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Chapter 3: Memory Blocks in Cyclone IV Devices 3–13
Memory Modes
Figure 3–12 shows the Cyclone IV devices M9K memory block in shift register mode.

ROM Mode
Cyclone IV devices M9K memory blocks support ROM mode. A .mif initializes the 
ROM contents of these blocks. The address lines of the ROM are registered. The 
outputs can be registered or unregistered. The ROM read operation is identical to the 
read operation in the single-port RAM configuration.

FIFO Buffer Mode
Cyclone IV devices M9K memory blocks support single-clock or dual-clock FIFO 
buffers. Dual clock FIFO buffers are useful when transferring data from one clock 
domain to another clock domain. Cyclone IV devices M9K memory blocks do not 
support simultaneous read and write from an empty FIFO buffer.

f For more information about FIFO buffers, refer to the Single- and Dual-Clock FIFO 
Megafunction User Guide.

Figure 3–12. Cyclone IV Devices Shift Register Mode Configuration
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–21
Cyclone IV PLL Hardware Overview
Figure 5–10 shows a simplified block diagram of the major components of the PLL of 
Cyclone IV E devices. 

1 The VCO post-scale counter K is used to divide the supported VCO range by two. The 
VCO frequency reported by the Quartus II software in the PLL summary section of 
the compilation report takes into consideration the VCO post-scale counter value. 
Therefore, if the VCO post-scale counter has a value of 2, the frequency reported is 
lower than the fVCO specification specified in the Cyclone IV Device Datasheet chapter.

External Clock Outputs
Each PLL of Cyclone IV devices supports one single-ended clock output or one 
differential clock output. Only the C0 output counter can feed the dedicated external 
clock outputs, as shown in Figure 5–11, without going through the GCLK. Other 
output counters can feed other I/O pins through the GCLK.

Figure 5–10. Cyclone IV E PLL Block Diagram (1)

Notes to Figure 5–10:

(1) Each clock source can come from any of the four clock pins located on the same side of the device as the PLL.
(2) This is the VCO post-scale counter K.
(3) This input port is fed by a pin-driven dedicated GCLK, or through a clock control block if the clock control block is fed by an output from another 

PLL or a pin-driven dedicated GCLK. An internally generated global signal cannot drive the PLL.
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5–30 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Hardware Features
In this mode, the activeclock signal mirrors the clkswitch signal. As both blocks are 
still functional during the manual switch, neither clkbad signals go high. Because the 
switchover circuit is positive edge-sensitive, the falling edge of the clkswitch signal 
does not cause the circuit to switch back from inclk1 to inclk0. When the clkswitch 
signal goes high again, the process repeats. The clkswitch signal and the automatic 
switch only works depending on the availability of the clock that is switched to. If the 
clock is unavailable, the state machine waits until the clock is available.

1 When CLKSWITCH = 1, it overrides the automatic switch-over function. As long as 
clkswitch signal is high, further switch-over action is blocked.

Manual Clock Switchover
PLLs of Cyclone IV devices support manual switchover, in which the clkswitch 
signal controls whether inclk0 or inclk1 is the input clock to the PLL. The 
characteristics of a manual switchover are similar to the manual override feature in an 
automatic clock switchover, in which the switchover circuit is edge-sensitive. When 
the clkswitch signal goes high, the switchover sequence starts. The falling edge of the 
clkswitch signal does not cause the circuit to switch back to the previous input clock. 

f For more information about PLL software support in the Quartus II software, refer to 
the ALTPLL Megafunction User Guide.

Guidelines
Use the following guidelines to design with clock switchover in PLLs:

■ Clock loss detection and automatic clock switchover require the inclk0 and 
inclk1 frequencies be within 20% of each other. Failing to meet this requirement 
causes the clkbad0 and clkbad1 signals to function improperly.

Figure 5–19. Clock Switchover Using the clkswitch Control (1)

Note to Figure 5–19:

(1) Both inclk0 and inclk1 must be running when the clkswitch signal goes high to start a manual clock switchover 
event.
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Chapter 6: I/O Features in Cyclone IV Devices 6–19
I/O Banks
Figure 6–11. Cyclone IV GX I/O Banks for EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 (1), (2), (9)

Notes to Figure 6–11:

(1) This is a top view of the silicon die. For exact pin locations, refer to the pin list and the Quartus II software.
(2) True differential (PPDS, LVDS, mini-LVDS, and RSDS I/O standards) outputs are supported in row I/O banks 5 and 6 only. External resistors are 

needed for the differential outputs in column I/O banks.
(3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
(4) The HSTL-12 Class II is supported in column I/O banks 4, 7, and 8.
(5) The differential SSTL-18 and SSTL-2, differential HSTL-18, and HSTL-15 I/O standards are supported only on clock input pins and phase-locked 

loops (PLLs) output clock pins. PLL output clock pins do not support Class II interface type of differential SSTL-18, HSTL-18, HSTL-15, and 
HSTL-12 I/O standards.

