The setup is similar to Figure 8–3 on page 8–13.

To configure four identical Cyclone IV devices with the same .sof, you must set up the 
chain similar to the example shown in Figure 8–4. The first device is the master device 
and its MSEL pins must be set to select AS configuration. The other three slave devices 
are set up for concurrent configuration and their MSEL pins must be set to select PS 
configuration. The nCEO pin from the master device drives the nCE input pins on all 
three slave devices, as well as the DATA and DCLK pins that connect in parallel to all 
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1



Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–23
Configuration
f For more information about the operation of the Micron P30 Parallel NOR and P33 
Parallel NOR flash memories, search for the keyword “P30” or “P33” on the Micron 
website (www.micron.com) to obtain the P30 or P33 family datasheet.

Single-Device AP Configuration
The following groups of interface pins are supported in Micron P30 and P33 flash 
memories:

■ Control pins

■ Address pins

■ Data pins

The following control signals are from the supported parallel flash memories:

■ CLK

■ active-low reset (RST#)

■ active-low chip enable (CE#)

■ active-low output enable (OE#)

■ active-low address valid (ADV#)

■ active-low write enable (WE#)

The supported parallel flash memories output a control signal (WAIT) to Cyclone IV E 
devices to indicate when synchronous data is ready on the data bus. Cyclone IV E 
devices have a 24-bit address bus connecting to the address bus (A[24:1]) of the flash 
memory. A 16-bit bidirectional data bus (DATA[15..0]) provides data transfer between 
the Cyclone IV E device and the flash memory.

The following control signals are from the Cyclone IV E device to flash memory:

■ DCLK

■ active-low hard rest (nRESET)

■ active-low chip enable (FLASH_nCE)

■ active-low output enable for the DATA[15..0] bus and WAIT pin (nOE) 

■ active-low address valid signal and is used to write data into the flash (nAVD) 

■ active-low write enable and is used to write data into the flash (nWE)
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–51
Configuration
1 If a non-Cyclone IV device is cascaded in the JTAG-chain, TDO of the non-Cyclone IV 
device driving into TDI of the Cyclone IV device must fit the maximum overshoot 
outlined in Equation 8–1 on page 8–5.

The CONF_DONE and nSTATUS signals are shared in multi-device AS, AP, PS, and FPP 
configuration chains to ensure that the devices enter user mode at the same time after 
configuration is complete. When the CONF_DONE and nSTATUS signals are shared among 
all the devices, you must configure every device when JTAG configuration is 
performed.

If you only use JTAG configuration, Altera recommends that you connect the circuitry 
as shown in Figure 8–25 or Figure 8–26, in which each of the CONF_DONE and nSTATUS 
signals are isolated so that each device can enter user mode individually.

After the first device completes configuration in a multi-device configuration chain, 
its nCEO pin drives low to activate the nCE pin of the second device, which prompts the 
second device to begin configuration. Therefore, if these devices are also in a JTAG 
chain, ensure that the nCE pins are connected to GND during JTAG configuration or 
that the devices are JTAG configured in the same order as the configuration chain. As 
long as the devices are JTAG configured in the same order as the multi-device 
configuration chain, the nCEO of the previous device drives the nCE pin of the next 
device low when it has successfully been JTAG configured. You can place other Altera 
devices that have JTAG support in the same JTAG chain for device programming and 
configuration.

Figure 8–26. JTAG Configuration of Multiple Devices Using a Download Cable (1.2, 1.5, and 1.8-V VCCIO Powering the 
JTAG Pins)

Notes to Figure 8–26:

(1) Connect these pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use a JTAG configuration, connect the nCONFIG 

pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] to either high or low, whichever is convenient on your board.
(3) In the USB-Blaster and ByteBlaster II cable, this pin is connected to nCE when it is used for AS programming, otherwise it is a no connect.
(4) You must connect the nCE pin to GND or driven low for successful JTAG configuration.
(5) Power up the VCC of the ByteBlaster II or USB-Blaster cable with supply from VCCIO. The ByteBlaster II and USB-Blaster cables do not support a 

target supply voltage of 1.2 V. For the target supply voltage value, refer to the ByteBlaster II Download Cable User Guide and the USB-Blaster 
Download Cable User Guide.

(6) Resistor value can vary from 1 k to 10 k.
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8–78 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Remote System Upgrade
Table 8–25 lists the contents of previous state register 1 and previous state register 2 in 
the status register. The status register bit in Table 8–25 shows the bit positions in a 
3-bit register. The previous state register 1 and previous state register 2 have the same 
bit definitions. The previous state register 1 reflects the current application 
configuration and the previous state register 2 reflects the previous application 
configuration.