(6) The differential HSTL-12 I/O standard is only supported on clock input pins and PLL output clock pins. Differential HSTL-12 Class II is supported 
only in column I/O banks 4, 7, and 8.

(7) BLVDS output uses two single-ended outputs with the second output programmed as inverted. BLVDS input uses the LVDS input buffer.
(8) The PCI-X I/O standard does not meet the IV curve requirement at the linear region.
(9) The OCT block is located in the shaded banks 4, 5, and 7.
(10) The dedicated clock input I/O banks 3A, 3B, 8A, and 8B can be used either for HSSI input reference clock pins or clock input pins. 
(11) Single-ended clock input support is available for dedicated clock input I/O banks 3B and 8B.
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8–26 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
Byte-Wide Multi-Device AP Configuration
The simpler method for multi-device AP configuration is the byte-wide multi-device 
AP configuration. In the byte-wide multi-device AP configuration, the LSB of the 
DATA[7..0]pin from the flash and master device (set to the AP configuration scheme) 
is connected to the slave devices set to the FPP configuration scheme, as shown in 
Figure 8–8.

Word-Wide Multi-Device AP Configuration
The more efficient setup is one in which some of the slave devices are connected to the 
LSB of the DATA[7..0]and the remaining slave devices are connected to the MSB of 
the DATA[15..8]. In the word-wide multi-device AP configuration, the nCEO pin of the 
master device enables two separate daisy chains of slave devices, allowing both 
chains to be programmed concurrently, as shown in Figure 8–9.

Figure 8–8. Byte-Wide Multi-Device AP Configuration

Notes to Figure 8–8: 

(1) Connect the pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the pull-up resistor to the VCCIO supply voltage of the I/O bank in which the nCE pin resides.
(3) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(4) The MSEL pin settings vary for different configuration voltage standards and POR time. You must set the master device in AP mode and the slave 

devices in FPP mode. To connect MSEL[3..0] for the master device in AP mode and the slave devices in FPP mode, refer to Table 8–5 on 
page 8–9. Connect the MSEL pins directly to VCCA or GND.

(5) The AP configuration ignores the WAIT signal during configuration mode. However, if you are accessing flash during user mode with user logic, 
you can optionally use the normal I/O to monitor the WAIT signal from the Micron P30 or P33 flash. 

(6) Connect the repeater buffers between the Cyclone IV E master device and slave devices for DATA[15..0] and DCLK. All I/O inputs must maintain 
a maximum AC voltage of 4.1 V. The output resistance of the repeater buffers must fit the maximum overshoot equation outlined in “Configuration 
and JTAG Pin I/O Requirements” on page 8–5.
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8–42 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
To ensure that DCLK and DATA[0] are not left floating at the end of the configuration, 
the MAX II device must drive them either high or low, whichever is convenient on 
your board. The DATA[0] pin is available as a user I/O pin after configuration. When 
you choose the FPP scheme in the Quartus II software, the DATA[0] pin is tri-stated by 
default in user mode and must be driven by the external host device. To change this 
default option in the Quartus II software, select the Dual-Purpose Pins tab of the 
Device and Pin Options dialog box.

The DCLK speed must be below the specified system frequency to ensure correct 
configuration. No maximum DCLK period exists, which means you can pause 
configuration by halting DCLK for an indefinite amount of time.

The external host device can also monitor the CONF_DONE and INIT_DONE pins to ensure 
successful configuration. The CONF_DONE pin must be monitored by the external device 
to detect errors and to determine when programming is complete. If all configuration 
data is sent, but CONF_DONE or INIT_DONE has not gone high, the external device must 
reconfigure the target device.

Figure 8–20 shows how to configure multiple devices with a MAX II device. This 
circuit is similar to the FPP configuration circuit for a single device, except the 
Cyclone IV devices are cascaded for multi-device configuration.

After the first device completes configuration in a multi-device configuration chain, 
its nCEO pin drives low to activate the nCE pin of the second device, which prompts the 
second device to begin configuration. The second device in the chain begins 
configuration in one clock cycle; therefore, the transfer of data destinations is 
transparent to the MAX II device. All other configuration pins (nCONFIG, nSTATUS, 

Figure 8–20. Multi-Device FPP Configuration Using an External Host

Notes to Figure 8–20:

(1) The pull-up resistor must be connected to a supply that provides an acceptable input signal for all devices in the 
chain. VCC must be high enough to meet the VIH specification of the I/O on the device and the external host.

(2) Connect the pull-up resistor to the VCCIO supply voltage of the I/O bank in which the nCE pin resides.
(3) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(4) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, 

refer to Table 8–4 on page 8–8 and Table 8–5 on page 8–9. Connect the MSEL pins directly to VCCA or GND. 
(5) All I/O inputs must maintain a maximum AC voltage of 4.1 V. DATA[7..0] and DCLK must fit the maximum overshoot 

outlined in Equation 8–1 on page 8–5.

External Host
(MAX II Device or
Microprocessor)

Memory

ADDR
Cyclone IV Device 1

nSTATUS
CONF_DONE

10 k

nCE nCEO

DATA[7..0]

GND

VCCIO (1) VCCIO (1)

10 k
MSEL[3..0] 

DATA[7..0] (5)
nCONFIG
DCLK (5)

nSTATUS
CONF_DONE

nCE nCEO N.C. (3)

DATA[7..0] (5)
nCONFIG
DCLK (5)

VCCIO (2)

10 k

     Cyclone IV Device 2

(4)
(4)

Buffers (5)

MSEL[3..0] 
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Configuration
ACTIVE_DISENGAGE

The ACTIVE_DISENGAGE instruction places the active configuration controller (AS and 
AP) into an idle state prior to JTAG programming. The two purposes of placing the 
active controller in an idle state are:

■ To ensure that it is not trying to configure the device during JTAG programming 

■ To allow the controllers to properly recognize a successful JTAG programming 
that results in the device reaching user mode

The ACTIVE_DISENGAGE instruction is required before JTAG programming regardless 
of the current state of the Cyclone IV device if the MSEL pins are set to an AS or AP 
configuration scheme. If the ACTIVE_DISENGAGE instruction is issued during a passive 
configuration scheme (PS or FPP), it has no effect on the Cyclone IV device. Similarly, 
the CONFIG_IO instruction is issued after an ACTIVE_DISENGAGE instruction, but is no 
longer required to properly halt configuration. Table 8–17 lists the required, 
recommended, and optional instructions for each configuration mode. The ordering 
of the required instructions is a hard requirement and must be met to ensure 
functionality.

In the AS or AP configuration scheme, the ACTIVE_DISENGAGE instruction puts the 
active configuration controller into idle state. If a successful JTAG programming is 
executed, the active controller is automatically re-engaged after user mode is reached 
through JTAG programming. This causes the active controller to transition to their 
respective user mode states.

If JTAG programming fails to get the Cyclone IV device to enter user mode and 
re-engage active programming, there are available methods to achieve this:

■ In AS configuration scheme, you can re-engage the AS controller by moving the 
JTAG TAP controller to the reset state or by issuing the ACTIVE_ENGAGE instruction.

Table 8–17. JTAG Programming Instruction Flows  (1) 

JTAG Instruction

Configuration Scheme and Current State of the Cyclone IV Device 

Prior to User Mode (Interrupting 
Configuration) User Mode Power Up

PS FPP AS AP PS FPP AS AP PS FPP AS AP

ACTIVE_DISENGAGE O O R R O O O R O O R R

CONFIG_IO Rc Rc O O O O O 0 NA NA NA NA

Other JTAG instructions O O O O O O O 0 O O O 0

JTAG_PROGRAM R R R R R R R R R R R R

CHECK_STATUS Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc

JTAG_STARTUP R R R R R R R R R R R R

JTAG TAP Reset/other 
instruction R R R R R R R R R R R R

Note to Table 8–17:

(1) “R” indicates that the instruction must be executed before the next instruction, “O” indicates the optional instruction, “Rc” indicates the 
recommended instruction, and “NA” indicates that the instruction is not allowed in this mode.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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■ In AP configuration scheme, the only way to re-engage the AP controller is to issue 
the ACTIVE_ENGAGE instruction. In this case, asserting the nCONFIG pin does not re-
engage either active controller.