If a capture is inappropriately done while capturing a previous state before the system 
has entered remote update application configuration for the first time, a value outputs 
from the shift register to indicate that the capture is incorrectly called.

Remote System Upgrade State Machine
The remote system upgrade control and update registers have identical bit 
definitions, but serve different roles (Table 8–22 on page 8–75). While both registers 
can only be updated when the device is loaded with a factory configuration image, 
the update register writes are controlled by the user logic, and the control register 
writes are controlled by the remote system upgrade state machine. 

In factory configurations, the user logic should send the option bits (Cd_early and 
Osc_int), the configuration address, and watchdog timer settings for the next 
application configuration bit to the update register. When the logic array 
configuration reset (RU_nCONFIG) goes high, the remote system upgrade state machine 
updates the control register with the contents of the update register and starts system 
reconfiguration from the new application page.

1 To ensure the successful reconfiguration between the pages, assert the RU_nCONFIG 
signal for a minimum of 250 ns. This is equivalent to strobing the reconfig input of 
the ALTREMOTE_UPDATE megafunction high for a minimum of 250 ns.

If there is an error or reconfiguration trigger condition, the remote system upgrade 
state machine directs the system to load a factory or application configuration (based 
on mode and error condition) by setting the control register accordingly. 

Table 8–26 lists the contents of the control register after such an event occurs for all 
possible error or trigger conditions.

Table 8–25. Remote System Upgrade Previous State Register 1 and Previous State Register 2 Contents in Status 
Register 

Status Register Bit Definition Description

30 nCONFIG source
One-hot, active-high field that describes the reconfiguration source 
that caused the Cyclone IV device to leave the previous application 
configuration. If there is a tie, the higher bit order indicates 
precedence. For example, if nCONFIG and remote system upgrade 
nCONFIG reach the reconfiguration state machine at the same time, 
the nCONFIG precedes the remote system upgrade nCONFIG. 

29 CRC error source

28 nSTATUS source

27 User watchdog timer source

26
Remote system upgrade 
nCONFIG source

25:24
Master state machine 
current state

The state of the master state machine during reconfiguration causes 
the Cyclone IV device to leave the previous application configuration.

23:0 Boot address The address used by the configuration scheme to load the previous 
application configuration.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1



CYIV-51009-1.3

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Cyclone IV Device Handbook,
Volume 1
May 2013

May 2013
CYIV-51009-1.3
9. SEU Mitigation in Cyclone IV Devices
This chapter describes the cyclical redundancy check (CRC) error detection feature in 
user mode and how to recover from soft errors.

1 Configuration error detection is supported in all Cyclone® IV devices including 
Cyclone IV GX devices, Cyclone IV E devices with 1.0-V core voltage, and 
Cyclone IV E devices with 1.2-V core voltage. However, user mode error detection is 
only supported in Cyclone IV GX devices and Cyclone IV E devices with 1.2-V core 
voltage.

Dedicated circuitry built into Cyclone IV devices consists of a CRC error detection 
feature that can optionally check for a single-event upset (SEU) continuously and 
automatically.

In critical applications used in the fields of avionics, telecommunications, system 
control, medical, and military applications, it is important to be able to:

■ Confirm the accuracy of the configuration data stored in an FPGA device

■ Alert the system to an occurrence of a configuration error

Using the CRC error detection feature for Cyclone IV devices does not impact fitting 
or performance.

This chapter contains the following sections:

■ “Configuration Error Detection” on page 9–1

■ “User Mode Error Detection” on page 9–2

■ “Automated SEU Detection” on page 9–3

■ “CRC_ERROR Pin” on page 9–3

■ “Error Detection Block” on page 9–4

■ “Error Detection Timing” on page 9–5

■ “Software Support” on page 9–6

■ “Recovering from CRC Errors” on page 9–9

Configuration Error Detection

1 Configuration error detection is available in all Cyclone IV devices including 
Cyclone IV GX devices, Cyclone IV E devices with 1.0-V core voltage, and 
Cyclone IV E devices with 1.2-V core voltage.
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Architectural Overview
Figure 1–3 shows the Cyclone IV GX transceiver channel datapath.

Each transceiver channel consists of a transmitter and a receiver datapath. Each 
datapath is further structured into the following:

■ Physical media attachment (PMA)—includes analog circuitry for I/O buffers, 
clock data recovery (CDR), serializer/deserializer (SERDES), and programmable 
pre-emphasis and equalization to optimize serial data channel performance.