ACTIVE_ENGAGE

The ACTIVE_ENGAGE instruction allows you to re-engage a disengaged active controller. 
You can issue this instruction any time during configuration or user mode to re-
engage an already disengaged active controller, as well as trigger reconfiguration of 
the Cyclone IV device in the active configuration scheme.

The ACTIVE_ENGAGE instruction functions as the PULSE_NCONFIG instruction when the 
device is in the PS or FPP configuration schemes. The nCONFIG pin is disabled when 
the ACTIVE_ENGAGE instruction is issued.

1 Altera does not recommend using the ACTIVE_ENGAGE instruction, but it is provided as 
a fail-safe instruction for re-engaging the active configuration controller (AS and AP).

Overriding the Internal Oscillator

This feature allows you to override the internal oscillator during the active 
configuration scheme. The AS and AP configuration controllers use the internal 
oscillator as the clock source. You can change the clock source to CLKUSR through the 
JTAG instruction.

The EN_ACTIVE_CLK and DIS_ACTIVE_CLK JTAG instructions toggle on or off whether 
or not the active clock is sourced from the CLKUSR pin or the internal configuration 
oscillator. To source the active clock from the CLKUSR pin, issue the EN_ACTIVE_CLK 
instruction. This causes the CLKUSR pin to become the active clock source. When using 
the EN_ACTIVE_CLK instruction, you must enable the internal oscillator for the clock 
change to occur. By default, the configuration oscillator is disabled after configuration 
and initialization is complete as well as the device has entered user mode.

However, the internal oscillator is enabled in user mode by any of the following 
conditions:

■ A reconfiguration event (for example, driving the nCONFIG pin to go low)

■ Remote update is enabled

■ Error detection is enabled

1 When using the EN_ACTIVE_CLK and DIS_ACTIVE_CLK JTAG instructions to override 
the internal oscillator, you must clock the CLKUSR pin at two times the expected DCLK 
frequency. The CLKUSR pin allows a maximum frequency of 40 MHz (40 MHz DCLK). 

Normally, a test instrument uses the CLKUSR pin when it wants to drive its own clock 
to control the AS state machine.

To revert the clock source back to the configuration oscillator, issue the 
DIS_ACTIVE_CLK instruction. After you issue the DIS_ACTIVE_CLK instruction, you 
must continue to clock the CLKUSR pin for 10 clock cycles. Otherwise, even toggling the 
nCONFIG pin does not revert the clock source and reconfiguration does not occur. A 
POR reverts the clock source back to the configuration oscillator. Toggling the nCONFIG 
pin or driving the JTAG state machine to reset state does not revert the clock source.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Automated SEU Detection
In user mode, Cyclone IV devices support the CHANGE_EDREG JTAG instruction, that 
allows you to write to the 32-bit storage register. You can use Jam™ STAPL files (.jam) 
to automate the testing and verification process. You can only execute this instruction 
when the device is in user mode, and it is a powerful design feature that enables you 
to dynamically verify the CRC functionality in-system without having to reconfigure 
the device. You can then use the CRC circuit to check for real errors induced by an 
SEU.

Table 9–1 describes the CHANGE_EDREG JTAG instructions.

1 After the test completes, Altera recommends that you power cycle the device.

Automated SEU Detection
Cyclone IV devices offer on-chip circuitry for automated checking of SEU detection. 
Applications that require the device to operate error-free at high elevations or in close 
proximity to earth’s north or south pole require periodic checks to ensure continued 
data integrity. The error detection cyclic redundancy code feature controlled by the 
Device and Pin Options dialog box in the Quartus II software uses a 32-bit CRC 
circuit to ensure data reliability and is one of the best options for mitigating SEU. 

You can implement the error detection CRC feature with existing circuitry in 
Cyclone IV devices, eliminating the need for external logic. The CRC is computed by 
the device during configuration and checked against an automatically computed CRC 
during normal operation. The CRC_ERROR pin reports a soft error when configuration 
CRAM data is corrupted. You must decide whether to reconfigure the FPGA by 
strobing the nCONFIG pin low or ignore the error. 

CRC_ERROR Pin
A specific CRC_ERROR error detection pin is required to monitor the results of the error 
detection circuitry during user mode. Table 9–2 describes the CRC_ERROR pin.

f The CRC_ERROR pin information for Cyclone IV devices is reported in the Cyclone IV 
Devices Pin-Outs on the Altera® website.

Table 9–1. CHANGE_EDREG JTAG Instruction

JTAG Instruction Instruction Code Description

CHANGE_EDREG 00 0001 0101
This instruction connects the 32-bit CRC storage register between TDI and TDO. 
Any precomputed CRC is loaded into the CRC storage register to test the operation 
of the error detection CRC circuitry at the CRC_ERROR pin.

Table 9–2. Cyclone IV Device CRC_ERROR Pin Description

CRC_ERROR Pin Type Description

I/O, Output (open-drain)

Active high signal indicates that the error detection circuit has detected errors in the 
configuration SRAM bits. This pin is optional and is used when the CRC error detection 
circuit is enabled in the Quartus II software from the Error Detection CRC tab of the Device 
and Pin Options dialog box. 

When using this pin, connect it to an external 10-k pull-up resistor to an acceptable 
voltage that satisfies the input voltage of the receiving device.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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The input reference clocks reside in banks 3A, 3B, 8A, and 8B have dedicated 
VCC_CLKIN3A, VCC_CLKIN3B, VCC_CLKIN8A, and VCC_CLKIN8B power supplies separately in 
their respective I/O banks to avoid the different power level requirements in the same 
bank for general purpose I/Os (GPIOs). Table 1–6 lists the supported I/O standard 
for the REFCLK pins.

Figure 1–26. PLL Input Reference Clocks in Transceiver Operation for F484 and Larger Packages 
(1), (2), (3)

Notes to Figure 1–26:

(1) The REFCLK2 and REFCLK3 pins are dual-purpose CLKIO, REFCLK, or DIFFCLK pins that reside in banks 3A and 8A 
respectively.

(2) The REFCLK[1..0] and REFCLK[5..4] pins are dual-purpose differential REFCLK or DIFFCLK pins that reside in 
banks 3B and 8B respectively. These clock input pins do not have access to the clock control blocks and GCLK 
networks. For more details, refer to the Clock Networks and PLLs in Cyclone IV Devices chapter.

(3) Using any clock input pins other than the designated REFCLK pins as shown here to drive the MPLLs and GPLLs may 
have reduced jitter performance. 

Transceiver
Block

GXBL1

MPLL_8

REFCLK3

REFCLK[1..0]

MPLL_7

Transceiver
Block

GXBL0

MPLL_6

MPLL_5

REFCLK[5..4]

REFCLK2

GPLL_1

GPLL_2

Not applicable in
F484 package

Table 1–6. REFCLK I/O Standard Support

I/O Standard HSSI 
Protocol Coupling Terminatio

n

VCC_CLKIN Level I/O Pin Type

Input Output Column I/O Row I/O Supported 
Banks

LVDS ALL Differential 
AC (Needs 

off-chip 
resistor to 

restore 
VCM)

Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

LVPECL ALL Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

1.2 V, 1.5 V, 
3.3 V PCML

ALL Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

ALL Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

ALL Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

HCSL PCIe Differential 
DC Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

http://www.altera.com/literature/hb/cyclone-iv/cyiv-51005.pdf
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The compliance pattern is a repeating sequence of the four code groups: /K28.5/; 
/D21.5/; /K28.5/; /D10.2/. Figure 1–53 shows the compliance pattern transmission 
where the tx_forcedispcompliance port must be asserted in the same parallel clock 
cycle as /K28.5/D21.5/ of the compliance pattern on tx_datain[15..0] port. 

Reset Requirement
Cyclone IV GX devices meets the PCIe reset time requirement from device power up 
to the link active state with the configuration schemes listed in Table 1–17.

GIGE Mode
GIGE mode provides the transceiver channel datapath configuration for GbE 
(specifically the 1000 Base-X physical layer device (PHY) standard) protocol 
implementation. The Cyclone IV GX transceiver provides the PMA and the following 
PCS functions as defined in the IEEE 802.3 specification for 1000 Base-X PHY:

■ 8B/10B encoding and decoding

■ synchronization

If you enabled the auto-negotiation state machine in the FPGA core with the rate 
match FIFO, refer to “Clock Frequency Compensation” on page 1–63.