■ Physical coding sublayer (PCS)—includes hard logic implementation of digital 
functionality within the transceiver that is compliant with supported protocols.

Outbound parallel data from the FPGA fabric flows through the transmitter PCS and 
PMA, is transmitted as serial data. Received inbound serial data flows through the 
receiver PMA and PCS into the FPGA fabric. The transceiver supports the following 
interface widths:

■ FPGA fabric-transceiver PCS—8, 10, 16, or 20 bits

■ PMA-PCS—8 or 10 bits

f The transceiver channel interfaces through the PIPE when configured for PCIe 
protocol implementation. The PIPE is compliant with version 2.00 of the PHY Interface 
for the PCI Express Architecture specification.

Figure 1–3. Transceiver Channel Datapath for Cyclone IV GX Devices
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Transmitter Channel Datapath
The following sections describe the Cyclone IV GX transmitter channel datapath 
architecture as shown in Figure 1–3:

■ TX Phase Compensation FIFO

■ Byte Serializer

■ 8B/10B Encoder

■ Serializer

■ Transmitter Output Buffer

TX Phase Compensation FIFO
The TX phase compensation FIFO compensates for the phase difference between the 
low-speed parallel clock and the FPGA fabric interface clock, when interfacing the 
transmitter channel to the FPGA fabric (directly or through the PIPE and 
PCIe hard IP). The FIFO is four words deep, with latency between two to three 
parallel clock cycles. Figure 1–4 shows the TX phase compensation FIFO block 
diagram.

1 The FIFO can operate in registered mode, contributing to only one parallel clock cycle 
of latency in Deterministic Latency functional mode. For more information, refer to 
“Deterministic Latency Mode” on page 1–73.

f For more information about FIFO clocking, refer to “FPGA Fabric-Transceiver 
Interface Clocking” on page 1–43.

Byte Serializer
The byte serializer divides the input datapath width by two to allow transmitter 
channel operation at higher data rates while meeting the maximum FPGA fabric 
frequency limit. This module is required in configurations that exceed the maximum 
FPGA fabric-transceiver interface clock frequency limit and optional in configurations 
that do not. 

f For the FPGA fabric-transceiver interface frequency specifications, refer to the Cyclone 
IV Device Data Sheet.

Figure 1–4. TX Phase Compensation FIFO Block Diagram

Note to Figure 1–4:

(1) The x refers to the supported 8-, 10-, 16-, or 20-bits transceiver channel width.

tx_phase_comp_fifo_errorTX Phase
Compensation

FIFO

wr_clk rd_clk

tx_datain[x..0] (1) Data output to
the byte serializer

or the 8B/10B encoder 
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For example, when operating an EP4CGX150 transmitter channel at 3.125 Gbps 
without byte serializer, the FPGA fabric frequency is 312.5 MHz (3.125 Gbps/10). This 
implementation violates the frequency limit and is not supported. Channel operation 
at 3.125 Gbps is supported when byte serializer is used, where the FPGA fabric 
frequency is 156.25 MHz (3.125 Gbps/20).

The byte serializer forwards the least significant byte first, followed by the most 
significant byte.

8B/10B Encoder
The optional 8B/10B encoder generates 10-bit code groups with proper disparity from 
the 8-bit data and 1-bit control identifier as shown in Figure 1–5. 

f The encoder is compliant with Clause 36 of the IEEE 802.3 Specification.

The 1-bit control identifier (tx_ctrlenable) port controls the 8-bit translation to either 
a 10-bit data word (Dx.y) or a 10-bit control word (Kx.y). Figure 1–6 shows the 8B/10B 
encoding operation with the tx_ctrlenable port, where the second 8'hBC data is 
encoded as a control word when tx_ctrlenable port is asserted, while the rest of the 
data is encoded as a data word.

1 The IEEE 802.3 8B/10B encoder specification identifies only a set of 8-bit characters 
for which the tx_ctrlenable port should be asserted. If you assert tx_ctrlenable 
port for any other set of characters, the 8B/10B encoder might encode the output 10-
bit code as an invalid code (it does not map to a valid Dx.y or Kx.y code), or an 
unintended valid Dx.y code, depending on the value entered. It is possible for a 
downstream 8B/10B decoder to decode an invalid control word into a valid Dx.y code 
without asserting any code error flags. Altera recommends not to assert 
tx_ctrlenable port for unsupported 8-bit characters.