Figure 1–53. Compliance Pattern Transmission Support in PCI Express (PIPE) Mode

Table 1–18. Electrical Idle Inference Conditions 

Device Configuration Scheme Configuration Time (ms)

EP4CGX15 Passive serial (PS) 51

EP4CGX22 PS 92

EP4CGX30 (1) PS 92

EP4CGX50 Fast passive parallel (FPP) 41

EP4CGX75 FPP 41

EP4CGX110 FPP 70

EP4CGX150 FPP 70

Note to Table 1–18:

(1) EP4CGX30 device in F484 package fulfills the PCIe reset time requirement using FPP configuration scheme with 
configuration time of 41 ms.

tx_ctrldetect[1..0] 01

tx_forcedispcompliance

tx_datain[15..0] B5BC 4ABC B5BC 4ABC

/K28.5/D21.5/ /K28.5/D21.5//K28.5/D10.2/ /K28.5/D10.2/
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1 Cyclone IV GX transceivers do not have built-in support for some PCS functions such 
as auto-negotiation state machine, collision-detect, and carrier-sense. If required, you 
must implement these functions in a user logic or external circuits.

The 1000 Base-X PHY is defined by IEEE 802.3 standard as an intermediate or 
transition layer that interfaces various physical media with the media access control 
(MAC) in a GbE system. The 1000 Base-X PHY, which has a physical interface data 
rate of 1.25 Gbps consists of the PCS, PMA, and physical media dependent (PMD) 
layers. Figure 1–54 shows the 1000 Base-X PHY in LAN layers.

Figure 1–54. 1000 Base-X PHY in a GbE OSI Reference Model

Notes to Figure 1–54:

(1) CSMA/CD = Carrier-Sense Multiple Access with Collision Detection
(2) GMII = gigabit medium independent interface

Logical Link Control (LLC) or other MAC client

(1)

(2)

MAC Control (Optional)

MAC

PMA

Medium

1000 Base-X PHY

GMII 

PCS

Reconcilation

PMD

Higher Layers

LAN CSMA/DC Layers
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converted within the XGMII extender sublayer into an 8B/10B encoded data stream. 
Each data stream is then transmitted across a single differential pair running at 3.125 
Gbps. At the XAUI receiver, the incoming data is decoded and mapped back to the 32-
bit XGMII format. This provides a transparent extension of the physical reach of the 
XGMII and also reduces the interface pin count.

XAUI functions as a self-managed interface because code group synchronization, 
channel deskew, and clock domain decoupling is handled with no upper layer 
support requirements. This functionality is based on the PCS code groups that are 
used during the inter-packet gap time and idle periods.

Figure 1–62. XAUI in 10 Gbps LAN Layers

LLC or other MAC client

MAC Control (Optional)

MAC

PMA

Medium

PHY

Optional XGMII
Extender

10 Gbps

XGMII 

PCS

Reconcilation

XGMII Extended Sublayer

PMD

XGMII 

XAUI 

XGMII Extended Sublayer

Higher Layers

LAN CSMA/DC Layers
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Method 3: Writing Different Control Signals for all the Transceiver Channels 
at the Same Time
If you disable the Use the same control signal for all the channels option, the PMA 
control ports for a write transaction are separate for each channel. If you disable this 
option, the width of the PMA control ports are fixed as follows:

PMA Control Ports Used in a Write Transaction

■ tx_vodctrl is 3 bits per channel

■ tx_preemp are 5 bits per channel

■ rx_eqdcgain is 2 bits per channel

■ rx_eqctrl is 4 bits per channel

For example, if you have two channels, the tx_vodctrl is 6 bits wide 
(tx_vodctrl [2:0] corresponds to channel 1 and tx_vodctrl [5:3] corresponds to 
channel 2).

PMA Control Ports Used in a Read Transaction

The width of the PMA control ports for a read transaction are always separate for each 
channel as explained in “Method 2: Writing the Same Control Signals to Control All 
the Transceiver Channels” on page 3–16.

Write Transaction

Because the PMA controls of all the channels are written, if you want to reconfigure a 
specific channel connected to the ALTGX_RECONFIG instance, set the new value at 
the corresponding PMA control port of the channel under consideration and retain 
the previously stored values in the other active channels with a read transaction prior 
to this write transaction.

For example, if the number of channels controlled by the ALTGX_RECONFIG 
instance is two, the tx_vodctrl signal in this case would be 6 bits wide. The 
tx_vodctrl[2:0] signal corresponds to channel 1 and the tx_vodctrl[5:3] signal 
corresponds to channel 2.

■ To dynamically reconfigure the PMA controls of only channel 2 with a new value, 
first perform a read transaction to retrieve the existing PMA control values from 
tx_vodctrl_out[5:0]. Use the tx_vodctrl_out[2:0] value for tx_vodctrl[2:0] 
to write in channel 1. By doing so, channel 1 is overwritten with the same value.

■ Perform a write transaction. This ensures that the new values are written only to 
channel 2 while channel 1 remains unchanged.
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Figure 3–8 shows a write transaction waveform with the Use the same control signal 
for all the channels option disabled. 

1 Simultaneous write and read transactions are not allowed.

Read Transaction

The read transaction in Method 3 is identical to that in Method 2. Refer to “Read 
Transaction” on page 3–18.

1 This is the slowest method. You have to write all the PMA settings for all channels 
even if you may only be changing one parameter on the channel. Altera recommends 
using the logical_channel_address method for time-critical applications.

For each method, you can additionally reconfigure the PMA setting of both 
transmitter and receiver portion, transmitter portion only, or receiver portion only of 
the transceiver channel. For more information, refer to “Dynamic Reconfiguration 
Controller Port List” on page 3–4. You can enable the rx_tx_duplex_sel port by 
selecting the Use 'rx_tx_duplex_sel' port to enable RX only, TX only or duplex 
reconfiguration option on the Error checks tab of the ALTGX_RECONFIG 
MegaWizard Plug-In Manager.

Figure 3–9 shows the ALTGX_RECONFIG connection to the ALTGX instances when 
set in analog reconfiguration mode. For the port information, refer to the “Dynamic 
Reconfiguration Controller Port List” on page 3–4. 

Figure 3–8. Write Transaction Waveform—Use the same control signal for all the channels Option Disabled

Notes to Figure 3–8:

(1) In this waveform example, you want to write to only the transmitter portion of the channel.
(2) In this waveform example, the number of channels controlled by the dynamic reconfiguration controller (the ALTGX_RECONFIG instance) is two 

and that the tx_vodctrl control port is enabled. 

busy

(2) 6'b111111 6'b111011

2'b00 2'b10(1)

reconfig_clk

write_all

rx_tx_duplex_sel [1:0]

tx_vodctrl [5:0]
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Data Rate Reconfiguration Mode Using RX Local Divider
The RX local divider resides in the RX PMA block for every channels. This is a 
hardware feature where a /2 divider is available in each of the receiver channel for the 
supported device. You can use this RX local divider to reconfigure the data rate at the 
receiver channel. This can be used for protocols such as SDI that has data rates in 
divisions of 2. 

By using this RX local divider, you can support two different data rates without using 
additional transceiver PLLs. This dynamic reconfiguration mode is available only for 
the receiver and not applicable to the transmitter. This reconfiguration mode using the 
RX local divider (/2) is only supported and available in EP4CGX30 (F484 package), 
EP4CGX50, and EP4CGX75 devices.

f For more information about this RX local divider, refer to the Cyclone IV GX 
Transceiver Architecture chapter.

20-bit FPGA fabric-Transceiver 
Channel Interface with PCS-PMA 
set to 10 bits

Two 10-bit Data (rx_dataout)

rx_dataoutfull[9:0] - rx_dataout (LSByte) and rx_dataoutfull[25:16] - 
rx_dataout (MSByte)

wo Receiver Sync Status Bits

rx_dataoutfull[10] - rx_syncstatus (LSB) and rx_dataoutfull[26] - 
rx_syncstatus (MSB)

rx_dataoutfull[11] and rx_dataoutfull[27]: 8B/10B disparity error indicator 
(rx_disperr)

Two Receiver Pattern Detect Bits

rx_dataoutfull[12] - rx_patterndetect (LSB) and rx_dataoutfull[28] - 
rx_patterndetect (MSB)

rx_dataoutfull[13] and rx_dataoutfull[29]: Rate Match FIFO deletion status 
indicator (rx_rmfifodatadeleted) in non-PCI Express (PIPE) functional modes

rx_dataoutfull[14] and rx_dataoutfull[30]: Rate Match FIFO insertion status 
indicator (rx_rmfifodatainserted) in non-PCI Express (PIPE) functional modes

rx_dataoutfull[15] and rx_dataoutfull[31]: 8B/10B running disparity 
indicator (rx_runningdisp)

Table 3–5. rx_dataoutfull[31..0] FPGA Fabric-Transceiver Channel Interface Signal Descriptions (Part 3 of 3)

FPGA Fabric-Transceiver Channel 
Interface Description

Receive Signal Description (Based on Cyclone IV GX Supported FPGA 
Fabric-Transceiver Channel Interface Widths)

http://www.altera.com/literature/hb/cyclone-iv/cyiv-52001.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-52001.pdf
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Operating Conditions
The OCT resistance may vary with the variation of temperature and voltage after 
calibration at device power-up. Use Table 1–10 and Equation 1–1 to determine the 
final OCT resistance considering the variations after calibration at device power-up. 
Table 1–10 lists the change percentage of the OCT resistance with voltage and 
temperature.