Figure 1–5. 8B/10B Encoder Block Diagram

Figure 1–6. Control and Data Word Encoding with the 8B/10B Encoder
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Table 1–4 lists the synchronization state machine parameters for the word aligner in 
this mode.

After deassertion of the rx_digitalreset signal in automatic synchronization state 
machine mode, the word aligner starts looking for the synchronization code groups, 
word alignment pattern or its complement in the received data stream. When the 
programmed number of valid synchronization code groups or ordered sets are 
received, the rx_syncstatus signal is driven high to indicate that synchronization is 
acquired. The rx_syncstatus signal is constantly driven high until the programmed 
number of erroneous code groups are received without receiving intermediate good 
groups; after which the rx_syncstatus signal is driven low. The word aligner 
indicates loss of synchronization (rx_syncstatus signal remains low) until the 
programmed number of valid synchronization code groups are received again.

In addition to restoring word boundaries, the word aligner supports the following 
features:

■ Programmable run length violation detection—detects consecutive 1s or 0s in the 
data stream, and asserts run length violation signal (rx_rlv) when a preset run 
length threshold (maximum number of consecutive 1s or 0s) is detected. The 
rx_rlv signal in each channel is clocked by its parallel recovered clock and is 
asserted for a minimum of two recovered clock cycles to ensure that the FPGA 
fabric clock can latch the rx_rlv signal reliably because the FPGA fabric clock 
might have phase differences, ppm differences (in asynchronous systems), or both, 
with the recovered clock. Table 1–5 lists the run length violation circuit detection 
capabilities.

Table 1–4. Synchronization State Machine Parameters 

Parameter Allowed Values

Number of erroneous code groups received to lose synchronization 1–64

Number of continuous good code groups received to reduce the 
error count by one 1–256

Table 1–5. Run Length Violation Circuit Detection Capabilities

Supported Data Width
Detector Range Increment Step 

SettingsMinimum Maximum

8-bit 4 128 4

10-bit 5 160 5
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2. After the PLL is reset, wait for the pll_locked signal to go high (marker 4) 
indicating that the PLL is locked to the input reference clock. After the assertion of 
the pll_locked signal, deassert the tx_digitalreset signal (marker 5).

3. Wait at least five parallel clock cycles after the pll_locked signal is asserted to 
deassert the rx_analogreset signal (marker 6).

4. When the rx_freqlocked signal goes high (marker 7), from that point onwards, 
wait for at least tLTD_Auto time, then deassert the rx_digitalreset signal 
(marker 8). At this point, the receiver is ready for data traffic.

Reset Sequence in Channel Reconfiguration Mode
Use the example reset sequence shown in Figure 2–12 when you are using the 
dynamic reconfiguration controller to change the PCS settings of the transceiver 
channel. In this example, the dynamic reconfiguration is used to dynamically 
reconfigure the transceiver channel configured in Basic ×1 mode with receiver CDR in 
automatic lock mode.

Figure 2–12. Reset Sequence When Using the Dynamic Reconfiguration Controller to Change the 
PCS Settings of the Transceiver Channel

Notes to Figure 2–12:

(1) For tLTD_Auto duration, refer to the Cyclone IV Device Datasheet chapter.
(2) The busy signal is asserted and deasserted only during initial power up when offset cancellation occurs. In 

subsequent reset sequences, the busy signal is asserted and deasserted only if there is a read or write operation to 
the ALTGX_RECONFIG megafunction.
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Control and Status Signals for Channel Reconfiguration
The various control and status signals involved in the Channel Reconfiguration mode 
are as follows. Refer to “Dynamic Reconfiguration Controller Port List” on page 3–4 
for the descriptions of the control and status signals.

The following are the input control signals:

■ logical_channel_address[n..0]

■ reset_reconfig_address

■ reconfig_reset

■ reconfig_mode_sel[2..0]

■ write_all

The following are output status signals:

■ reconfig_address_en

■ reconfig_address_out[5..0]

■ channel_reconfig_done

■ busy

The ALTGX_RECONFIG connection to the ALTGX instances when set in channel 
reconfiguration mode are as follows. For the port information, refer to “Dynamic 
Reconfiguration Controller Port List” on page 3–4. 

Figure 3–10 shows the connection for channel reconfiguration mode.

Figure 3–10. ALTGX and ALTGX_RECONFIG Connection for Channel Reconfiguration Mode 

Note to Figure 3–10:

(1) This block can be reconfigured in channel reconfiguration mode.
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