Table 1–10. OCT Variation After Calibration at Device Power-Up for Cyclone IV Devices (1)

Nominal Voltage dR/dT (%/°C) dR/dV (%/mV)

3.0 0.262 –0.026

2.5 0.234 –0.039

1.8 0.219 –0.086

1.5 0.199 –0.136

1.2 0.161 –0.288

Note to Table 1–10:

(1) This specification is not applicable to EP4CGX15, EP4CGX22, and EP4CGX30 devices.

Equation 1–1. Final OCT Resistance (1), (2), (3), (4), (5), (6)

RV = (V2 – V1) × 1000 × dR/dV ––––– (7)

RT = (T2 – T1) × dR/dT ––––– (8)

For Rx < 0; MFx = 1/ (|Rx|/100 + 1) ––––– (9)

For Rx > 0; MFx = Rx/100 + 1 ––––– (10)

MF = MFV × MFT ––––– (11)

Rfinal = Rinitial × MF ––––– (12)

Notes to Equation 1–1: 

(1) T2 is the final temperature. 
(2) T1 is the initial temperature. 
(3) MF is multiplication factor. 
(4) Rfinal is final resistance. 
(5) Rinitial is initial resistance. 
(6) Subscript x refers to both V and T.
(7) RV is a variation of resistance with voltage. 
(8) RT is a variation of resistance with temperature. 
(9) dR/dT is the change percentage of resistance with temperature after calibration at device power-up. 
(10) dR/dV is the change percentage of resistance with voltage after calibration at device power-up. 
(11) V2 is final voltage. 
(12) V1 is the initial voltage. 
December 2016 Altera Corporation Cyclone IV Device Handbook,
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Chapter 1: Cyclone IV Device Datasheet 1–25
Switching Characteristics
tDLOCK

Time required to lock dynamically (after switchover, 
reconfiguring any non-post-scale counters/delays or 
areset is deasserted) 

— — 1 ms

tOUTJITTER_PERIOD_DEDCLK 
(6)

Dedicated clock output period jitter 
FOUT  100 MHz — — 300 ps

FOUT < 100 MHz — — 30 mUI

tOUTJITTER_CCJ_DEDCLK 
(6)

Dedicated clock output cycle-to-cycle jitter 
FOUT  100 MHz — — 300 ps

FOUT < 100 MHz — — 30 mUI

tOUTJITTER_PERIOD_IO 
(6)

Regular I/O period jitter
FOUT  100 MHz — — 650 ps

FOUT < 100 MHz — — 75 mUI

tOUTJITTER_CCJ_IO 
(6)

Regular I/O cycle-to-cycle jitter
FOUT  100 MHz — — 650 ps

FOUT < 100 MHz — — 75 mUI

tPLL_PSERR Accuracy of PLL phase shift — — ±50 ps

tARESET Minimum pulse width on areset signal. 10 — — ns

tCONFIGPLL Time required to reconfigure scan chains for PLLs — 3.5 (7) — SCANCLK 
cycles

fSCANCLK scanclk frequency — — 100 MHz

tCASC_OUTJITTER_PERIOD_DEDCLK 
(8), (9)

Period jitter for dedicated clock output in cascaded 
PLLs (FOUT  100 MHz) — — 425 ps

Period jitter for dedicated clock output in cascaded 
PLLs (FOUT  100 MHz) — — 42.5 mUI

Notes to Table 1–25:

(1) This table is applicable for general purpose PLLs and multipurpose PLLs.
(2) You must connect VCCD_PLL to VCCINT through the decoupling capacitor and ferrite bead.
(3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O 

standard.
(4) The VCO frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the VCO 

post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the fVCO specification.
(5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less 

than 200 ps.
(6) Peak-to-peak jitter with a probability level of 10–12 (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies 

to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
(7) With 100-MHz scanclk frequency.
(8) The cascaded PLLs specification is applicable only with the following conditions:

■ Upstream PLL—0.59 MHz  Upstream PLL bandwidth < 1 MHz

■ Downstream PLL—Downstream PLL bandwidth > 2 MHz

(9) PLL cascading is not supported for transceiver applications.

Table 1–25. PLL Specifications for Cyclone IV Devices (1), (2) (Part 2 of 2)

Symbol Parameter Min Typ Max Unit
December 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 3


